Prenatal Alcohol Exposure and Congenital Heart Defects: Retinoic Acid Deficiency as a Potential Mechanism in Dextro-Type Transposition of the Great Arteries
Abstract
1. Introduction
2. Fetal Alcohol Spectrum Disorder (FASD)
3. A Brief Overview of Congenital Heart Defects (CHDs)
4. FASD and d-TGA
Retinoic Acid Deficiency as a Mechanism in d-TGA Pathogenesis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASO | Arterial switch operation |
CHDs | Congenital heart defects |
d-TGA | Dextro-type transposition of the great arteries |
FASD | Fetal alcohol spectrum disorder |
HIF-1α | Hypoxia-inducible factor-1α |
PAE | Prenatal alcohol exposure |
SHF | Second heart field |
RALDHs | Retinaldehyde dehydrogenases |
References
- del Campo, M.; Jones, K.L. A Review of the Physical Features of the Fetal Alcohol Spectrum Disorders. Eur. J. Med. Genet. 2017, 60, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Abbott, C.W.; Rohac, D.J.; Bottom, R.T.; Patadia, S.; Huffman, K.J. Prenatal Ethanol Exposure and Neocortical Development: A Transgenerational Model of FASD. Cereb. Cortex 2018, 28, 2908–2921. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.M.; Trnka, A.; Harr, D.; Dodson, K.D.; Wartnik, H.A.P.; Donaldson, K. Fetal Alcohol Spectrum Disorder (FASD): A Beginner’s Guide for Mental Health Professionals. Neurol. Clin. Neurosci. 2018, 2, 13–19. [Google Scholar]
- Hanlon-Dearman, A.C.; Longstaffe, S. Clinical Perspectives on the Diagnostic Assessment of Individuals with FASD. In Neurodevelopmental Pediatrics: Genetic and Environmental Influences; Springer International Publishing: Cham, Switzerland, 2023; pp. 353–369. [Google Scholar] [CrossRef]
- Williams, J.F.; Smith, V.C. The COMMITTEE ON SUBSTANCE ABUSE Fetal Alcohol Spectrum Disorders. Pediatrics 2015, 136, e20153113. [Google Scholar] [CrossRef]
- Burd, L.; Deal, E.; Rios, R.; Adickes, E.; Wynne, J.; Klug, M.G. Congenital Heart Defects and Fetal Alcohol Spectrum Disorders. Congenit. Heart Dis. 2007, 2, 250–255. [Google Scholar] [CrossRef]
- van der Linde, D.; Konings, E.E.M.; Slager, M.A.; Witsenburg, M.; Helbing, W.A.; Takkenberg, J.J.M.; Roos-Hesselink, J.W. Birth Prevalence of Congenital Heart Disease Worldwide. J. Am. Coll. Cardiol. 2011, 58, 2241–2247. [Google Scholar] [CrossRef]
- Harvey, D.C.; Baer, R.J.; Bandoli, G.; Chambers, C.D.; Jelliffe-Pawlowski, L.L.; Kumar, S.R. Association of Alcohol Use Diagnostic Codes in Pregnancy and Offspring Conotruncal and Endocardial Cushion Heart Defects. J. Am. Heart Assoc. 2022, 11, e022175. [Google Scholar] [CrossRef]
- Carmichael, S.L.; Shaw, G.M.; Yang, W.; Lammer, E.J. Maternal Periconceptional Alcohol Consumption and Risk for Conotruncal Heart Defects. Birth Defects Res. A Clin. Mol. Teratol. 2003, 67, 875–878. [Google Scholar] [CrossRef]
- Grewal, J.; Carmichael, S.L.; Ma, C.; Lammer, E.J.; Shaw, G.M. Maternal Periconceptional Smoking and Alcohol Consumption and Risk for Select Congenital Anomalies. Birth Defects Res. A Clin. Mol. Teratol. 2008, 82, 519–526. [Google Scholar] [CrossRef]
- Yang, J.; Qiu, H.; Qu, P.; Zhang, R.; Zeng, L.; Yan, H. Prenatal Alcohol Exposure and Congenital Heart Defects: A Meta-Analysis. PLoS ONE 2015, 10, e0130681. [Google Scholar] [CrossRef]
- Cipollone, D.; Amati, F.; Carsetti, R.; Placidi, S.; Biancolella, M.; D’Amati, G.; Novelli, G.; Siracusa, G.; Marino, B. A Multiple Retinoic Acid Antagonist Induces Conotruncal Anomalies, Including Transposition of the Great Arteries, in Mice. Cardiovasc. Pathol. 2006, 15, 194–202. [Google Scholar] [CrossRef]
- Fainsod, A.; Abbou, T.; Bendelac-Kapon, L.; Edri, T.; Pillemer, G. Fetal Alcohol Spectrum Disorder as a Retinoic Acid Deficiency Syndrome. In Fetal Alcohol Spectrum Disorder; Chudley, A.E., Hicks, G.G., Eds.; Neuromethods; Springer: New York, NY, USA, 2022; Volume 188, pp. 49–76. ISBN 978-1-07-162612-2. [Google Scholar]
