Dynamic Spillovers Among Green Bond Markets: The Impact of Investor Sentiment
Abstract
1. Introduction
2. Literature Review
3. Theoretical Background and Hypothesis Development
4. Research Design
4.1. Data and Variables
4.2. Regression Model
4.2.1. TVP-VAR Model
4.2.2. E-GARCH Model
4.2.3. GARCH-MIDAS Model
5. Empirical Analysis
5.1. Descriptive Statistics
5.2. Dynamic Spillovers Among Green Bond Markets
5.3. The Impact of Domestic Investor Sentiment on Dynamic Spillovers
5.4. The Impact of Foreign Investor Sentiment on Dynamic Spillovers
5.4.1. The Impact of Foreign Investor Sentiment on U.S. Dynamic Spillovers
5.4.2. The Impact of Foreign Investor Sentiment on Chinese Dynamic Spillovers
6. Results Discussion
6.1. Dynamic Spillovers Among Green Bond Markets
6.2. The Impact of Investor Sentiment on Dynamic Spillovers
7. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abad, P., Chuliá, H., & Gómez-Puig, M. (2010). EMU and European government bond market integration. Journal of Banking and Finance, 34(12), 2851–2860. [Google Scholar] [CrossRef]
- Abad, P., Chuliá, H., & Gómez-Puig, M. (2014). Time-varying integration in European government bond markets. European Financial Management, 20(2), 270–290. [Google Scholar] [CrossRef]
- Anand, A., Basu, S., Pathak, J., & Thampy, A. (2021). The impact of sentiment on emerging stock markets. International Review of Economics and Finance, 75, 161–177. [Google Scholar] [CrossRef]
- Anderson, D., & Burnham, K. (2004). Model selection and multi-model inference: A practical information—Theory approach: Vol. 63.2020 (10th ed.). Springer. [Google Scholar]
- Antonakakis, N., Gabauer, D., Gupta, R., & Plakandaras, V. (2018). Dynamic connectedness of uncertainty across developed economies: A time-varying approach. Economics Letters, 166, 63–75. [Google Scholar] [CrossRef]
- Asgharian, H., & Nossman, M. (2011). Risk contagion among international stock markets. Journal of International Money and Finance, 30(1), 22–38. [Google Scholar] [CrossRef]
- Baker, M., & Stein, J. C. (2004). Market liquidity as a sentiment indicator. Journal of Financial Markets, 7(3), 271–299. [Google Scholar] [CrossRef]
- Baker, M., & Wurgler, J. (2006). Investor sentiment and the cross-section of stock returns. Journal of Finance, 61(4), 1645–1680. [Google Scholar] [CrossRef]
- Banerjee, A. V. (1992). A simple model of herd behavior. The Quarterly Journal of Economics, 107(3), 797–817. [Google Scholar] [CrossRef]
- Barua, S., & Chiesa, M. (2019). Sustainable financing practices through green bonds: What affects the funding size? Business Strategy and the Environment, 28(6), 1131–1147. [Google Scholar] [CrossRef]
- Bethke, S., Gehde-Trapp, M., & Kempf, A. (2017). Investor sentiment, flight-to-quality, and corporate bond comovement. Journal of Banking & Finance, 82, 112–132. [Google Scholar] [CrossRef]
- Bikhchandani, S., Welch, I., & Hirshleifer, D. (1992). A Theory of Fads, Fashion, Custom, and Cultural Change as Informational Cascades. Journal of Political Economy, 100(5), 992–1026. [Google Scholar] [CrossRef]
- Billah, M., Hadhri, S., Hoque, M. E., & Balli, F. (2024). A multi-dimensional connectedness and spillover between green bond and Islamic banking equity: Evidence from country level analysis. Pacific-Basin Finance Journal, 83, 102258. [Google Scholar] [CrossRef]
- Bouteska, A., Ha, L. T., Bhuiyan, F., Sharif, T., & Abedin, M. Z. (2024). Contagion between investor sentiment and green bonds in China during the global uncertainties. International Review of Economics and Finance, 93, 469–484. [Google Scholar] [CrossRef]
- Calvo, G. (1998). Capital market contagion and recession: An explanation of the Russian virus. University of Maryland. [Google Scholar]
- Chatziantoniou, I., Abakah, E. J. A., Gabauer, D., & Tiwari, A. K. (2022). Quantile time–frequency price connectedness between green bond, green equity, sustainable investments and clean energy markets. Journal of Cleaner Production, 361, 132088. [Google Scholar] [CrossRef]
- Chen, G., Fang, S., Chen, Q., & Zhang, Y. (2023). Risk spillovers and network connectedness between clean energy stocks, green bonds, and other financial assets: Evidence from China. Energies, 16(20), 7077. [Google Scholar] [CrossRef]
- Chen, W. (2021). Equity investor sentiment and bond market reaction: Test of overinvestment and capital flow hypotheses. Journal of Financial Markets, 55, 100589. [Google Scholar] [CrossRef]
- Cheng, X., Yan, C., Ye, K., & Chen, K. (2024). Enhancing resource efficiency through the utilization of the green bond market: An empirical analysis of Asian economies. Resources Policy, 89, 104623. [Google Scholar] [CrossRef]
- Christiansen, C. (2007). Volatility-spillover effects in European bond markets. European Financial Management, 13(5), 923–948. [Google Scholar] [CrossRef]
- Climate Bonds Initiative. (2023). Sustainable debt global state of the market. Climate Bonds Initiative. [Google Scholar]
- Climate Bonds Initiative. (2024). Sustainable debt global state of the market. Climate Bonds Initiative. [Google Scholar]
- Dai, Z., Zhang, X., & Yin, Z. (2023). Extreme time-varying spillovers between high carbon emission stocks, green bond and crude oil: Evidence from a quantile-based analysis. Energy Economics, 118, 106511. [Google Scholar] [CrossRef]
