error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = robotics ETFs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 289 KB  
Article
Persistence in Stock Returns: Robotics and AI ETFs Versus Other Assets
by Fekria Belhouichet, Guglielmo Maria Caporale and Luis Alberiko Gil-Alana
J. Risk Financial Manag. 2025, 18(11), 655; https://doi.org/10.3390/jrfm18110655 - 20 Nov 2025
Viewed by 1993
Abstract
This paper examines the long-memory properties of the returns of exchange-traded funds (ETFs) that provide exposure to companies operating in the fields of artificial intelligence (AI) and robotics listed on the US market, along with other assets such as the WTI crude oil [...] Read more.
This paper examines the long-memory properties of the returns of exchange-traded funds (ETFs) that provide exposure to companies operating in the fields of artificial intelligence (AI) and robotics listed on the US market, along with other assets such as the WTI crude oil price (West Texas Intermediate), Bitcoin, the S&P 500 index, 10-year US Treasury bonds, and the VIX volatility index. The data frequency is daily and covers the period from 1 January 2023 to 23 June 2025. The adopted fractional integration framework is more general and flexible than those previously used in related studies and allows for a detailed assessment of the degree of persistence in returns. The results indicate that all return series exhibit a high degree of persistence, regardless of the error structure assumed, and that, in general, a linear model adequately captures their dynamics over time. These findings suggest that newly developed AI- and robotics-themed ETFs do not provide investors with additional hedging or diversification benefits compared to more traditional assets, nor do they create new challenges for policymakers concerned with financial stability. Full article
(This article belongs to the Section Economics and Finance)
21 pages, 1758 KB  
Article
Unveiling Outperformance: A Portfolio Analysis of Top AI-Related Stocks against IT Indices and Robotics ETFs
by Ali Trabelsi Karoui, Sonia Sayari, Wael Dammak and Ahmed Jeribi
Risks 2024, 12(3), 52; https://doi.org/10.3390/risks12030052 - 13 Mar 2024
Cited by 8 | Viewed by 10883
Abstract
In this study, we delve into the financial market to compare the performance of prominent AI and robotics-related stocks against traditional IT indices, such as the Nasdaq, and specialized AI and robotics ETFs. We evaluate the role of these stocks in diversifying portfolios, [...] Read more.
In this study, we delve into the financial market to compare the performance of prominent AI and robotics-related stocks against traditional IT indices, such as the Nasdaq, and specialized AI and robotics ETFs. We evaluate the role of these stocks in diversifying portfolios, analyzing their return potential and risk profiles. Our analysis includes various investment scenarios, focusing on common AI-related stocks in the United States. We explore the influence of risk management strategies, ranging from “buy and hold” to daily rebalancing, on AI stock portfolios. This involves investigating long-term strategies like buy and hold, as well as short-term approaches, such as daily rebalancing. Our findings, covering the period from 30 April 2021, to 15 September 2023, show that AI-related stocks have not only outperformed in recent years but also highlight the growing “AI bubble” and the increasing significance of AI in investment decisions. The study reveals that these stocks have delivered superior performance, as indicated by metrics like Sharpe and Treynor ratios, providing insights into market trends and financial returns in the technology and robotics sectors. The results are particularly relevant for investors and traders in the AI sector, offering a balanced view of potential returns against the risks in this rapidly evolving market. This paper adds to the financial market literature by demonstrating that investing in emerging trends, such as AI, can be more advantageous in the short term compared to traditional markets like the Nasdaq. Full article
Show Figures

Figure 1

Back to TopTop