Persistence in Stock Returns: Robotics and AI ETFs Versus Other Assets
Abstract
1. Introduction
2. Literature Review
3. Data and Descriptive Statistics
4. Methodology
5. Empirical Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
| 1 | As a diagnostic check we tested for additional serial correlation in the residuals of the selected models. In particular, we performed tests of no serial correlation (Durbin, 1970; Godfrey, 1978) whose results supported the null of no time dependence in the selected models in all cases. |
References
- Agapova, A., Kaprielyan, M., & Volkov, N. (2025). ETFs and the price volatility of underlying bonds. Financial Review, 60(1), 667–700. [Google Scholar] [CrossRef]
- Baillie, R. T., Bollerslev, T., & Mikkelsen, H. O. (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74(1), 3–30. [Google Scholar] [CrossRef]
- Bierens, H. J. (1997). Testing the unit root with drift hypothesis against nonlinear trend stationarity with an application to the US price level and interest rate. Journal of Econometrics, 81(1), 29–64. [Google Scholar] [CrossRef]
- Bloomfield, P. (1973). An exponential model for the spectrum of a scalar time series. Biometrika, 60(2), 217–226. [Google Scholar] [CrossRef]
- Chen, F.-Y., & Chen, J.-H. (2023). The comparison of long memory and multiple structure breaks for carbon indices and exchange-traded fund (ETF). International Review of Accounting, Banking and Finance, 15(4), 32–55. [Google Scholar]
- Chen, J.-H., & Diaz, J. F. (2013). Long-memory and shifts in the returns of green and non-green exchange-traded funds (ETFs). International Journal of Humanities and Social Science Invention, 2(10), 29–32. [Google Scholar]
- Chen, J.-H., & Hsieh, P.-H. (2025). The comparison of the long memory in volatility for carbon and energy exchange-traded funds. Spanish Journal of Finance and Accounting/Revista Española de Financiación y Contabilidad. Advance online publication. [Google Scholar] [CrossRef]
- Chen, J.-H., & Huang, Y.-F. (2014). Long memory and structural breaks in modelling the volatility dynamics of VIX-ETFs. International Journal of Business, Economics and Law, 4(1), 54–63. [Google Scholar]
- Chen, J.-H., & Huang, Y.-F. (2023). The return and volatility dynamics of VIX-ETFs: An empirical study of structural breaks. International Review of Accounting, Banking and Finance, 15(1), 47–59. [Google Scholar]
- Chen, J.-H., & Malinda, M. (2014). The long memory and multiple structural breaks in the return of the travel and tourism index. Journal of Business and Economics, 5(9), 1460–1472. [Google Scholar]
- Chen, R., & Ren, J. (2022). Do AI-powered mutual funds perform better? Finance Research Letters, 47, 102616. [Google Scholar] [CrossRef]
- Durbin, J. (1970). Testing for serial correlation in least-squares regression when some of the regressors are lagged dependent variables. Econometrica, 38(3), 410–421. [Google Scholar] [CrossRef]
- Frame, W. S., & White, L. J. (2004). Empirical studies of financial innovation: Lots of talk, little action? Journal of Economic Literature, 42(1), 116–144. [Google Scholar] [CrossRef]
- Gheorghe, C., Panazan, O., Alnafisah, H., & Jeribi, A. (2025). ETF resilience to uncertainty shocks: A cross-asset nonlinear analysis of AI and ESG strategies. Risks, 13(9), 161. [Google Scholar] [CrossRef]
- Gil-Alana, L. A. (1999). Evaluation of Robinson’s (1994) tests in finite samples. Journal of Statistical Computation and Simulation, 68(1), 39–63. [Google Scholar] [CrossRef]
- Gil-Alana, L. A. (2004). The use of the Bloomfield model as an approximation to ARMA processes in the context of fractional integration. Mathematical and Computer Modelling, 39(4–5), 429–436. [Google Scholar] [CrossRef]
- Gil-Alana, L. A. (2008). Fractional integration with Bloomfield exponential spectral disturbances: A Monte Carlo experiment and an application. Brazilian Journal of Probability and Statistics, 22(1), 69–83. Available online: https://www.jstor.org/stable/43601107 (accessed on 22 October 2025).