- Dean, W. G., Faff, R. W., & Loudon, G. F. (2010). Asymmetry in return and volatility spillover between equity and bond markets in Australia. Pacific Basin Finance Journal, 18(3), 272–289. [Google Scholar] [CrossRef]
- Delroy, M. H., & David, P. S. (2005). A conditional assessment of the relationships between the major world bond markets. European Financial Management, 11(4), 463–482. [Google Scholar] [CrossRef]
- Deng, J., Guan, S., Zheng, H., Xing, X., & Liu, C. (2022). Dynamic spillovers and asymmetric connectedness between fossil energy and green financial markets: Evidence from China. Frontiers in Energy Research, 10, 986341. [Google Scholar] [CrossRef]
- Diebold, F. X., & Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. Economic Journal, 119(534), 158–171. [Google Scholar] [CrossRef]
- Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57–66. [Google Scholar] [CrossRef]
- Diebold, F. X., & Yilmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182(1), 119–134. [Google Scholar] [CrossRef]
- Engle, R. F., Ghysels, E., & Sohn, B. (2013). On the economic sources of stock market volatility. Review of Economics and Statistics, 93, 776–797. [Google Scholar] [CrossRef]
- Engle, R. F., Ito, T., & Lin, W.-L. (1990). Meteor showers or heat waves? Heteroskedastic intra-daily volatility in the foreign exchange market. Econometrica, 58, 525–542. [Google Scholar] [CrossRef]
- Engle, R. F., & Rangel, J. G. (2008). The spline-garch model for low-frequency volatility and its global macroeconomic causes. The Review of Financial Studies, 21(3), 1187–1222. [Google Scholar] [CrossRef]
- Fernandes, C., Gama, P. M., & Vieira, E. (2016). Does local and Euro area sentiment matter for sovereign debt markets? Evidence from a bailout country. Applied Economics, 48(9), 816–834. [Google Scholar] [CrossRef]
- Forbes, K., & Rigobon, R. (1999). No contagion, only interdependence: Measuring stock market co-movements. Journal of Finance, 57(5), 2223–2261. [Google Scholar] [CrossRef]
- Fu, Y., He, L., Liu, R., Liu, X., & Chen, L. (2024). Does heterogeneous media sentiment matter the ‘green premium’? An empirical evidence from the Chinese bond market. International Review of Economics & Finance, 92, 1016–1027. [Google Scholar] [CrossRef]
- Gabauer, D., & Antonakakis, N. (2017). Refined measures of dynamic connectedness based on TVP-VAR. University Library of Munich. [Google Scholar]
- Gan, X. D., Zheng, X. Y., Li, C. C., & Zhu, G. Q. (2024). Green bond issuance and trade credit access: Evidence from Chinese bond market. Finance Research Letters, 60, 104842. [Google Scholar] [CrossRef]
- Gao, Y., Li, Y., & Wang, Y. (2021). Risk spillover and network connectedness analysis of China’s green bond and financial markets: Evidence from financial events of 2015–2020. The North American Journal of Economics and Finance, 57, 101386. [Google Scholar] [CrossRef]
- Gao, Y., Li, Y., & Wang, Y. (2023). The dynamic interaction between investor attention and green security market: An empirical study based on Baidu index. China Finance Review International, 13(1), 79–101. [Google Scholar] [CrossRef]
- Gao, Y., & Liu, X. (2024). Time and frequency spillovers and drivers between rare earth and energy, metals, green, and agricultural markets. The North American Journal of Economics and Finance, 72, 102128. [Google Scholar] [CrossRef]
- Gerlach, S., & Smets, F. (1995). Contagious speculative attacks. European Journal of Political Economy, 11(1), 45–63. [Google Scholar] [CrossRef]
- Ghysels, E., Santa-Clara, P., & Valkanov, R. (2005). There is a risk-return trade-off after all. Journal of Financial Economics, 76(3), 509–548. [Google Scholar] [CrossRef]
- Goldstein, M. (1998). The Asian financial crisis. Institute for International Economics. [Google Scholar]
- Guo, D., & Zhou, P. (2021). Green bonds as hedging assets before and after COVID: A comparative study between the US and China. Energy Economics, 104, 105696. [Google Scholar] [CrossRef]
- Hadad, E., & Kedar-Levy, H. (2024). The impact of retail investor sentiment on the conditional volatility of stocks and bonds: Evidence from the Tel-Aviv stock exchange. International Review of Economics and Finance, 89, 1303–1313. [Google Scholar] [CrossRef]
- He, L., Dai, P. F., Hu, S., & Gan, S. (2024). Do green bond issuers walk the talk? Exploring the alignment between green bond issuance and subsequent green investment. International Review of Economics & Finance, 94, 103366. [Google Scholar] [CrossRef]
- Huang, D., Jiang, F., Tu, J., & Zhou, G. (2015). Investor sentiment aligned: A powerful predictor of stock returns. Review of Financial Studies, 28(3), 791–837. [Google Scholar] [CrossRef]
- Jiang, D., & Jia, F. (2022). Extreme spillover between green bonds and clean energy markets. Sustainability, 14(10), 6338. [Google Scholar] [CrossRef]
- Kaminsky, G. L., Reinhart, C. M., & Végh, C. A. (2003). The unholy trinity of financial contagion. Journal of Economic Perspectives, 17(4), 51–74. [Google Scholar] [CrossRef]
- Karahan, C. C., & Soykök, E. (2022). Term premium dynamics in an emerging market: Risk, liquidity, and behavioral factors. International Review of Financial Analysis, 84, 102355. [Google Scholar] [CrossRef]
