Carbon Monoxide in an Experimental Model of Chronic Pelvic Pain Syndrome: The Effects of CORM-A1 on Pain and Anxiety-Related Behaviors
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Ethical Statements
2.2. Study Design
2.3. Establishment of the Experimental CP/CPPS Model and Surgical Operation
2.4. Evaluation of Mechanical Pain Sensitivity: Scrotal Pain Threshold
2.5. Behavioral Tests
2.5.1. Open Field Test
2.5.2. Elevated Plus Maze Test
2.5.3. Light/Dark Test
2.6. Histological Analysis of the Prostate
2.7. Substances
2.8. Data Processing
3. Results
3.1. Effect of CORM-A 1 on Scrotal Pain Threshold
3.2. Effect of CORM-A1 on Anxiety-Related Behavior
3.2.1. Open Field Tests
3.2.2. Elevated Plus Maze Test
3.2.3. Light/Dark Test
3.3. Effect of CORM-A1 on the Histological Structure of the Prostate
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CP/CPPS | Chronic Prostatitis/Chronic Pelvic Pain Syndrome |
CO-RMs | Carbon Monoxide-Releasing Molecules |
OFT | Open Field Test |
EPM | Elevated Plus Maze |
LD | Light/Dark Box Test |
CORM-A1 | Carbon Monoxide-Releasing Molecule A1 |
ROS | Reactive Oxygen Species |
HPA axis | Hypothalamic–Pituitary–Adrenal axis |
CO | Carbon monoxide |
References
- Zhang, F.X.; Chen, X.; Niu, D.C.; Cheng, L.; Huang, C.S.; Liao, M.; Mo, Z.N. Chronic prostatitis/chronic pelvic pain syndrome induces metabolomic changes in expressed prostatic secretions and plasma. Asian J. Androl. 2025, 27, 101–112. [Google Scholar] [CrossRef]
- Stamatiou, K.; Magri, V.; Trinchieri, M.; Trinchieri, A.; Perletti, G. Psychological and sexological assessment of patients with chronic prostatitis. Arch. Ital. Urol. Androl. 2024, 96, 12452. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liang, C.; Shang, X.; Li, H. Chronic prostatitis/chronic pelvic pain syndrome: A disease or symptom? Current perspectives on diagnosis, treatment, and prognosis. Am. J. Men’s Health 2020, 14, 1557988320903200. [Google Scholar] [CrossRef]
- Suskind, A.M.; Berry, S.H.; Ewing, B.A.; Elliott, M.N.; Suttorp, M.J.; Clemens, J.Q. The prevalence and overlap of interstitial cystitis/bladder pain syndrome and chronic prostatitis/chronic pelvic pain syndrome in men: Results of the RAND Interstitial Cystitis Epidemiology male study. J. Urol. 2013, 189, 141–145. [Google Scholar] [CrossRef]
- Cai, T.; Alidjanov, J.; Palagin, I.; Medina-Polo, J.; Nickel, J.C.; Wagenlehner, F.M. Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS): Look to the future. Prostate Cancer Prostatic Dis. 2024, 27, 239–241. [Google Scholar] [CrossRef]
- Stamatiou, K.; Trinchieri, M.; Trinchieri, M.; Perletti, G.; Magri, V. Chronic prostatitis and related psychological problems. Which came first: The chicken or the egg? A systematic review. Arch. Ital. Urol. Androl. 2023, 95, 11300. [Google Scholar] [CrossRef]
- Wang, J.; Liang, K.; Sun, H.; Li, L.; Wang, H.; Cao, J. Psychotherapy combined with drug therapy in patients with category III chronic prostatitis/chronic pelvic pain syndrome: A randomized controlled trial. Int. J. Urol. 2018, 25, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Li, C.; Ihsan, A.U.; Shumzaid, M.; Kamboh, A.A.; Mirjat, A.A.; Zhou, X. Therapeutic interventions to urologic chronic pelvic pain syndrome and UPOINT system for clinical phenotyping: How far are we? Urologia 2022, 89, 315–328. [Google Scholar] [CrossRef]
- Anderson, R.U.; Orenberg, E.K.; Chan, C.A.; Morey, A.; Flores, V. Psychometric profiles and hypothalamic-pituitary-adrenal axis function in men with chronic prostatitis/chronic pelvic pain syndrome. J. Urol. 2008, 179, 956–960. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.X.; Bai, W.J.; Tao, X.U.; Wang, X.F. A preliminary evaluation of the psychometric profiles in Chinese men with chronic prostatitis/chronic pelvic pain syndrome. Chin. Med. J. 2011, 124, 514–518. [Google Scholar]