- Godfrey, L. G. (1978). A note on the use of Durbin’s h tests when the equation is estimated by instrumental variables. Econometrica, 46(1), 225–228. [Google Scholar] [CrossRef]
- Granger, C. W. J. (1980). Long memory relationships and the aggregation of dynamic models. Journal of Econometrics, 14(2), 227–238. [Google Scholar] [CrossRef]
- Granger, C. W. J., & Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis, 1(1), 15–29. [Google Scholar] [CrossRef]
- Hadad, E., Malhotra, D., & McLeod, R. (2025). U.S. options exchange-traded funds: Performance dynamics and managerial expertise. Borsa Istanbul Review, 25(3), 423–434. [Google Scholar] [CrossRef]
- Hamming, R. W. (1973). Numerical methods for scientists and engineers. Courier Corporation. [Google Scholar]
- Hosking, J. R. M. (1981). Fractional differencing. Biometrika, 68(1), 165–176. [Google Scholar] [CrossRef]
- Hussain, S., & Chen, J.-H. (2024). The spillover and leverage effects and trading volume of FinTech exchange-traded funds. Investment Analysts Journal, 54(2), 139–166. [Google Scholar] [CrossRef]
- Ji, H., Naeem, M., Zhang, J., & Tiwari, A. K. (2024). Dynamic dependence and spillover among the energy-related ETFs: From the hedging effectiveness perspective. Energy Economics, 136, 107681. [Google Scholar] [CrossRef]
- Kang, S., Hernandez, J. A., Sadorsky, P., & McIver, R. (2021). Frequency spillovers, connectedness, and the hedging effectiveness of oil and gold for US sector ETFs. Energy Economics, 99, 105278. [Google Scholar] [CrossRef]
- Karoui, A. T., Sayari, S., Dammak, W., & Jeribi, A. (2024). Unveiling outperformance: A portfolio analysis of top AI-related stocks against IT indices and robotics ETFs. Risks, 12(3), 52. [Google Scholar] [CrossRef]
- Li, X., Sigov, A., Ratkin, L., Ivanov, L. A., & Li, L. (2023). Artificial intelligence applications in finance: A survey. Journal of Financial Innovation, 9(1), 676–692. [Google Scholar] [CrossRef]
- Lin, Y.-D., Chen, F.-Y., & Chen, J.-H. (2024). The spillover effect for carbon emission ETFs: An analysis using the MGARCH model. International Review of Accounting, Banking and Finance (IRABF), 16(4), 20–46. [Google Scholar]
- Malinda, M., & Chen, J.-H. (2016). The study of the long memory in volatility of renewable energy exchange-traded funds (ETFs). Journal of Economics, Business and Management, 4(4), 252–257. [Google Scholar] [CrossRef]
- Malinda, M., & Chen, J.-H. (2022). Testing for the long memory and multiple structural breaks in consumer ETFs. Journal of Applied Finance & Banking, 12(6), 99–125. [Google Scholar] [CrossRef]
- Mateus, C., Mateus, I., & Soggiu, M. (2020). Do smart beta ETFs deliver persistent performance ? Journal of Asset Management, 21(5), 413–427. [Google Scholar] [CrossRef]
- Nguyen, A. P. N., Crane, M., Conlon, T., & Bezbradica, M. (2025). Herding unmasked: Insights into cryptocurrencies, stocks and US ETFs. PLoS ONE, 20(2), e0316332. [Google Scholar] [CrossRef]
- Petrosino, L., Bacco, L., Salvati, G., Merone, M., & Papi, M. (2025). A GARCH-temporal fusion transformer model for the volatility prediction of exchange traded funds. Neural Computing and Applications, 37, 21435–21458. [Google Scholar] [CrossRef]
- Poutachidou, N., & Koulis, A. (2025). The investment styles and performance of AI-related ETFs: Analyzing the impact of active management. FinTech, 4(2), 20. [Google Scholar] [CrossRef]