- Keiber, K. L., & Samyschew, H. (2019). The pricing of sentiment risk in European stock markets. European Journal of Finance, 25(3), 279–302. [Google Scholar] [CrossRef]
- King, M., & Wadhwani, S. (1990). Transmission of volatility between stock markets. Review of Financial Studies, 3(1), 5–33. [Google Scholar] [CrossRef]
- Kodres, L., & Pritsker, M. (2002). A rational expectations model of financial contagion. Journal of Finance, 57(2), 769–799. [Google Scholar] [CrossRef]
- Koop, G., Pesaran, M. H., & Potter, S. M. (1996). Impulse response analysis in nonlinear multivariate models. Journal of Econometrics, 74(1), 119–147. [Google Scholar] [CrossRef]
- Lee, K., & Kim, M. (2019). Investor sentiment and bond risk premia: Evidence from China. Emerging Markets Finance and Trade, 55(4), 915–933. [Google Scholar] [CrossRef]
- Li, J., & Yang, J. (2024). Financial shocks, investor sentiment, and heterogeneous firms’ output volatility: Evidence from credit asset securitization markets. Finance Research Letters, 60, 104860. [Google Scholar] [CrossRef]
- Li, Q., Zhang, K., & Wang, L. (2022). Where’s the green bond premium? Evidence from China. Finance Research Letters, 48, 102950. [Google Scholar] [CrossRef]
- Li, Y., Yu, C., Shi, J., & Liu, Y. (2023). How does green bond issuance affect total factor productivity? Evidence from Chinese listed enterprises. Energy Economics, 123, 106755. [Google Scholar] [CrossRef]
- Lin, W.-L., & Ito, T. (1994). Price volatility and volume spillovers between the Tokyo and New York stock markets. Internationalization of Equity Markets, 4592, 309–343. [Google Scholar]
- Liu, N., Liu, C., Da, B., Zhang, T., & Guan, F. (2021). Dependence and risk spillovers between green bonds and clean energy markets. Journal of Cleaner Production, 279, 123595. [Google Scholar] [CrossRef]
- Liu, S., & Li, S. (2024). Corporate green bond issuance and high-quality corporate development. Finance Research Letters, 61, 104880. [Google Scholar] [CrossRef]
- Long, S., Tian, H., & Li, Z. (2022). Dynamic spillovers between uncertainties and green bond markets in the US, Europe, and China: Evidence from the quantile VAR framework. International Review of Financial Analysis, 84, 102416. [Google Scholar] [CrossRef]
- Man, Y., Zhang, S., & He, Y. (2024). Dynamic risk spillover and hedging efficacy of China’s carbon-energy-finance markets: Economic policy uncertainty and investor sentiment non-linear causal effects. International Review of Economics & Finance, 93, 1397–1416. [Google Scholar] [CrossRef]
- Mensi, W., Naeem, M. A., Vo, X. V., & Kang, S. H. (2022a). Dynamic and frequency spillovers between green bonds, oil and G7 stock markets: Implications for risk management. Economic Analysis and Policy, 73, 331–344. [Google Scholar] [CrossRef]
- Mensi, W., Shafiullah, M., Vo, X. V., & Kang, S. H. (2022b). Spillovers and connectedness between green bond and stock markets in bearish and bullish market scenarios. Finance Research Letters, 49, 103120. [Google Scholar] [CrossRef]
- Mensi, W., Vo, X. V., Ko, H. U., & Kang, S. H. (2023). Frequency spillovers between green bonds, global factors and stock market before and during COVID-19 crisis. Economic Analysis and Policy, 77, 558–580. [Google Scholar] [CrossRef] [PubMed]
- Mzoughi, H., Urom, C., & Guesmi, K. (2022). Downside and upside risk spillovers between green finance and energy markets. Finance Research Letters, 47, 102612. [Google Scholar] [CrossRef]
- Naeem, M. A., Adekoya, O. B., & Oliyide, J. A. (2021a). Asymmetric spillovers between green bonds and commodities. Journal of Cleaner Production, 314, 128100. [Google Scholar] [CrossRef]
- Naeem, M. A., Bouri, E., Costa, M. D., Naifar, N., & Shahzad, S. J. H. (2021b). Energy markets and green bonds: A tail dependence analysis with time-varying optimal copulas and portfolio implications. Resources Policy, 74, 102418. [Google Scholar] [CrossRef]
- Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347–370. [Google Scholar] [CrossRef]
- Ning, Y., Cherian, J., Sial, M. S., Álvarez-Otero, S., Comite, U., & Zia-Ud-Din, M. (2023). Green bond as a new determinant of sustainable green financing, energy efficiency investment, and economic growth: A global perspective. Environmental Science and Pollution Research, 30(22), 61324–61339. [Google Scholar] [CrossRef]
- Nurkse, R. (1944). International currency experience: Lessons of the interwar period (pp. 1–249). League of Nations. [Google Scholar]
- Nykvist, B., & Maltais, A. (2022). Too risky—The role of finance as a driver of sustainability transitions. Environmental Innovation and Societal Transitions, 42, 219–231. [Google Scholar] [CrossRef]
- Park, D., Park, J., & Ryu, D. (2020). Volatility spillovers between equity and green bond markets. Sustainability, 12(9), 3722. [Google Scholar] [CrossRef]
- Pesaran, H. H., & Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics Letters, 58(1), 17–29. [Google Scholar] [CrossRef]
- Pham, L. (2016). Is it risky to go green? A volatility analysis of the green bond market. Journal of Sustainable Finance and Investment, 6(4), 263–291. [Google Scholar] [CrossRef]