- Bai, J.; Gu, L.; Chen, Y.; Liu, X.; Yang, J.; Li, M.; Wang, S. Evaluation of psychological stress, cortisol awakening response, and heart rate variability in patients with chronic prostatitis/chronic pelvic pain syndrome complicated by lower urinary tract symptoms and erectile dysfunction. Front. Psychol. 2022, 13, 903250. [Google Scholar] [CrossRef]
- Šutulović, N.; Grubač, Ž.; Šuvakov, S.; Jerotić, D.; Puškaš, N.; Macut, D.; Hrnčić, D. Experimental Chronic Prostatitis/Chronic Pelvic Pain Syndrome Increases Anxiety-Like Behavior: The Role of Brain Oxidative Stress, Serum Corticosterone, and Hippocampal Parvalbumin-Positive Interneurons. Oxid. Med. Cell. Longev. 2021, 2021, 6687493. [Google Scholar] [CrossRef]
- Liu, S.J.; Gao, Q.H.; Deng, Y.J.; Zen, Y.; Zhao, M.; Guo, J. Knowledge domain and emerging trends in chronic prostatitis/chronic pelvic pain syndrome from 1970 to 2020: A scientometric analysis based on VOSviewer and CiteSpace. Ann. Palliat. Med. 2022, 11, 1714–1724. [Google Scholar] [CrossRef]
- Pałasz, A.; Menezes, I.C.; Worthington, J.J. The role of brain gaseous neurotransmitters in anxiety. Pharmacol. Rep. 2021, 73, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Bauer, N.; Yang, X.; Yuan, Z.; Wang, B. Reassessing CORM-A1: Redox chemistry and idiosyncratic CO-releasing characteristics of the widely used carbon monoxide donor. Chem. Sci. 2023, 14, 3215–3228. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, K.K.; Jadeja, R.N.; Vyas, H.S.; Pandya, B.; Joshi, A.; Vohra, A.; Devkar, R.V. Carbon monoxide releasing molecule-A1 improves nonalcoholic steatohepatitis via Nrf2 activation mediated improvement in oxidative stress and mitochondrial function. Redox Biol. 2020, 28, 101314. [Google Scholar] [CrossRef] [PubMed]
- Niu, Q.; Du, F.; Yang, X.; Yang, X.; Wang, X. Carbon monoxide-releasing molecule 2 inhibits inflammation associated with intestinal ischemia-reperfusion injury in a rat model of hemorrhagic shock. Int. Immunopharmacol. 2022, 113, 109441. [Google Scholar] [CrossRef]
- Kim, Y.; Park, J.; Choi, Y.K. The role of astrocytes in the central nervous system focused on BK channel and heme oxygenase metabolites: A review. Antioxidants 2019, 8, 121. [Google Scholar] [CrossRef]
- Otterbein, L.E.; Choi, A.M. Heme oxygenase: Colors of defense against cellular stress. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000, 279, L1029–L1037. [Google Scholar] [CrossRef]
- Motterlini, R.; Sawle, P.; Hammad, J.; Bains, S.; Alberto, R.; Foresti, R.; Green, C.J. CORM-A1: A new pharmacologically active carbon monoxide-releasing molecule. FASEB J. 2005, 19, 284–286. [Google Scholar] [CrossRef]
- Choi, H.I.; Zeb, A.; Kim, M.S.; Rana, I.; Khan, N.; Qureshi, O.S.; Lim, C.W.; Park, J.S.; Gao, Z.; Maeng, H.J.; et al. Controlled therapeutic delivery of CO from carbon monoxide-releasing molecules (CORMs). J. Control. Release 2022, 350, 652–667. [Google Scholar] [CrossRef]
- Motterlini, R.; Mann, B.E.; Foresti, R. Therapeutic applications of carbon monoxide-releasing molecules. Expert Opin. Investig. Drugs 2005, 14, 1305–1318. [Google Scholar] [CrossRef]
- Romão, C.C.; Blättler, W.A.; Seixas, J.D.; Bernardes, G.J. Developing drug molecules for therapy with carbon monoxide. Chem. Soc. Rev. 2012, 41, 3571–3583. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Damera, K.; Zheng, Y.; Yu, B.; Otterbein, L.E.; Wang, B. Toward carbon monoxide-based therapeutics: Critical drug delivery and developability issues. J. Pharm. Sci. 2016, 105, 406–416. [Google Scholar] [CrossRef]
