From Penalties to Protection: The Continuous Time Sustainable Efficiency Frontier
Abstract
1. Introduction
1.1. Portfolio Optimization
1.2. Risk, Ambiguity, and Model Uncertainty
1.3. ESG Risk and Sustainable Investment
1.4. Limitations of Existing Approaches
1.5. Contribution of This Paper
2. ESG Penalty in Mean-Variance Optimization and Its Robust Interpretation
2.1. Static Model with Linear ESG Penalty
2.2. Robust Formulation: ESG-Dependent Return Uncertainty
2.3. Equivalence of Linear ESG Penalty and Robust Optimization
3. Continuous Time Market with Time-Dependent ESG Drift Ambiguity
3.1. Mathematical Setting
3.2. Investor Preferences and the Max–Min Problem
4. Solution: Worst-Case Drift and Optimal Portfolio
4.1. Decomposition of the Terminal Utility
4.2. Pointwise Minimization over the Ellipsoidal Uncertainty Set
- 1.
- If , the unique minimizer of over isand the minimum value equals .
- 2.
- If , any attains the minimum; we set by convention.
- 3.
- The mapping is Borel measurable on for each fixed t. In particular, if is progressively measurable, then so is , and .
4.3. Reduced Objective and Concavity Properties
4.4. Optimal Portfolio Strategy
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alda, M. (2025). Importance of portfolio optimization in SRI and conventional pension funds. Financial Innovation, 11(1), 79. [Google Scholar] [CrossRef]
- Alzaman, C. (2025). Optimizing portfolio selection through stock ranking and matching: A reinforcement learning approach. Expert Systems with Applications, 269, 126430. [Google Scholar] [CrossRef]
- Biagini, S., & Pınar, M. Ç. (2017). The robust Merton problem of an ambiguity averse investor. Mathematics and Financial Economics, 11(1), 1–24. [Google Scholar] [CrossRef]
- Blitz, D., Chen, M., Howard, C., & Lohre, H. (2024). 3D investing: Jointly optimizing return, risk and sustainability. Financial Analysts Journal, 80(2), 22–40. [Google Scholar] [CrossRef]
- Chen, A., Gerick, L., & Jin, Z. (2025). Optimizing portfolios under carbon risk constraints: Setting effective constraints to favor green investments. Energy Economics, 148, 108634. [Google Scholar] [CrossRef]
- Chen, Z., & Epstein, L. (2002). Ambiguity, risk, and asset returns in continuous time. Econometrica, 70(4), 1403–1443. [Google Scholar] [CrossRef]
- Cheng, T., & Chen, K. (2023). A general framework for portfolio construction based on generative models of asset returns. The Journal of Finance and Data Science, 9, 100113. [Google Scholar] [CrossRef]
- Cox, J. C., & Huang, C.-F. (1989). Optimal consumption and portfolio policies when asset prices follow a diffusion process. Journal of Economic Theory, 49(1), 33–83. [Google Scholar] [CrossRef]
- Ellsberg, D. (1961). Risk, ambiguity, and the savage axioms. The Quarterly Journal of Economics, 75(4), 643–669. [Google Scholar]
- Feng, X., von Mettenheim, H., Sermpinis, G., & Stasinakis, C. (2024). Sustainable portfolio construction via machine learning: ESG, SDG and sentiment. European Financial Management, 31(3), 1148–1169. [Google Scholar] [CrossRef]
- Garcia-Bernabeu, A., Hilario-Caballero, A., Tardella, F., & Pla-Santamaria, D. (2024). ESG integration in portfolio selection: A robust preference-based multicriteria approach. Operations Research Perspectives, 12, 100305. [Google Scholar] [CrossRef]
- Garlappi, L., Uppal, R., & Wang, T. (2006). Portfolio selection with parameter and model uncertainty: A multi-prior approach. The Review of Financial Studies, 20(1), 41–81. [Google Scholar] [CrossRef]
- Gasser, S., Rammerstorfer, M., & Weinmayer, K. (2016). Markowitz revisited social portfolio engineering. SSRN Electronic Journal, 258(3), 1181–1190. [Google Scholar] [CrossRef]
- Hernández-Hernández, D., & Schied, A. (2006). Robust utility maximization in a stochastic factor model. Statistics & Risk Modeling, 24(1), 109–125. [Google Scholar] [CrossRef]