- Robinson, P. M. (1994). Efficient tests of nonstationary hypotheses. Journal of the American Statistical Association, 89(428), 1420–1437. [Google Scholar] [CrossRef]
- Rompotis, G. (2023a). Performance and performance persistence of Europe-focused ETFs in the United States. Journal of Beta Investment Strategies, 14(2), 17–41. [Google Scholar] [CrossRef]
- Rompotis, G. (2023b). The performance of ESG ETFs in the U.S. Capital Markets Review, 31(2), 89–101. [Google Scholar]
- Rompotis, G. (2024). The performance of the Australian equity ETFs. Financial Economics Letters, 3(4), 65–79. [Google Scholar] [CrossRef]
- Rompotis, G. G. (2025). Performance persistence of US equity ETFs. Finance Research Open, 1(3), 100017. [Google Scholar] [CrossRef]
- Smyth, G. K. (1998). Polynomial approximation. In P. Armitage, & T. Colton (Eds.), Encyclopedia of biostatistics (pp. 3425–3433). Wiley. [Google Scholar] [CrossRef]
- Tomasevic, N., Tomasevic, M., & Stanivuk, T. (2009). Regression analysis and approximation by means of Chebyshev polynomials. Informatologia, 42(3), 166–172. [Google Scholar]
- Valle-Cruz, D., Fernandez-Cortez, V., López-Chau, A., & Rojas-Hernández, R. (2024). Stock market prediction with artificial intelligence techniques in recession times. In M. A. Jabbar, S. Tiwari, F. Ortiz-Rodríguez, S. Groppe, & T. Bano Rehman (Eds.), Applied machine learning and data analytics (pp. 246–263). Springer. [Google Scholar] [CrossRef]
- Wu, C.-C., & Chen, W.-P. (2022). What’s an AI name worth? The impact of AI ETFs on their underlying stocks. Finance Research Letters, 46, 102474. [Google Scholar] [CrossRef]
- Wu, E.-C. (2025). Exchange-traded funds and stock market volatility: Analyzing Taiwan equity ETFs, creation-redemption changes, and market turbulence. Sun Yat-Sen Management Review. Advance online publication. [Google Scholar] [CrossRef]
- Yavas, B. F., & Rezayat, F. (2016). Country ETF returns and volatility spillovers in emerging stock markets, Europe and USA. International Journal of Emerging Markets, 11(3), 419–437. [Google Scholar] [CrossRef]
| Mean | Min. | Max. | S. Dev. | Skewness | Kurtosis | JB | ADF | |
|---|---|---|---|---|---|---|---|---|
| WTI | −0.0223 | −13.925 | 8.708 | 1.748 | −0.794 | 9.053 | 1475.2 *** | −10.182 *** |
| BTC | 0.2043 | −8.933 | 11.275 | 2.522 | 0.403 | 5.247 | 214.58 *** | −9.5046 *** |
| US 10y | 0.0056 | −6.242 | 4.834 | 1.353 | −0.324 | 5.152 | 190.31 *** | −10.07 *** |
| SP500 | 0.0498 | −6.161 | 9.089 | 0.827 | 0.549 | 24.207 | 16,985 *** | −10.497 *** |
| ROBT | 0.0276 | −6.769 | 11.015 | 1.229 | 0.277 | 12.325 | 3287 *** | −9.7972 *** |
| AIQ | 0.0814 | −7.232 | 11.503 | 1.181 | 0.362 | 15.628 | 6026.4 *** | −9.5437 *** |
| THNQ | 0.0755 | −7.038 | 12.031 | 1.330 | 0.248 | 12.579 | 3465.7 *** | −9.416 *** |
| VIX | −0.0098 | −44.245 | 55.411 | 6.382 | 1.340 | 19.809 | 10913 *** | −10.815 *** |
| Series | d (95% Band) | Intercept (t-Value) | Time Trend (t-Value) |
|---|---|---|---|
| AIQ | 0.98 (0.93, 1.03) | 20.082 (51.88) | 0.024 (2.12) |
| THNQ | 1.00 (0.95, 1.05) | 26.299 (47.84) | --- |
| ROBT | 0.99 (0.94, 1.04) | 35.727 (69.17) | --- |
| BTC | 0.94 (0.90, 0.99) | 80.189 (62.86) | --- |
| WTI | 0.97 (0.92, 1.03) | 16,529.82 (10.41) | 97.65 (2.70) |
| S&P 500 | 0.95 (0.91, 1.01) | 3837.39 (90.56) | 2.401 (2.34) |
| US 100 | 0.97 (0.93, 1.02) | 3.875 (71.28) | --- |
| VIX | 0.86 (0.81, 0.91) | 21.622 (14.49) | --- |
| Series (logs) | d (95% Band) | Intercept (t-Value) | Time Trend (t-Value) |