- Mansour, A.M.; Khaled, R.M.; Ferraro, G.; Shehab, O.R.; Merlino, A. Metal-based carbon monoxide releasing molecules with promising cytotoxic properties. Dalton Trans. 2024, 53, 9612–9656. [Google Scholar] [CrossRef]
- Zhang, L.M.; Zhang, D.X.; Zheng, W.C.; Hu, J.S.; Fu, L.; Li, Y.; Wang, X.P. CORM-3 exerts a neuroprotective effect in a rodent model of traumatic brain injury via the bidirectional gut–brain interactions. Exp. Neurol. 2021, 341, 113683. [Google Scholar] [CrossRef]
- Ulbrich, F.; Hagmann, C.; Buerkle, H.; Romao, C.C.; Schallner, N.; Goebel, U.; Biermann, J. The carbon monoxide releasing molecule ALF-186 mediates anti-inflammatory and neuroprotective effects via the soluble guanylate cyclase ss1 in rats’ retinal ganglion cells after ischemia and reperfusion injury. J. Neuroinflamm. 2017, 14, 130. [Google Scholar] [CrossRef]
- Luo, Y.; Ullah, R.; Wang, J.; Du, Y.; Huang, S.; Meng, L.; Shi, H. Exogenous carbon monoxide produces rapid antidepressant- and anxiolytic-like effects. Front. Pharmacol. 2021, 12, 757417. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Luo, H.; Xu, H.; Qian, B.; Zou, X.; Zhang, G.; Zeng, F.; Zou, J. Preclinical models and evaluation criteria of prostatitis. Front. Immunol. 2023, 14, 1183895. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Naveed, M.; Baig, M.M.F.A.; Abbas, M.; Zhou, X. Experimental rodent models of chronic prostatitis and evaluation criteria. Biomed. Pharmacother. 2018, 108, 1894–1901. [Google Scholar] [CrossRef]
- Lai, H.; Gereau, R.W., 4th; Luo, Y.; O’Donnell, M.; Rudick, C.N.; Pontari, M.; Mullins, C.; Klumpp, D.J. Animal models of urologic chronic pelvic pain syndromes: Findings from the Multidisciplinary Approach to the Study of Chronic Pelvic Pain Research Network. Urology 2015, 85, 1454–1465. [Google Scholar] [CrossRef]
- Šutulović, N.; Vesković, M.; Puškaš, N.; Zubelić, A.; Jerotić, D.; Šuvakov, S.; Hrnčić, D. Chronic prostatitis/chronic pelvic pain syndrome induces depression-like behavior and learning-memory impairment: A possible link with decreased hippocampal neurogenesis and astrocyte activation. Oxid. Med. Cell. Longev. 2023, 2023, 3199988. [Google Scholar] [CrossRef] [PubMed]
- Šutulović, N.; Grubač, Ž.; Šuvakov, S.; Jovanović, Đ.; Puškaš, N.; Macut, Đ.; Hrnčić, D. Chronic prostatitis/chronic pelvic pain syndrome increases susceptibility to seizures in rats and alters brain levels of IL-1β and IL-6. Epilepsy Res. 2019, 153, 19–27. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Nallu, R.S. Development and Characterisation of a Novel Animal Model of Prostate Inflammation-Induced Chronic Pelvic Pain. Inflammopharmacology 2009, 17, 23–28. [Google Scholar] [CrossRef]
- Hrncic, D.; Mikić, J.; Rasic-Markovic, A.; Velimirović, M.; Stojković, T.; Obrenović, R.; Stanojlovic, O. Anxiety-related behavior in hyperhomocysteinemia induced by methionine nutritional overload in rats: Role of the brain oxidative stress. Can. J. Physiol. Pharmacol. 2016, 94, 1074–1082. [Google Scholar] [CrossRef]
- Zeng, F.; Chen, H.; Yang, J.; Wang, L.; Cui, Y.; Guan, X.; Wang, Z.; Niu, J.; Zu, X.; Qi, L.; et al. Development and validation of an animal model of prostate inflammation-induced chronic pelvic pain: Evaluating from inflammation of the prostate to pain behavioral modifications. PLoS ONE 2014, 9, e96824. [Google Scholar] [CrossRef]
