Calcification in Vascular Smooth Muscle Cells Is Associated with Elevated GCLm and Impaired Contraction: Insights into Osteogenic Transdifferentiation and Therapeutic Approaches
Abstract
1. Introduction
- maintaining protein thiols in a reduced state to stabilize protein folding and enable cysteine modification-mediated signaling [10],
- post-translational modification of proteins by forming mixed disulfides with cysteine residues (S-glutathionylation) [11], and
- acting as a cofactor in enzymatic reactions essential for growth and cell division.
2. Materials and Methods
2.1. Cell Culture
2.2. In Vitro Calcification
2.3. Quantification of In Vitro Calcification
2.4. Total RNA Extraction, cDNA Synthesis, and Quantitative Real-Time Polymerase Chain Reaction
2.5. GCLm Plasmid Cloning
2.6. Gel Contraction Assay
2.7. GSH and GSSG Measurements
2.8. KEGG Pathway Analysis
2.9. Statistical Analysis
3. Results
3.1. GCLm Expression Is Upregulated During Calcification
3.2. TGF-β Expression Increases in Calcifying HCASMC
3.3. Elevated GCLm Increases Calcification of MOVAS
4. Discussion
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wong, N.D.; Kouwabunpat, D.; Vo, A.N.; Detrano, R.C.; Eisenberg, H.; Goel, M.; Tobis, J.M. Coronary calcium and atherosclerosis by ultrafast computed tomography in asymptomatic men and women: Relation to age and risk factors. Am. Heart J. 1994, 127, 422–430. [Google Scholar] [CrossRef]
- Detrano, R.; Guerci, A.D.; Carr, J.J.; Bild, D.E.; Burke, G.; Folsom, A.R.; Liu, K.; Shea, S.; Szklo, M.; Bluemke, D.A.; et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N. Engl. J. Med. 2008, 358, 1336–1345. [Google Scholar] [CrossRef]
- Speer, M.Y.; Yang, H.-Y.; Brabb, T.; Leaf, E.; Look, A.; Lin, W.-L.; Frutkin, A.; Dichek, D.; Giachelli, C.M. Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ. Res. 2009, 104, 733–741. [Google Scholar] [CrossRef]
- Leopold, J.A. Vascular calcification: Mechanisms of vascular smooth muscle cell calcification. Trends Cardiovasc. Med. 2015, 25, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Hofbauer, L.; Brueck, C.; Shanahan, C.; Schoppet, M.; Dobnig, H. Vascular calcification and osteoporosis—From clinical observation towards molecular understanding. Osteoporos. Int. 2007, 18, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Kiel, D.; Kauppila, L.; Cupples, L.; Hannan, M.; O’donnell, C.; Wilson, P. Bone loss and the progression of abdominal aortic calcification over a 25 year period: The Framingham Heart Study. Calcif. Tissue Int. 2001, 68, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Hu, C.-T.; Shao, Y.-D.; Liu, Y.-Z.; Xiao, X.; Cheng, Z.-B.; Qu, S.-L.; Huang, L.; Zhang, C. Oxidative stress in vascular calcification. Clin. Chim. Acta. 2021, 519, 101–110. [Google Scholar] [CrossRef]
- Zitka, O.; Skalickova, S.; Gumulec, J.; Masarik, M.; Adam, V.; Hubalek, J.; Trnkova, L.; Kruseova, J.; Eckschlager, T.; Kizek, R. Redox status expressed as GSH: GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol. Lett. 2012, 4, 1247–1253. [Google Scholar] [CrossRef]
- Dixon, B.M.; Heath, S.-H.D.; Kim, R.; Suh, J.H.; Hagen, T.M. Assessment of endoplasmic reticulum glutathione redox status is confounded by extensive ex vivo oxidation. Antioxid. Redox Signal. 2008, 10, 963–972. [Google Scholar] [CrossRef]
- Rashdan, N.; Shrestha, B.; Pattillo, C. S-glutathionylation, friend or foe in cardiovascular health and disease. Redox Biol. 2020, 37, 101693. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.C. Regulation of glutathione synthesis. Mol. Asp. Med. 2009, 30, 42–59. [Google Scholar] [CrossRef] [PubMed]