- Kanamura, T. (2023). Portfolio diversification and sustainable assets from new perspectives. Journal of Asset Management, 24(7), 581–600. [Google Scholar] [CrossRef]
- Karatzas, I., Lehoczky, J. P., & Shreve, S. E. (1987). Optimal portfolio and consumption decisions for a “small investor” on a finite horizon. SIAM Journal on Control and Optimization, 25(6), 1557–1586. [Google Scholar] [CrossRef]
- Knight, F. H. (1921). Risk, uncertainty and profit (Vol. 31). Houghton Mifflin. [Google Scholar]
- Korn, R. (2025). A framework for optimal portfolios with sustainable assets and climate scenarios. European Actuarial Journal, 15(1), 1–13. [Google Scholar] [CrossRef]
- Korn, R., & Nurkanović, A. (2025). Sustainable portfolio optimization and sustainable taxation: R. Korn, A. Nurkanović. European Actuarial Journal, 1–20. [Google Scholar] [CrossRef]
- Liu, H. (2011). Dynamic portfolio choice under ambiguity and regime switching mean returns. Journal of Economic Dynamics and Control, 35(4), 623–640. [Google Scholar] [CrossRef]
- Markowitz, H. (1959). Portfolio selection. Yale University Press; New Haven. [Google Scholar]
- Markowitz, H. M. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91. [Google Scholar] [CrossRef]
- Merton, R. C. (1969). Lifetime portfolio selection under uncertainty: The continuous-time case. The review of Economics and Statistics, 51, 247–257. [Google Scholar] [CrossRef]
- Müller, L., & Joubrel, M. (2025). A novel approach to sustainable mean-variance portfolio optimization: Accounting for ESG-related uncertainty. Finance Research Letters, 85, 108056. [Google Scholar] [CrossRef]
- Neufeld, A., & Sikic, M. (2018). Robust utility maximization in discrete-time markets with friction. SIAM Journal on Control and Optimization, 56(3), 1912–1937. [Google Scholar] [CrossRef]
- Nutz, M. (2016). Utility maximization under model uncertainty in discrete time. Mathematical Finance, 26(2), 252–268. [Google Scholar] [CrossRef]
- Pedersen, L. H., Fitzgibbons, S., & Pomorski, L. (2021). Responsible investing: The ESG-efficient frontier. Journal of Financial Economics, 142(2), 572–597. [Google Scholar] [CrossRef]
- Pliska, S. (1986). A stochastic calculus model of continuous trading: Optimal portfolios. Mathematics of Operations Research, 11, 371–382. [Google Scholar] [CrossRef]
- Schied, A., Föllmer, H., & Weber, S. (2009). Robust preferences and robust portfolio choice. Handbook of Numerical Analysis, 15, 29–87. [Google Scholar]
- Utz, S., Wimmer, M., Hirschberger, M., & Steuer, R. E. (2014). Tri-criterion inverse portfolio optimization with application to socially responsible mutual funds. European Journal of Operational Research, 234(2), 491–498. [Google Scholar] [CrossRef]
- Varmaz, A., Fieberg, C., & Poddig, T. (2022). Portfolio optimization for sustainable investments. Annals of Operations Research, 341(2–3), 1151–1176. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, L. From Penalties to Protection: The Continuous Time Sustainable Efficiency Frontier. J. Risk Financial Manag. 2025, 18, 610. https://doi.org/10.3390/jrfm18110610
Müller L. From Penalties to Protection: The Continuous Time Sustainable Efficiency Frontier. Journal of Risk and Financial Management. 2025; 18(11):610. https://doi.org/10.3390/jrfm18110610
Chicago/Turabian StyleMüller, Lukas. 2025. "From Penalties to Protection: The Continuous Time Sustainable Efficiency Frontier" Journal of Risk and Financial Management 18, no. 11: 610. https://doi.org/10.3390/jrfm18110610
APA StyleMüller, L. (2025). From Penalties to Protection: The Continuous Time Sustainable Efficiency Frontier. Journal of Risk and Financial Management, 18(11), 610. https://doi.org/10.3390/jrfm18110610