- Pham, L. (2021). Frequency connectedness and cross-quantile dependence between green bond and green equity markets. Energy Economics, 98, 105257. [Google Scholar] [CrossRef]
- Pham, L., & Cepni, O. (2022). Extreme directional spillovers between investor attention and green bond markets. International Review of Economics and Finance, 80, 186–210. [Google Scholar] [CrossRef]
- Pham, L., & Luu Duc Huynh, T. (2020). How does investor attention influence the green bond market? Finance Research Letters, 35, 101533. [Google Scholar] [CrossRef]
- Piñeiro-Chousa, J., López-Cabarcos, M. Á., Caby, J., & Šević, A. (2021). The influence of investor sentiment on the green bond market. Technological Forecasting and Social Change, 162, 120351. [Google Scholar] [CrossRef]
- Piñeiro-Chousa, J., López-Cabarcos, M. Á., & Šević, A. (2022). Green bond market and Sentiment: Is there a switching Behaviour? Journal of Business Research, 141, 520–527. [Google Scholar] [CrossRef]
- Reboredo, J. C. (2018). Green bond and financial markets: Co-movement, diversification and price spillover effects. Energy Economics, 74, 38–50. [Google Scholar] [CrossRef]
- Reboredo, J. C., & Ugolini, A. (2020). Price connectedness between green bond and financial markets. Economic Modelling, 88, 25–38. [Google Scholar] [CrossRef]
- Rehman, M. U., Zeitun, R., Vo, X. V., Ahmad, N., & Al-Faryan, M. A. S. (2023). Green bonds’ connectedness with hedging and conditional diversification performance. Journal of International Financial Markets, Institutions and Money, 86, 101802. [Google Scholar] [CrossRef]
- Ren, P., Cheng, Z., & Dai, Q. (2024). Can green bond issuance promote enterprise green technological innovation? The North American Journal of Economics and Finance, 69, 102021. [Google Scholar] [CrossRef]
- Shi, J., Ausloos, M., & Zhu, T. (2022). If global or local investor sentiments are prone to developing an impact on stock returns, is there an industry effect? International Journal of Finance and Economics, 27(1), 1309–1320. [Google Scholar] [CrossRef]
- Skintzi, V. D., & Refenes, A. N. (2006). Volatility spillovers and dynamic correlation in European bond markets. Journal of International Financial Markets, Institutions and Money, 16(1), 23–40. [Google Scholar] [CrossRef]
- Su, T., Zhang, Z. (Justin), & Lin, B. (2022). Green bonds and conventional financial markets in China: A tale of three transmission modes. Energy Economics, 113, 106200. [Google Scholar] [CrossRef]
- Su, Y. H., Rizvi, S. K. A., Umar, M., & Chang, H. (2023). Unveiling the relationship between oil and green bonds: Spillover dynamics and implications. Energy Economics, 127, 107043. [Google Scholar] [CrossRef]
- Tiwari, A. K., Aikins Abakah, E. J., Adekoya, O. B., & Hammoudeh, S. (2023). What do we know about the price spillover between green bonds and Islamic stocks and stock market indices? Global Finance Journal, 55, 100794. [Google Scholar] [CrossRef]
- Tu, C. A., & Rasoulinezhad, E. (2022). Energy efficiency financing and the role of green bond: Policies for post-Covid period. China Finance Review International, 12(2), 203–218. [Google Scholar] [CrossRef]
- Vukovic, D. B., Lapshina, K. A., & Maiti, M. (2021). Wavelet coherence analysis of returns, volatility and interdependence of the US and the EU money markets: Pre & post crisis. North American Journal of Economics and Finance, 58, 101457. [Google Scholar] [CrossRef]
- Wang, K. H., Wang, Z. S., Yunis, M., & Kchouri, B. (2023). Spillovers and connectedness among climate policy uncertainty, energy, green bond and carbon markets: A global perspective. Energy Economics, 128, 107170. [Google Scholar] [CrossRef]
- Wang, Q., & Li, X. (2024). Risk spillover effects between the U.S. and Chinese green bond markets: A threshold time-varying Copula-GARCHSK approach. Computational Economics, 65, 3605–3631. [Google Scholar] [CrossRef]
- Wang, W., & Duxbury, D. (2021). Institutional investor sentiment and the mean-variance relationship: Global evidence. Journal of Economic Behavior and Organization, 191, 415–441. [Google Scholar] [CrossRef]
- Wang, W., Su, C., & Duxbury, D. (2022). The conditional impact of investor sentiment in global stock markets: A two-channel examination. Journal of Banking and Finance, 138, 106458. [Google Scholar] [CrossRef]
- Wu, R., & Liu, B. Y. (2023). Do climate policy uncertainty and investor sentiment drive the dynamic spillovers among green finance markets? Journal of Environmental Management, 347, 119008. [Google Scholar] [CrossRef]
- Wu, X., Bu, D., Lian, J., & Bao, Y. (2022). Green Bond Issuance and Peer Firms’ Green Innovation. Sustainability, 14(24), 17035. [Google Scholar] [CrossRef]
- Yousaf, I., Mensi, W., Vo, X. V., & Kang, S. H. (2024). Dynamic spillovers and connectedness between crude oil and green bond markets. Resources Policy, 89, 104594. [Google Scholar] [CrossRef]
- Zhang, M., Zhang, D., & Yang, Y. (2023). Green bond and trade openness effects on sustainable business practices in natural resource markets. Resources Policy, 86, 104188. [Google Scholar] [CrossRef]
- Zhang, R., Li, Y., & Liu, Y. (2021). Green bond issuance and corporate cost of capital. Pacific-Basin Finance Journal, 69, 101626. [Google Scholar] [CrossRef]