- Franklin, C.C.; Backos, D.S.; Mohar, I.; White, C.C.; Forman, H.J.; Kavanagh, T.J. Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol. Asp. Med. 2009, 30, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Kattoor, A.J.; Pothineni, N.V.K.; Palagiri, D.; Mehta, J.L. Oxidative stress in atherosclerosis. Curr. Atheroscler. Rep. 2017, 19, 42. [Google Scholar] [CrossRef]
- Seeley, E.H.; Liu, Z.; Yuan, S.; Stroope, C.; Cockerham, E.; Rashdan, N.A.; Delgadillo, L.F.; Finney, A.C.; Kumar, D.; Das, S.; et al. Spatially Resolved Metabolites in Stable and Unstable Human Atherosclerotic Plaques Identified by Mass Spectrometry Imaging. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 1626–1635. [Google Scholar] [CrossRef]
- Nakamura, K.; Miura, D.; Saito, Y.; Yunoki, K.; Koyama, Y.; Satoh, M.; Kondo, M.; Osawa, K.; Hatipoglu, O.F.; Miyoshi, T.; et al. Eicosapentaenoic acid prevents arterial calcification in klotho mutant mice. PLoS ONE 2017, 12, e0181009. [Google Scholar] [CrossRef]
- Back, M.; Yurdagul, A., Jr.; Tabas, I.; Oorni, K.; Kovanen, P.T. Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nat. Rev. Cardiol. 2019, 16, 389–406. [Google Scholar] [CrossRef]
- Doran, A.C.; Yurdagul, A., Jr.; Tabas, I. Efferocytosis in health and disease. Nat. Rev. Immunol. 2020, 20, 254–267. [Google Scholar] [CrossRef]
- Buono, M.F.; Benavente, E.D.; Slenders, L.; Methorst, D.; Tessels, D.; Mili, E.; Finger, R.; Kapteijn, D.; Daniels, M.; van den Dungen, N.A.M.; et al. Human Plaque Myofibroblasts to Study Mechanisms of Atherosclerosis. J. Am. Heart Assoc. 2023, 12, e030243. [Google Scholar] [CrossRef]
- Owens, G.K.; Kumar, M.S.; Wamhoff, B.R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 2004, 84, 767–801. [Google Scholar] [CrossRef]
- Al-Kofahi, M.; Becker, F.; Gavins, F.N.E.; Woolard, M.D.; Tsunoda, I.; Wang, Y.; Ostanin, D.; Zawieja, D.C.; Muthuchamy, M.; von der Weid, P.Y.; et al. IL-1beta reduces tonic contraction of mesenteric lymphatic muscle cells, with the involvement of cycloxygenase-2 and prostaglandin E2. Br. J. Pharmacol. 2015, 172, 4038–4051. [Google Scholar] [CrossRef]
- Mahmoud, A.D.; Ballantyne, M.D.; Miscianinov, V.; Pinel, K.; Hung, J.; Scanlon, J.P.; Iyinikkel, J.; Kaczynski, J.; Tavares, A.S.; Bradshaw, A.C.; et al. The Human-Specific and Smooth Muscle Cell-Enriched LncRNA SMILR Promotes Proliferation by Regulating Mitotic CENPF mRNA and Drives Cell-Cycle Progression Which Can Be Targeted to Limit Vascular Remodeling. Circ. Res. 2019, 125, 535–551. [Google Scholar] [CrossRef]
- Tingström, A.; Heldin, C.-H.; Rubin, K. Regulation of fibroblast-mediated collagen gel contraction by platelet-derived growth factor, interleukin-1 α and transforming growth factor-β 1. J. Cell Sci. 1992, 102, 315–322. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X.; Wang, J.-K.; Li, Y.; Cui, S.-J.; Wang, Z.; Luo, T. Phenotypic Switching of Atherosclerotic Smooth Muscle Cells is Regulated by Activated PARP1-Dependent TET1 Expression. J. Atheroscler. Thromb. 2021, 28, 716–729. [Google Scholar] [CrossRef]
- Vasquez-Vivar, J.; Kalyanaraman, B.; Martasek, P.; Hogg, N.; Masters, B.S.; Karoui, H.; Tordo, P.; Pritchard, K.A., Jr. Superoxide generation by endothelial nitric oxide synthase: The influence of cofactors. Proc. Natl. Acad. Sci. USA 1998, 95, 9220–9225. [Google Scholar] [CrossRef]
- Beckman, J.S.; Koppenol, W.H. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. Am. J. Physiol. 1996, 271, C1424–C1437. [Google Scholar] [CrossRef]