- Vyas, H.S.; Jadeja, R.N.; Vohra, A.; Upadhyay, K.K.; Thounaojam, M.C.; Bartoli, M.; Devkar, R.V. CORM-A1 alleviates pro-atherogenic manifestations via miR-34a-5p downregulation and an improved mitochondrial function. Antioxidants 2023, 12, 997. [Google Scholar] [CrossRef]
- Fagone, P.; Mangano, K.; Mammana, S.; Cavalli, E.; Di Marco, R.; Barcellona, M.L.; Salvatorelli, L.; Magro, G.; Nicoletti, F. Carbon monoxide-releasing molecule-A1 (CORM-A1) improves clinical signs of experimental autoimmune uveoretinitis (EAU) in rats. Clin. Immunol. 2015, 157, 198–204. [Google Scholar] [CrossRef]
- Walf, A.A.; Frye, C.A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat. Protoc. 2007, 2, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Sidor, M.M.; Rilett, K.; Foster, J.A. Validation of an automated system for measuring anxiety-related behaviours in the elevated plus maze. J. Neurosci. Methods 2010, 188, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Arrant, A.E.; Schramm-Sapyta, N.L.; Kuhn, C.M. Use of the light/dark test for anxiety in adult and adolescent male rats. Behav. Brain Res. 2013, 256, 119–127. [Google Scholar] [CrossRef]
- Li, X.; Clark, J.D. The role of heme oxygenase in neuropathic and incisional pain. Anesth. Analg. 2000, 90, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, C.G.O.; Branco, L.G.S. Antinociception synergy between the peripheral and spinal sites of the heme oxygenase-carbon monoxide pathway. Braz. J. Med. Biol. Res. 2009, 42, 141–147. [Google Scholar] [CrossRef]
- Li, X.; Lighthall, G.; Liang, D.-Y.; Clark, J.D. Alterations in spinal cord gene expression after hindpaw formalin injection. J. Neurosci. Res. 2004, 78, 533–541. [Google Scholar] [CrossRef]
- Cazuza, R.A.; Arantes, A.L.F.; Pol, O.; Leite-Panissi, C.R. HO-CO pathway activation may be associated with hippocampal μ and δ opioid receptors in inhibiting inflammatory pain aversiveness and nociception in WT but not NOS2-KO mice. Brain Res. Bull. 2021, 169, 8–17. [Google Scholar] [CrossRef]
- Berrino, E.; Milazzo, L.; Micheli, L.; Vullo, D.; Angeli, A.; Bozdag, M.; Nocentini, A.; Menicatti, M.; Bartolucci, G.; Di Cesare Mannelli, L.; et al. Synthesis and evaluation of carbonic anhydrase inhibitors with carbon monoxide releasing properties for the management of rheumatoid arthritis. J. Med. Chem. 2019, 62, 7233–7249. [Google Scholar] [CrossRef]
- Berrino, E.; Micheli, L.; Carradori, S.; Di Cesare Mannelli, L.; Guglielmi, P.; De Luca, A.; Carta, F.; Ghelardini, C.; Secci, D.; Supuran, C.T. Novel insights on CAI-CORM hybrids: Evaluation of the CO releasing properties and pain-relieving activity of differently substituted coumarins for the treatment of rheumatoid arthritis. J. Med. Chem. 2023, 66, 1892–1908. [Google Scholar] [CrossRef] [PubMed]
- Berrino, E.; Guglielmi, P.; Carta, F.; Carradori, S.; Campestre, C.; Angeli, A.; Arrighi, F.; Pontecorvi, V.; Chimenti, P.; Secci, D.; et al. In vitro CO-releasing and antioxidant properties of sulfonamide-based CAI-CORMs in a H2O2-stimulated human Achilles tendon-derived cell model. Molecules 2025, 30, 593. [Google Scholar] [CrossRef]
- Huang, X.; Qin, Z.; Cui, H.; Chen, J.; Liu, T.; Zhu, Y.; Yuan, S. Psychological factors and pain catastrophizing in men with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS): A meta-analysis. Transl. Androl. Urol. 2020, 9, 485. [Google Scholar] [CrossRef]
- Ahn, S.G.; Kim, S.H.; Chung, K.I.; Park, K.S.; Cho, S.Y.; Kim, H.W. Depression, anxiety, stress perception, and coping strategies in Korean military patients with chronic prostatitis/chronic pelvic pain syndrome. Korean J. Urol. 2012, 53, 643. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Yang, H.; Zhao, Y.; Chen, X.; Dong, Y.; Li, L.; Dong, Y.; Cui, J.; Zhu, T.; Zheng, P.; et al. The role of inflammatory cytokines and ERK1/2 signaling in chronic prostatitis/chronic pelvic pain syndrome with related mental health disorders. Sci. Rep. 2016, 6, 28608. [Google Scholar] [CrossRef]