- Zhao, Q., Qin, C., Ding, L., Cheng, Y. Y., & Vătavu, S. (2023). Can green bond improve the investment efficiency of renewable energy? Energy Economics, 127, 107084. [Google Scholar] [CrossRef]
- Zheng, H., Wang, S., & Zhang, T. (2025). Dynamic risk spillovers between green bonds and energy markets: New evidence from the GARCH-MIDAS-D-Copula-CoVaR approach considering uncertainties. Renewable Energy, 239, 122129. [Google Scholar] [CrossRef]
- Zheng, J., Jiang, Y., Cui, Y., & Shen, Y. (2023). Green bond issuance and corporate ESG performance: Steps toward green and low-carbon development. Research in International Business and Finance, 66, 102007. [Google Scholar] [CrossRef]
(A) | |||||
Markets | Variables | Notations | Frequency | Value | Data Source |
China | FTSE Chinese Green Bond Index Onshore CNY | gbcny | Daily | Daily return | Bloomberg (except for FTSE Chinese Green Bond Index Onshore CNY is from FTSE Russell) |
Japan | Bloomberg Global Green Bond Index JPY | gbjpy | |||
Canada | Bloomberg Global Green Bond Index CAD | gbcad | |||
United States | Bloomberg Global Green Bond Index USD | gbusd | |||
Australia | Bloomberg Global Green Bond Index AUD | gbaud | |||
New Zealand | Bloomberg Global Green Bond Index NZD | gbnzd | |||
European Union | Bloomberg Global Green Bond Index EUR | gbeur | |||
United Kingdom | Bloomberg Global Green Bond Index GBP | gbgbp | |||
Switzerland | Bloomberg Global Green Bond Index CHF | gbchf | |||
Denmark | Bloomberg Global Green Bond Index DKK | gbdkk | |||
Norway | Bloomberg Global Green Bond Index NOK | gbnok | |||
Sweden | Bloomberg Global Green Bond Index SEK | gbsek | |||
(B) | |||||
Markets | Variables | Notations | Frequency | Value | Data Source |
China | China Consumer Confidence Index | ccicny | Monthly | Natural logarithm | OECD Library |
Japan | Japan Consumer Confidence Index | ccijpy | |||
Canada | Canada Consumer Confidence Index | ccicad | |||
United States | U.S. Consumer Confidence Index | cciusd | |||
Australia | Australia Consumer Confidence Index | cciaud | |||
New Zealand | New Zealand Consumer Confidence Index | ccinzd | |||
European Union | EU Consumer Confidence Index | ccieur | |||
United Kingdom | UK Consumer Confidence Index | ccigbp | |||
Switzerland | Switzerland Consumer Confidence Index | ccichf | |||
Denmark | Denmark Consumer Confidence Index | ccidkk | |||
Norway | Norway Consumer Confidence Index | ccinok | |||
Sweden | Sweden Consumer Confidence Index | ccisek | |||
(C) | |||||
Markets | Variables | Notations | Frequency | Value | Data Source |
China | China turnover ratio | tocny | daily | Natural logarithm | Bloomberg |
Japan | Japan turnover ratio | tojpy | |||
Canada | Canada turnover ratio | tocad | |||
United States | U.S. turnover ratio | tousd | |||
Australia | Australia turnover ratio | toaud | |||
New Zealand | New Zealand turnover ratio | tonzd | |||
European Union | EU turnover ratio | toeur | |||
United Kingdom | UK turnover ratio | togbp | |||
Switzerland | Switzerland turnover ratio | tochf | |||
Denmark | Denmark turnover ratio | todkk | |||
Norway | Norway turnover ratio | tonok | |||
Sweden | Sweden turnover ratio | tosek |
(A) | ||||||
Variable | Mean | Std. Dev. | Skewness | Kurtosis | Jarque–Bera | ADF Test |
gbcny | 0.1428 | 0.0547 | −0.0851 | 7.1829 | 568.85 *** | −24.774 *** |
gbjpy | −0.0269 | 0.3871 | 0.3711 | 4.2243 | 66.54 *** | −26.385 *** |
gbcad | −0.0101 | 0.3865 | 0.4071 | 4.4742 | 92.071 *** | −26.423 *** |
gbusd | −0.0236 | 0.5857 | 0.2412 | 4.3979 | 70.986 *** | 24.883 *** |
gbaud | −0.0128 | 0.3867 | 0.3447 | 4.2527 | 66.367 *** | −26.616 *** |
gbnzd | −0.0094 | 0.3859 | 0.3369 | 4.2882 | 68.603 *** | −26.371 *** |
gbeur | −0.0155 | 0.3887 | 0.3289 | 3.9674 | 44.429 *** | −26.341 *** |
gbgbp | −0.0105 | 0.3849 | 0.2973 | 4.1060 | 51.186 *** | −26.132 *** |
gbchf | −0.0223 | 0.3858 | 0.3806 | 4.2926 | 73.052 *** | −26.531 *** |
gbdkk | −0.0164 | 0.3864 | 0.3937 | 4.3736 | 81.374 *** | −26.569 *** |
gbnok | −0.0126 | 0.3873 | 0.3214 | 4.301 | 68.354 *** | −26.391 *** |
gbsek | −0.0153 | 0.3847 | 0.2928 | 4.0571 | 47.411 *** | −26.021 *** |
Notes: This table reports the descriptive statistics of the variables used to analyze green bond market spillovers. All the variables are defined in Table 1A. *** denotes a 1% level of significance. | ||||||
(B) | ||||||
Variable | Mean | Std. Dev. | Skewness | Kurtosis | Jarque–Bera | ADF Test |
ccicny | 4.4992 | 0.0876 | 2.7324 | 9.1687 | 101.87 *** | −6.0338 *** |
ccijpy | 4.5866 | 0.0073 | −0.4165 | 1.7512 | 3.3800 | −3.5758 ** |
ccicad | 3.8874 | 0.0332 | 0.0821 | 2.2121 | 0.9716 | −3.5075 ** |
cciusd | 4.5814 | 0.0076 | 0.0188 | 2.4498 | 0.4561 | −5.5101 *** |
cciaud | 4.5882 | 0.0066 | 1.5039 | 4.2037 | 15.743 | −2.8283 * |
ccinzd | 4.5780 | 0.0069 | 0.3515 | 2.2458 | 1.5946 | −1.8252 * |
ccieur | 4.5849 | 0.0133 | −0.7321 | 2.4392 | 3.6877 | −2.1995 ** |
ccigbp | 4.5724 | 0.0271 | −0.5147 | 1.7750 | 3.8406 | −3.3216 ** |
ccichf | 4.5737 | 0.0132 | 0.9545 | 4.3693 | 8.2785 | −3.5603 ** |
ccidkk | 4.5869 | 0.0118 | −0.7327 | 2.1488 | 4.3081 | −2.4510 ** |
ccinok | 4.8705 | 0.0400 | −0.8171 | 2.6388 | 4.2017 | −3.9449 *** |