- Clempus, R.E.; Sorescu, D.; Dikalova, A.E.; Pounkova, L.; Jo, P.; Sorescu, G.P.; Schmidt, H.H.H.; Lassegue, B.; Griendling, K.K. Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Grinnell, F. Fibroblasts, myofibroblasts, and wound contraction. J. Cell Biol. 1994, 124, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Bell, E.; Ivarsson, B.; Merrill, C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. USA 1979, 76, 1274–1278. [Google Scholar] [CrossRef] [PubMed]
- Callegari, A.; Liu, Y.; White, C.C.; Chait, A.; Gough, P.; Raines, E.W.; Cox, D.; Kavanagh, T.J.; Rosenfeld, M.E. Gain and loss of function for glutathione synthesis: Impact on advanced atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2473–2482. [Google Scholar] [CrossRef]
- Cortes-Wanstreet, M.M.; Giedzinski, E.; Limoli, C.L.; Luderer, U. Overexpression of glutamate-cysteine ligase protects human COV434 granulosa tumour cells against oxidative and gamma-radiation-induced cell death. Mutagenesis 2009, 24, 211–224. [Google Scholar] [CrossRef]
- Shrestha, B.; Prasai, P.K.; Kaskas, A.M.; Khanna, A.; Letchuman, V.; Letchuman, S.; Alexander, J.S.; Orr, A.W.; Woolard, M.D.; Pattillo, C.B. Differential arterial and venous endothelial redox responses to oxidative stress. Microcirculation 2018, 25, e12486. [Google Scholar] [CrossRef]
- Mackenzie, N.C.; Zhu, D.; Longley, L.; Patterson, C.S.; Kommareddy, S.; MacRae, V.E. MOVAS-1 cell line: A new in vitro model of vascular calcification. Int. J. Mol. Med. 2011, 27, 663–668. [Google Scholar] [CrossRef]
- Hui, X.; Wang, M.; Zhang, L.; Liu, J.; Wang, M.; Hu, W.; Zhang, T.; Zhao, S.; Geng, S.; Wang, X.; et al. Conditioned Media of Choroid Plexus Epithelium Cells Attenuates High Pi-Induced Calcification of MOVAS Cells by Inhibiting ROS-Mediated Signal Pathways. Front. Physiol. 2021, 12, 607739. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgadillo, L.F.; Rashdan, N.A.; Hamilton, H.; Pattillo, J.H.; Yuan, S.; Eshaq, R.S.; Harris, N.R.; Alexander, J.S.; Pattillo, C.B. Calcification in Vascular Smooth Muscle Cells Is Associated with Elevated GCLm and Impaired Contraction: Insights into Osteogenic Transdifferentiation and Therapeutic Approaches. Pathophysiology 2025, 32, 66. https://doi.org/10.3390/pathophysiology32040066
Delgadillo LF, Rashdan NA, Hamilton H, Pattillo JH, Yuan S, Eshaq RS, Harris NR, Alexander JS, Pattillo CB. Calcification in Vascular Smooth Muscle Cells Is Associated with Elevated GCLm and Impaired Contraction: Insights into Osteogenic Transdifferentiation and Therapeutic Approaches. Pathophysiology. 2025; 32(4):66. https://doi.org/10.3390/pathophysiology32040066
Chicago/Turabian StyleDelgadillo, Luisa F., Nabil A. Rashdan, Hunter Hamilton, Jack H. Pattillo, Shuai Yuan, Randa S. Eshaq, Norman R. Harris, Jonathan S. Alexander, and Christopher B. Pattillo. 2025. "Calcification in Vascular Smooth Muscle Cells Is Associated with Elevated GCLm and Impaired Contraction: Insights into Osteogenic Transdifferentiation and Therapeutic Approaches" Pathophysiology 32, no. 4: 66. https://doi.org/10.3390/pathophysiology32040066
APA StyleDelgadillo, L. F., Rashdan, N. A., Hamilton, H., Pattillo, J. H., Yuan, S., Eshaq, R. S., Harris, N. R., Alexander, J. S., & Pattillo, C. B. (2025). Calcification in Vascular Smooth Muscle Cells Is Associated with Elevated GCLm and Impaired Contraction: Insights into Osteogenic Transdifferentiation and Therapeutic Approaches. Pathophysiology, 32(4), 66. https://doi.org/10.3390/pathophysiology32040066