- Albani, S.H.; Andrawis, M.M.; Abella, R.J.H.; Fulghum, J.T.; Vafamand, N.; Dumas, T.C. Behavior in the elevated plus maze is differentially affected by testing conditions in rats under and over three weeks of age. Front. Behav. Neurosci. 2015, 9, 31. [Google Scholar] [CrossRef]
- Biedermann, S.V.; Biedermann, D.G.; Wenzlaff, F.; Kurjak, T.; Nouri, S.; Auer, M.K.; Wiedemann, K.; Briken, P.; Haaker, J.; Lonsdorf, T.B.; et al. An elevated plus-maze in mixed reality for studying human anxiety-related behavior. BMC Biol. 2017, 15, 125. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, D.X.; Zhang, L.M.; Song, Y.C.; Liu, F.H.; Li, Y.; Wang, X.P.; Zheng, W.C.; Wang, X.D.; Gui, C.X.; et al. Exogenous carbon monoxide protects against mitochondrial DNA induced hippocampal pyroptosis in a model of hemorrhagic shock and resuscitation. Int. J. Mol. Med. 2020, 45, 1176–1186. [Google Scholar] [CrossRef]
- Baskin, V.; Eroglu, E.; Harmanci, N.; Erol, K. Antinociceptive, anxiolytic, and depression-like effects of hydrogen sulfide, nitric oxide, and carbon monoxide in rats and the role of opioidergic and serotonergic systems in antinociceptive activity. Fundam. Clin. Pharmacol. 2022, 36, 674–686. [Google Scholar] [CrossRef] [PubMed]
- Cazuza, R.A.; Pol, O.; Leite-Panissi, C.R.A. Enhanced expression of heme oxygenase-1 in the locus coeruleus can be associated with anxiolytic-like effects. Behav. Brain Res. 2018, 336, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Carvalho-Costa, P.G.D.; Branco, L.G.D.S.; Leite-Panissi, C.R.A. Activation of locus coeruleus heme oxygenase-carbon monoxide pathway promoted an anxiolytic-like effect in rats. Braz. J. Med. Biol. Res. 2016, 49, e5135. [Google Scholar] [CrossRef]
- Teleanu, D.M.; Niculescu, A.G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Teleanu, R.I. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [CrossRef] [PubMed]
- Lei, A.A.; Phang, V.W.X.; Lee, Y.Z.; Kow, A.S.F.; Tham, C.L.; Ho, Y.C.; Lee, M.T. Chronic Stress-Associated Depressive Disorders: The Impact of HPA Axis Dysregulation and Neuroinflammation on the Hippocampus—A Mini Review. Int. J. Mol. Sci. 2025, 26, 2940. [Google Scholar] [CrossRef]
- Sawle, P.; Foresti, R.; Mann, B.E.; Johnson, T.R.; Green, C.J.; Motterlini, R. Carbon monoxide-releasing molecules (CO-RMs) attenuate the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine macrophages. Br. J. Pharmacol. 2005, 145, 800–810. [Google Scholar] [CrossRef]
- Appetecchia, F.; Consalvi, S.; Berrino, E.; Gallorini, M.; Granese, A.; Campestre, C.; Poce, G. A novel class of dual-acting DCH-CORMs counteracts oxidative stress-induced inflammation in human primary tenocytes. Antioxidants 2021, 10, 1828. [Google Scholar] [CrossRef]
- Zhang, D.X.; Zheng, W.C.; Bai, Y.; Bai, J.; Fu, L.; Wang, X.P.; Zhang, L.M. CORM-3 improves emotional changes induced by hemorrhagic shock via the inhibition of pyroptosis in the amygdala. Neurochem. Int. 2020, 139, 104784. [Google Scholar] [CrossRef]
- Almeida, A.S.; Soares, N.L.; Vieira, M.; Gramsbergen, J.B.; Vieira, H.L. Carbon monoxide releasing molecule-A1 (CORM-A1) improves neurogenesis: Increase of neuronal differentiation yield by preventing cell death. PLoS ONE 2016, 11, e0154781. [Google Scholar] [CrossRef]