ccisek | 4.5764 | 0.0241 | 0.1144 | 1.6544 | 2.7945 | −2.9665 * |
Notes: This table reports the descriptive statistics of the variables used to analyze green bond market spillovers. All the variables are defined in Table 1B. ***, **, and * denote 1%, 5%, and 10% levels of significance, respectively. | ||||||
(C) | ||||||
Variable | Mean | Std. Dev. | Skewness | Kurtosis | Jarque–Bera | ADF Test |
tocny | 1.5432 | 0.9010 | −3.6740 | 17.617 | 8687.6 *** | −12.113 *** |
tojpy | 1.4036 | 0.2041 | 0.5920 | 4.4086 | 109.91 *** | −6.995 *** |
tocad | 1.0288 | 0.2645 | −0.3596 | 10.966 | 2076.5 *** | −5.7049 *** |
tousd | 0.6516 | 0.2634 | 1.7812 | 10.321 | 2151.5 *** | −13.3929 *** |
toaud | 0.7407 | 0.3120 | 0.8675 | 7.5262 | 762.66 *** | −3.5101 *** |
tonzd | −0.3107 | 0.5552 | 1.6809 | 10.821 | 2352.2 *** | −5.4251 *** |
toeur | 0.4577 | 0.6146 | −7.1390 | 72.778 | 164,656 *** | −4.8863 *** |
togbp | 0.3952 | 0.7755 | −10.170 | 129.11 | 529,646 *** | −5.3019 *** |
tochf | 0.4994 | 0.4505 | −12.341 | 273.27 | 2,390,718 *** | −8.5967 *** |
todkk | 0.2270 | 0.3280 | 0.5500 | 4.6731 | 130.13 *** | −3.4822 *** |
tonok | 0.1797 | 0.2891 | 0.8555 | 4.7588 | 195.43 *** | −4.1903 *** |
tosek | 0.5297 | 0.3490 | −1.0304 | 12.947 | 3349.1 *** | −5.4683 *** |
Notes: This table reports the descriptive statistics for the turnover ratio. All the variables are defined in Table 1C. *** denotes a 1% level of significance. |
Market | China | Japan | Canada | U.S. | Australia | New Zealand | EU | UK | Switzerland | Denmark | Norway | Sweden | FROM |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
China | 88.95 | 1.01 | 1.20 | 0.93 | 0.80 | 1.00 | 1.09 | 0.88 | 0.95 | 0.94 | 1.15 | 1.08 | 11.05 |
Japan | 0.16 | 9.54 | 9.49 | 5.33 | 9.37 | 9.50 | 9.34 | 9.44 | 9.45 | 9.39 | 9.50 | 9.49 | 90.46 |
Canada | 0.18 | 9.48 | 9.54 | 5.36 | 9.35 | 9.51 | 9.36 | 9.41 | 9.44 | 9.40 | 9.50 | 9.47 | 90.46 |
U.S | 0.59 | 8.27 | 8.32 | 15.43 | 8.41 | 8.43 | 8.45 | 8.49 | 8.33 | 8.36 | 8.38 | 8.55 | 84.57 |
Australia | 0.19 | 9.38 | 9.36 | 5.42 | 9.54 | 9.43 | 9.36 | 9.52 | 9.48 | 9.49 | 9.40 | 9.42 | 90.46 |
New Zealand | 0.19 | 9.46 | 9.48 | 5.41 | 9.39 | 9.5 | 9.35 | 9.43 | 9.43 | 9.40 | 9.48 | 9.48 | 90.50 |
EU | 0.16 | 9.38 | 9.42 | 5.45 | 9.39 | 9.42 | 9.58 | 9.44 | 9.43 | 9.43 | 9.42 | 9.47 | 90.42 |
UK | 0.15 | 9.41 | 9.38 | 5.44 | 9.47 | 9.44 | 9.37 | 9.54 | 9.45 | 9.44 | 9.43 | 9.47 | 90.46 |
Switzerland | 0.18 | 9.43 | 9.43 | 5.37 | 9.45 | 9.45 | 9.37 | 9.46 | 9.51 | 9.49 | 9.43 | 9.42 | 90.49 |
Denmark | 0.2 | 9.39 | 9.41 | 5.40 | 9.48 | 9.43 | 9.39 | 9.48 | 9.50 | 9.53 | 9.40 | 9.40 | 90.47 |
Norway | 0.14 | 9.48 | 9.49 | 5.37 | 9.38 | 9.50 | 9.36 | 9.44 | 9.43 | 9.38 | 9.53 | 9.50 | 90.47 |
Sweden | 0.16 | 9.45 | 9.44 | 5.45 | 9.36 | 9.47 | 9.39 | 9.47 | 9.40 | 9.36 | 9.48 | 9.56 | 90.44 |
TO | 2.3 | 94.15 | 94.43 | 54.92 | 93.85 | 94.6 | 93.82 | 94.46 | 94.3 | 94.09 | 94.58 | 94.75 | TSI |
NET | −8.75 | 3.70 | 3.96 | −29.65 | 3.39 | 4.10 | 3.40 | 4.00 | 3.80 | 3.62 | 4.11 | 4.31 | 83.35 |
Panel A: Results from the EGARCH model | ||||||||
Markets | Constant | Coefficients | LLF | AIC | ||||
China | 12.668 *** (0.0138) | −3.0737 *** (0.0032) | −1022.7 | 3.9987 | ||||
Japan | −0.1031 *** (0.0003) | 0.6605 *** (0.0027) | 603.22 | −2.3160 | ||||
Canada | 0.2999 (1.3181) | 0.7684 ** (0.3357) | 536.97 | −2.0583 | ||||
U. S | −32.651 *** (0.3995) | 0.8295 *** (0.0534) | −198.49 | 0.6608 | ||||
Australia | −46.768 * (24.188) | 10.790 ** (5.2906) | 653.47 | −1.8764 | ||||
New Zealand | 21.656 (90.631) | −6.3842 *** (1.6297) | 685.09 | −2.6307 | ||||
EU | −11.761 *** (0.1907) | 3.2474 *** (0.0173) | 511.07 | −1.3411 | ||||
UK | 11.502 ** (4.7669) | −1.9669 ** (0.8735) | 681.40 | −2.6163 | ||||
Switzerland | 22.905 *** (8.3224) | −4.4156 ** (1.8158) | 704.63 | −2.7067 | ||||
Denmark | 27.263 ** (11.841) | −5.2678 ** (2.5837) | 776.94 | −2.6572 | ||||
Norway | −13.789 ** (6.5041) | 3.5407 *** (1.3391) | 511.37 | −1.9586 | ||||
Sweden | −21.876 *** (6.8836) | 5.4989 *** (1.5111) | 509.34 | −1.9501 | ||||
Notes: All the variables are defined in Table 1B. ***, **, and * denote 1%, 5%, and 10% levels of significance, respectively. | ||||||||
Panel B: Results from the GARCH-MIDAS model | ||||||||
Markets | LLF | AIC | ||||||
China | −2.0254 *** (0.2003) | 0.2333 *** (0.0898) | 0.7101 *** (0.0842) | −1.3229 *** (0.3471) | −0.2107 *** (0.0400) | 19.473 *** (0.0188) | 1095.9 | −4.1926 |
Japan | 2.5834 *** (0.0200) | 0.3721 *** (0.0004) | 0.5429 *** (0.0001) | −0.0214 (0.0183) | 0.7142 *** (0.2599) | 0.0859 ** (0.0400) | 169.28 | −0.6215 |
Canada | 2.9520 *** (0.0006) | 0.8941 *** (0.0003) | −0.0871 *** (0.0001) | −6.7598 *** (0.0001) | 0.8112 *** (0.0003) | −3.3085 *** (0.0006) | 19.2023 | −0.0509 |
U. S | −28.778 *** (0.1725) | 0.5337 *** (0.0717) | 0.4205 *** (0.0758) | −1.9692 *** (0.4592) | 0.4462 *** (0.1159) | 3.7727 *** (0.0035) | 993.99 | −3.7996 |
Australia | 2.7633 *** (0.0266) | 0.0501 *** (3.6850) | 0.9400 *** (3.8221) | −0.0476 *** (0.0024) | 0.1087 *** (0.0368) | −0.3251 *** (0.0633) | 228.03 | −0.8517 |
New Zealand | 2.9602 *** (0.0253) | 0.5135 *** (0.0698) | 0.4613 *** (0.0807) | −0.0640 ** (0.0317) | −0.5661 *** (0.1416) | 16.733 *** (0.0254) | 67.279 | −0.2284 |