|---|---|---|---|
| AIQ | 0.98 (0.94, 1.04) | 3.000 (254.34) | 0.0008 (2.33) |
| THNQ | 1.00 (0.95, 1.05) | 3.268 (245.76) | --- |
| ROBT | 0.99 (0.94, 1.04) | 3.575 (291.22) | --- |
| BTC | 0.98 (0.94, 1.03) | 9.716 (385.68) | 0.002 (2.75) |
| WTI | 0.96 (0.91, 1.02) | 4.384 (251.74) | --- |
| S&P 500 | 0.96 (0.91, 1.01) | 8.752 (1000.75) | 0.005 (2.32) |
| US 100 | 0.97 (0.92, 1.02) | 1.354 (100.34) | --- |
| VIX | 0.92 (0.87, 0.98) | 3.075 (48.72) | --- |
| Series (Original) | d (95% Band) | Intercept (t-Value) | Time Trend (t-Value) |
|---|---|---|---|
| AIQ | 0.99 (0.91, 1.09) | 20.087 (51.86) | 0.024 (2.00) |
| THNQ | 0.99 (0.91, 1.09) | 26.274 (47.77) | 0.028 (1.65) |
| ROBT | 1.01 (0.91, 1.09) | 35.707 (69.14) | --- |
| BTC | 0.98 (0.91, 1.08) | 16,522.78 (10.36) | 98.058 (2.10) |
| WTI | 0.94 (0.84, 1.06) | 88.107 (62.98) | --- |
| S&P 500 | 0.95 (0.88, 1.05) | 3837.39 (90.56) | 2.401 (2.34) |
| US 100 | 0.97 (0.89, 1.05) | 3.875 (71.28) | --- |
| VIX | 0.88 (0.78, 1.00) | 21.637 (14.42) |
| Series (logs) | d (95% Band) | Intercept (t-Value) | Time Trend (t-Value) |
|---|---|---|---|
| AIQ | 0.99 (0.91, 1.09) | 2.999 (254.22) | 0.0008 (2.07) |
| THNQ | 0.99 (0.92, 1.09) | 3.268 (245.76) | 0.0007 (1.70) |
| ROBT | 1.00 (0.92, 1.11) | 3.575 (291.22) | --- |
| BTC | 1.04 (0.96, 1.13) | 9.715 (386.38) | 0.002 (1.92) |
| WTI | 0.96 (0.85, 1.05) | 4.384 (251.73) | --- |
| S&P 500 | 0.95 (0.87, 1.06) | 8.252 (1001.49) | 0.0005 (2.48) |
| US 100 | 0.96 (0.90, 1.05) | 1.354 (100.31) | --- |
| VIX | 0.86 (0.77, 0.96) | 3.073 (49.44) | --- |
| Series | D (95% Band) | θ1 (t-Value) | θ2 (t-Value) | θ3 (t-Value) | θ4 (t-Value) |
|---|---|---|---|---|---|
| AIQ | 0.98 (0.94, 1.03) | 3.321 (19.46) | −0.172 (−1.68) | −0.027 (−0.51) | 0.037 (1.04) |
| THNQ | 1.00 (0.95, 1.05) | 3.562 (16.34) | −0.182 (−1.38) | −0.054 (−0.82) | −0.043 (−0.98) |
| ROBT | 1.00 (0.94, 1.04) | 3.617 (17.74) | −0.041 (−0.33) | −0.027 (−0.44) | −0.040 (−0.97) |
| BTC | 0.98 (0.94, 1.03) | 10.521 (27.76) | −0.490 (−2.15) | −0.025 (−0.22) | 0.155 (1.98) |
| WTI | 0.96 (0.89, 1.03) | 4.373 (20.12) | 0.043 (0.33) | −0.050 (−0.73) | 0.0005 (0.01) |
| S&P 500 | 1.01 (0.91, 1.06) | 8.460 (58.12) | −0.093 (−1.05) | 0.071 (1.67) | −0.075 (−2.58) |
| US 100 | 0.96 (0.91, 1.02) | 1.498 (8.91) | −0.032 (−0.31) | −0.041 (−0.78) | −0.033 (−0.91) |
| VIX | 0.92 (0.86, 0.98) | 2.909 (4.72) | −0.031 (−0.08) | 0.143 (0.71) | 0.012 (0.08) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belhouichet, F.; Caporale, G.M.; Gil-Alana, L.A. Persistence in Stock Returns: Robotics and AI ETFs Versus Other Assets. J. Risk Financial Manag. 2025, 18, 655. https://doi.org/10.3390/jrfm18110655
Belhouichet F, Caporale GM, Gil-Alana LA. Persistence in Stock Returns: Robotics and AI ETFs Versus Other Assets. Journal of Risk and Financial Management. 2025; 18(11):655. https://doi.org/10.3390/jrfm18110655
Chicago/Turabian StyleBelhouichet, Fekria, Guglielmo Maria Caporale, and Luis Alberiko Gil-Alana. 2025. "Persistence in Stock Returns: Robotics and AI ETFs Versus Other Assets" Journal of Risk and Financial Management 18, no. 11: 655. https://doi.org/10.3390/jrfm18110655
APA StyleBelhouichet, F., Caporale, G. M., & Gil-Alana, L. A. (2025). Persistence in Stock Returns: Robotics and AI ETFs Versus Other Assets. Journal of Risk and Financial Management, 18(11), 655. https://doi.org/10.3390/jrfm18110655