- Boiko, D.I.; Skrypnikov, A.M.; Shkodina, A.D.; Hasan, M.M.; Ashraf, G.M.; Rahman, M.d.H. Circadian rhythm disorder and anxiety as mental health complications in post-COVID-19. Environ. Sci. Pollut. Res. Int. 2022, 29, 28062–28069. [Google Scholar] [CrossRef]
- Minegishi, S.; Sagami, I.; Negi, S.; Kano, K.; Kitagishi, H. Circadian clock disruption by selective removal of endogenous carbon monoxide. Sci. Rep. 2018, 8, 11996. [Google Scholar] [CrossRef] [PubMed]
- Schramm, E.; Waisman, A. Microglia as central protagonists in the chronic stress response. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e200023. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, S.; Fritsch, A.; Jakob, L.; Schallner, N. Severity of repetitive mild traumatic brain injury depends on microglial heme oxygenase-1 and carbon monoxide. Eur. J. Neurosci. 2025, 61, e16666. [Google Scholar]
- Dias-Pedroso, D.; Ramalho, J.S.; Sardão, V.A.; Jones, J.G.; Romão, C.C.; Oliveira, P.J.; Vieira, H.L. Carbon monoxide–neuroglobin axis targeting metabolism against inflammation in BV-2 microglial cells. Mol. Neurobiol. 2022, 59, 916–931. [Google Scholar] [CrossRef]
- Bauer, N.; Liu, D.; Nguyen, T.; Wang, B. Unraveling the interplay of dopamine, carbon monoxide, and heme oxygenase in neuromodulation and cognition. ACS Chem. Neurosci. 2024, 15, 400–407. [Google Scholar] [CrossRef]
- Houde, F.; Martel, M.; Coulombe-Lévêque, A.; Harvey, M.-P.; Auclair, V.; Mathieu, D.; Whittingstall, K.; Goffaux, P.; Léonard, G. Perturbing the activity of the superior temporal gyrus during pain encoding prevents the exaggeration of pain memories: A virtual lesion study using single-pulse transcranial magnetic stimulation. Neurobiol. Learn. Mem. 2020, 169, 107176. [Google Scholar] [CrossRef]
- Zhao, Y.; Lin, J.; Dong, Y.; Tian, Z.; Ye, Y.; Ma, Z.; Zhang, P. Neuroimaging studies of chronic prostatitis/chronic pelvic pain syndrome. Pain Res. Manag. 2022, 2022, 9448620. [Google Scholar] [CrossRef] [PubMed]
- Navratilova, E.; Atcherley, C.W.; Porreca, F. Brain circuits encoding reward from pain relief. Trends Neurosci. 2015, 38, 741–750. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šutulović, N.; Ezgin, N.; Puškaš, N.; Đurić, E.; Grubač, Ž.; Škrijelj, D.; Vesković, M.; Mladenović, D.; Savić, I.; Macut, D.; et al. Carbon Monoxide in an Experimental Model of Chronic Pelvic Pain Syndrome: The Effects of CORM-A1 on Pain and Anxiety-Related Behaviors. Pathophysiology 2025, 32, 53. https://doi.org/10.3390/pathophysiology32040053
Šutulović N, Ezgin N, Puškaš N, Đurić E, Grubač Ž, Škrijelj D, Vesković M, Mladenović D, Savić I, Macut D, et al. Carbon Monoxide in an Experimental Model of Chronic Pelvic Pain Syndrome: The Effects of CORM-A1 on Pain and Anxiety-Related Behaviors. Pathophysiology. 2025; 32(4):53. https://doi.org/10.3390/pathophysiology32040053
Chicago/Turabian StyleŠutulović, Nikola, Neriman Ezgin, Nela Puškaš, Emilija Đurić, Željko Grubač, Daniel Škrijelj, Milena Vesković, Dušan Mladenović, Isidora Savić, Djuro Macut, and et al. 2025. "Carbon Monoxide in an Experimental Model of Chronic Pelvic Pain Syndrome: The Effects of CORM-A1 on Pain and Anxiety-Related Behaviors" Pathophysiology 32, no. 4: 53. https://doi.org/10.3390/pathophysiology32040053
APA StyleŠutulović, N., Ezgin, N., Puškaš, N., Đurić, E., Grubač, Ž., Škrijelj, D., Vesković, M., Mladenović, D., Savić, I., Macut, D., Dodurga, Y., Rašić-Marković, A., Stanojlović, O., & Hrnčić, D. (2025). Carbon Monoxide in an Experimental Model of Chronic Pelvic Pain Syndrome: The Effects of CORM-A1 on Pain and Anxiety-Related Behaviors. Pathophysiology, 32(4), 53. https://doi.org/10.3390/pathophysiology32040053