EU | 2.7049 *** (0.0211) | 0.2957 *** (0.0003) | 0.5118 *** (0.0004) | −0.2892 (0.2422) | 0.3606 *** (0.0644) | 13.853 ** (6.6673) | 51.0912 | −0.1699 |
UK | 3.0165 *** (0.0203) | 0.6358 *** (0.0926) | 0.3468 *** (0.0951) | 0.0166 *** (0.0010) | −0.4757 *** (0.1017) | 4.3955 (9.3865) | 56.3346 | −0.1902 |
Switzerland | 2.9138 *** (0.0148) | 0.0818 *** (0.0066) | 0.9137 *** (0.0066) | 1.6797 (2.2876) | −0.9289 * (0.4828) | 0.0013 (0.0032) | 118.68 | −0.4265 |
Denmark | 2.9293 *** (0.0103) | 0.1025 *** (0.0001) | 0.8971 *** (0.0002) | −0.0221 *** (0.0001) | −0.1818 *** (0.0419) | 8.7976 *** (0.0520) | 77.899 | −0.2732 |
Norway | 2.8283 *** (0.0053) | 0.6573 *** (0.0005) | 0.3376 *** (0.0005) | −85.7588 ** (33.5838) | 17.773 ** (6.9937) | −10.453 *** (2.6332) | 50.624 | −0.1681 |
Sweden | 2.8945 *** (0.0147) | 0.0523 *** (0.0004) | 0.9475 *** (0.0005) | −0.2586 *** (0.0835) | 0.0309 *** (0.0096) | −14.232 *** (0.1002) | 245.27 | −0.9182 |
Notes: All the variables are defined in Table 1B. ***, **, and * denote 1%, 5%, and 10% levels of significance, respectively. |
Markets | Constant | Coefficients | LLF | AIC |
---|---|---|---|---|
China | −1.1303 *** (0.0717) | 0.0750 ** (0.0366) | −2087.5 | 5.3748 |
Japan | 3.0611 *** (0.1400) | 0.0251 ** (0.0123) | 563.20 | −2.1603 |
Canada | 3.1947 *** (0.0349) | 0.0166 * (0.0068) | 552.70 | −2.1078 |
U.S. | −27.462 *** (0.0005) | 0.0912 *** (0.0025) | −358.77 | 1.4338 |
Australia | 3.4064 *** (0.0143) | 0.0142 *** (0.0004) | 489.08 | −1.8610 |
New Zealand | 3.1418 *** (0.0871) | 0.0205 ** (0.0099) | −46.637 | 0.1378 |
EU | 2.9677 *** (0.0275) | 0.0103 *** (0.0022) | 273.65 | −0.7001 |
UK | 3.5242 *** (0.0120) | 0.0207 *** (0.0042) | 426.22 | −1.4427 |
Switzerland | 3.1962 *** (0.1756) | 0.0029 *** (0.0008) | 787.19 | −2.2564 |
Denmark | 3.1608 *** (0.0222) | 0.0128 *** (0.0011) | 350.88 | −1.3037 |
Norway | 3.0444 *** (0.0277) | 0.0452 *** (0.0072) | 460.63 | −1.5071 |
Sweden | 3.1859 *** (0.0169) | 0.0156 *** (0.0001) | 586.68 | −1.9989 |
Panel A: Results from the EGARCH model | ||||||||
Markets | Constant | Coefficients | LLF | AIC | ||||
Japan | −107.99 *** (19.455) | 17.107 *** (4.2155) | −122.44 | 0.5124 | ||||
Canada | −72.035 *** (5.3766) | 11.020 *** (1.3595) | −140.71 | 0.5825 | ||||
Australia | −66.742 *** (23.945) | 7.4578 * (4.1973) | −121.44 | 0.5075 | ||||
New Zealand | −33.245 *** (15.695) | 8.5647 *** (0.0089) | −343.29 | 1.2211 | ||||
EU | −171.55 (86.775) | 21.784 *** (8.0710) | −125.67 | 0.5240 | ||||
UK | −78.510 *** (9.1723) | 10.945 *** (1.9621) | −130.12 | 0.5413 | ||||
Switzerland | −264.01 *** (35.472) | 51.521 *** (7.7919) | −136.35 | 0.5655 | ||||
Denmark | −237.06 *** (39.624) | 45.432 *** (8.6746) | −129.50 | 0.5389 | ||||
Norway | −43.617 *** (0.1529) | 4.5308 *** (0.0032) | −186.37 | 0.7543 | ||||
Sweden | −52.110 *** (1.1611) | 5.3392 *** (0.2031) | −123.29 | 0.5147 | ||||
Notes: All the variables are defined in Table 1B. *** and * denote 1%, 5%, and 10% levels of significance, respectively. | ||||||||
Panel B: Results from the GARCH-MIDAS model | ||||||||
Markets | LLF | AIC | ||||||
Japan | −28.825 *** (0.1612) | 0.9359 *** (0.0849) | 0.0214 (0.0835) | −0.0508 *** (0.0116) | 0.1828 * (0.1025) | 1.1525 *** (0.0287) | 986.24 | −3.7697 |
Canada | −27.224 *** (0.1169) | 0.5942 *** (0.0015) | 0.4039 *** (0.0020) | −0.7472 ** (0.3058) | 1.1177 ** (0.4556) | 18.213 (13.322) | 1034.2 | −3.6524 |
Australia | −28.810 *** (0.3458) | 0.2642 *** (0.0487) | 0.7078 *** (0.0587) | −1.1465 *** (0.3539) | 0.1989 *** (0.0064) | −0.0512 *** (0.0007) | 1010.6 | −3.8674 |
New Zealand | −28.838 *** (0.1890) | 0.9952 *** (0.0057) | −0.0079 (0.0128) | −0.0949 *** (0.0012) | 0.4628 ** (0.2216) | 0.5000 *** (0.0241) | 986.75 | −3.7755 |
EU | −28.851 *** (0.3681) | 0.1825 *** (0.0213) | 0.7976 *** (0.0268) | −0.4254 (0.4353) | 0.0102 *** (0.0009) | 13.494 *** (1.0421) | 1022.4 | −3.9127 |
UK | −28.886 *** (0.1458) | 0.0573 *** (0.0049) | 0.9355 *** (0.0041) | −0.4322 (0.3770) | 0.0859 *** (0.0323) | −12.831 *** (0.0583) | 1035.3 | −4.1336 |
Switzerland | −27.349 *** (0.2432) | 0.5260 *** (0.1841) | 0.4291 ** (0.2104) | 0.5116 * (0.3106) | 0.0258 *** (0.0021) | −0.1489 *** (0.0036) | 1072.4 | −3.6485 |
Denmark | −28.873 *** (0.3323) | 0.1993 *** (0.0240) | 0.7798 *** (0.0307) | −0.9203 *** (0.3416) | 0.1405 *** (0.0524) | 3.2982 *** (0.0128) | 1019.3 | −3.9012 |
Norway | −27.418 *** (0.0928) | 0.1557 *** (0.0161) | 0.8244 *** (0.0165) | −0.6627 (0.4764) | 0.1428 ** (0.0680) | 0.1060 *** (0.0005) | 1108.9 | −3.7702 |
Sweden | −28.905 *** (0.2464) | 0.1435 *** (0.0139) | 0.8404 *** (0.0159) | −0.5335 (0.3570) | 0.0456 *** (0.0067) | 12.264 *** (0.3833) | 1031.4 | −3.9513 |
Notes: All the variables are defined in Table 1B. ***, **, and * denote 1%, 5%, and 10% levels of significance, respectively. |
Markets | Constant | Coefficients | LLF | AIC |
---|---|---|---|---|
Japan | −28.745 *** (7.2841) | 0.2787 *** (0.0866) | −250.14 | 1.0064 |
Canada | −27.969 *** (0.0087) | 0.0517 *** (0.0003) | −751.16 | 2.9636 |
Australia | −28.996 *** (0.8169) | 0.4369 *** (0.0281) | −413.38 | 1.6428 |
New Zealand | −27.128 *** (4.2938) | 0.0411 ** (0.0206) | −301.17 | 1.1960 |
EU | −23.546 *** (0.0701) | 0.0202 *** (0.0006) | −487.89 | 1.4444 |
UK | −26.314 *** (4.0201) | 0.0043 * (0.0026) | −120.67 | 0.5045 |
Switzerland | −26.979 *** (0.0876) | 0.1859 ** (0.0884) | −747.22 | 2.9290 |
Denmark | 412.12 (103.65) | 0.2173 *** (0.0336) | −308.76 | 1.2268 |
Norway | −31.624 *** (0.8182) | 0.3255 *** (0.0178) | −327.79 | 1.3169 |
Sweden | −27.677 *** (0.1337) | 0.0812 *** (0.0059) | −172.16 | 0.7049 |
Panel A: Results from the EGARCH model | ||||||||
Markets | Constant | Coefficients | LLF | AIC | ||||
Japan | −225.77 *** (87.185) | 48.616 ** (19.028) | −784.18 | 2.3368 | ||||
Canada | −62.134 *** (17.609) | 14.728 *** (4.5224) | −1055.1 | 3.1359 | ||||
U.S. | −78.092 *** (0.1760) | 16.539 *** (0.0382) | −763.95 | 2.2859 | ||||
Australia | −68.155 *** (0.0853) | 13.689 *** (0.0161) | −824.01 | 2.9821 | ||||
New Zealand | −104.08 *** (0.2033) | 21.999 *** (0.0429) | −885.99 | 2.6025 | ||||
EU | −16.723 *** (0.0748) | 3.1080 *** (0.0141) | −468.82 | 1.8553 | ||||
UK | −88.781 * (47.128) | 19.251 *** (10.285) | −590.42 | 2.3188 | ||||
Switzerland | −73.834 *** (0.0421) | 15.587 *** (0.0086) | −632.81 | 2.5021 | ||||
Denmark | −263.93 *** (71.397) | 56.426 *** (15.637) | −417.25 | 1.6585 | ||||
Norway | −170.32 *** (37.153) | 34.483 *** (7.5986) | −415.56 | 1.6519 | ||||
Sweden | −32.493 *** (0.1109) | 6.6111 *** (0.0213) | −409.46 | 1.6283 | ||||
Notes: All the variables are defined in Table 1B. ***, **, and * denote 1%, 5%, and 10% levels of significance, respectively. | ||||||||
Panel B: Results from the GARCH-MIDAS model | ||||||||
Markets | LLF | AIC | ||||||
Japan | −1.4296 *** (0.2431) | 0.8707 *** (0.0371) | 0.0120 (0.0219) | −0.0125 *** (0.0006) | 0.2261 *** (0.0630) | −1.5935 *** (0.0007) | 1041.1 | −3.9849 |
Canada | −0.9421 *** (0.0483) | 0.7134 *** (0.1412) | 0.2274 *** (0.0656) | −4.7242 *** (0.8548) | 0.0107 *** (0.0025) | 0.0432 *** (0.0002) | 1090.4 | −4.1748 |
U. S | −1.4176 *** (0.2193) | 0.8720 *** (0.0404) | 0.0101 (0.0143) | −0.0951 *** (0.0073) | 0.2872 *** (0.0602) | −3.9433 *** (0.1956) | 1044.5 | −4.0018 |
Australia | −2.0997 *** (0.1234) | 0.5047 *** (0.1460) | 0.4078 *** (0.1019) | −330.31 *** (0.5525) | 71.180 *** (0.1331) | −14.582 *** (0.0235) | 1093.4 | −4.1905 |
New Zealand | −2.1078 *** (0.1274) | 0.4553 *** (0.1901) | 0.5329 *** (0.1356) | −44.850 *** (14.505) | 9.1719 *** (3.1302) | −4.0894 *** (1.4971) | 1094.9 | −4.1883 |
EU | −2.0906 *** (0.1229) | 0.4846 *** (0.1475) | 0.5176 *** (0.1053) | −144.18 *** (17.893) | 30.737 *** (3.9083) | −7.9876 *** (1.7512) | 1092.6 | −4.1834 |
UK | −2.0638 *** (0.1158) | 0.4768 *** (0.1384) | 0.5213 *** (0.0987) | −338.42 *** (2.6847) | 73.377 *** (0.6038) | −0.5808 * (0.3317) | 1090.7 | −4.1800 |
Switzerland | −2.0458 *** (0.1130) | 0.5005 *** (0.1319) | 0.4156 *** (0.0932) | −418.49 *** (3.1887) | 90.313 *** (0.6990) | 5.0819 (22.1718) | 1087.9 | −4.1652 |
Denmark | −1.4265 *** (0.2508) | 0.9946 *** (0.0012) | 0.0006 * (0.0003) | 0.5107 (0.3264) | 0.8397 *** (0.0958) | −12.127 *** (0.0279) | 1046.7 | −4.0065 |
Norway | −1.4104 *** (0.1209) | 0.7867 *** (0.1338) | 0.0564 (0.1249) | −0.0027 (0.0131) | 0.1823 * (0.1004) | −0.0146 (0.0789) | 1045.1 | −4.0043 |
Sweden | −1.4065 *** (0.2090) | 0.7454 *** (0.0825) | 0.0812 (0.0955) | −0.0289 *** (0.0006) | 0.1731 *** (0.0472) | 4.1225 *** (0.7241) | 1045.8 | −4.0029 |
Notes: All the variables are defined in Table 1B. *** and * denote 1% and 10% levels of significance, respectively. |
Markets | Constant | Coefficients | LLF | AIC |
---|---|---|---|---|
Japan | −4.4683 *** (0.0992) | 0.3502 ** (0.1488) | −687.25 | 2.4057 |
Canada | −1.4943 ** (0.5915) | 0.1403 *** (0.0473) | −931.07 | 2.7731 |
U.S. | −5.7641 *** (0.8579) | 0.4616 ** (0.1878) | −715.37 | 2.8146 |
Australia | −3.0764 *** (0.0129) | 0.1036 *** (0.0008) | −606.07 | 2.1319 |
New Zealand | −5.1571 *** (0.0455) | 0.1212 *** (0.0024) | −650.37 | 2.5419 |
EU | −2.5592 *** (0.0411) | 0.1780 *** (0.0174) | −659.43 | 2.7409 |
UK | −3.8840 *** (0.0208) | 0.0140 *** (0.0004) | −575.97 | 2.2547 |
Switzerland | −3.8287 *** (0.8481) | 0.2391 * (0.1412) | −570.63 | 2.2515 |
Denmark | −3.2476 *** (0.9936) | 0.2054 ** (0.0876) | −519.75 | 2.0534 |
Norway | −2.4922 *** (0.4963) | 0.0746 *** (0.0176) | −490.51 | 1.9436 |
Sweden | −4.5943 *** (0.2721) | 0.1476 ** (0.0701) | −749.34 | 2.9526 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, T.D.; Hoque, A.; Le, T. Dynamic Spillovers Among Green Bond Markets: The Impact of Investor Sentiment. J. Risk Financial Manag. 2025, 18, 444. https://doi.org/10.3390/jrfm18080444
Le TD, Hoque A, Le T. Dynamic Spillovers Among Green Bond Markets: The Impact of Investor Sentiment. Journal of Risk and Financial Management. 2025; 18(8):444. https://doi.org/10.3390/jrfm18080444
Chicago/Turabian StyleLe, Thuy Duong, Ariful Hoque, and Thi Le. 2025. "Dynamic Spillovers Among Green Bond Markets: The Impact of Investor Sentiment" Journal of Risk and Financial Management 18, no. 8: 444. https://doi.org/10.3390/jrfm18080444
APA StyleLe, T. D., Hoque, A., & Le, T. (2025). Dynamic Spillovers Among Green Bond Markets: The Impact of Investor Sentiment. Journal of Risk and Financial Management, 18(8), 444. https://doi.org/10.3390/jrfm18080444