- Amati, F.; Diano, L.; Campagnolo, L.; Vecchione, L.; Cipollone, D.; Bueno, S.; Prosperini, G.; Desideri, A.; Siracusa, G.; Chillemi, G.; et al. Hif1α Down-Regulation Is Associated with Transposition of Great Arteries in Mice Treated with a Retinoic Acid Antagonist. BMC Genom. 2010, 11, 497. [Google Scholar] [CrossRef]
- Hoyme, H.E.; Kalberg, W.O.; Elliott, A.J.; Blankenship, J.; Buckley, D.; Marais, A.-S.; Manning, M.A.; Robinson, L.K.; Adam, M.P.; Abdul-Rahman, O.; et al. Updated Clinical Guidelines for Diagnosing Fetal Alcohol Spectrum Disorders. Pediatrics 2016, 138, e20154256. [Google Scholar] [CrossRef]
- Hoyme, H.E.; May, P.A.; Kalberg, W.O.; Kodituwakku, P.; Gossage, J.P.; Trujillo, P.M.; Buckley, D.G.; Miller, J.H.; Aragon, A.S.; Khaole, N.; et al. A Practical Clinical Approach to Diagnosis of Fetal Alcohol Spectrum Disorders: Clarification of the 1996 Institute of Medicine Criteria. Pediatrics 2005, 115, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Menghi, M.; Micangeli, G.; Paparella, R.; Ceccanti, M.; Coriale, G.; Ferraguti, G.; Fiore, M.; Fiorentino, D.; Piccioni, M.G.; Tarani, L.; et al. Italian Guidelines for the Diagnosis and Treatment of Fetal Alcohol Spectrum Disorders: Clinical Hallmarks. Riv. Psichiatr. 2024, 59, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Micangeli, G.; Menghi, M.; Paparella, R.; Ceccanti, M.; Coriale, G.; Fiorentino, D.; Ferraguti, G.; Fiore, M.; Tarani, L. Interdisciplinary Study Groups Sapienza, ISS, ISTAT, AIDEFAD, SITAC, SIFASD, FIMMG-LAZIO, SIPPS, SIMPESV, CIPE Italian Guidelines for the Diagnosis and Treatment of Fetal Alcohol Spectrum Disorders: Diagnostic Criteria. Riv. Psichiatr. 2024, 59, 195–202. [Google Scholar] [CrossRef]
- Astley, S.J.; Bledsoe, J.M.; Davies, J.K.; Thorne, J.C. Comparison of the FASD 4-Digit Code and Hoyme et al. 2016 FASD Diagnostic Guidelines. Adv. Pediatr. Res. 2017, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- Okulicz-Kozaryn, K.; Maryniak, A.; Borkowska, M.; Śmigiel, R.; Dylag, K.A. Diagnosis of Fetal Alcohol Spectrum Disorders (Fasds): Guidelines of Interdisciplinary Group of Polish Professionals. Int. J. Environ. Res. Public Health 2021, 18, 7526. [Google Scholar] [CrossRef]
- Bastons-Compta, A.; Astals, M. Foetal Alcohol Spectrum Disorder (FASD) Diagnostic Guidelines: A Neuropsychological Diagnostic Criteria Review Proposal. J. Neuropsychopharmacol. Ment. Health 2016, 1, e104. [Google Scholar] [CrossRef]
- Hagan, J.F.; Balachova, T.; Bertrand, J.; Chasnoff, I.; Dang, E.; Fernandez-Baca, D.; Kable, J.; Kosofsky, B.; Senturias, Y.N.; Singh, N.; et al. Neurobehavioral Disorder Associated with Prenatal Alcohol Exposure. Pediatrics 2016, 138, e20151553. [Google Scholar] [CrossRef]
- Doyle, L.R.; Mattson, S.N. Neurobehavioral Disorder Associated with Prenatal Alcohol Exposure (ND-PAE): Review of Evidence and Guidelines for Assessment. Curr. Dev. Disord. Rep. 2015, 2, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.L.; Hoyme, H.E.; Robinson, L.K.; del Campo, M.; Manning, M.A.; Prewitt, L.M.; Chambers, C.D. Fetal Alcohol Spectrum Disorders: Extending the Range of Structural Defects. Am. J. Med. Genet. A 2010, 152A, 2731–2735. [Google Scholar] [CrossRef]
- Hoffman, J.I.E.; Kaplan, S. The Incidence of Congenital Heart Disease. J. Am. Coll. Cardiol. 2002, 39, 1890–1900. [Google Scholar] [CrossRef]
- Gelb, B.D. Genetic Basis of Congenital Heart Disease. Curr. Opin. Cardiol. 2004, 19, 110–115. [Google Scholar] [CrossRef]
- Marino, B.S.; Lipkin, P.H.; Newburger, J.W.; Peacock, G.; Gerdes, M.; Gaynor, J.W.; Mussatto, K.A.; Uzark, K.; Goldberg, C.S.; Johnson, W.H.; et al. Neurodevelopmental Outcomes in Children with Congenital Heart Disease: Evaluation and Management: A Scientific Statement from the American Heart Association. Circulation 2012, 126, 1143–1172. [Google Scholar] [CrossRef] [PubMed]
- Stallings, E.B.; Isenburg, J.L.; Rutkowski, R.E.; Kirby, R.S.; Nembhard, W.N.; Sandidge, T.; Villavicencio, S.; Nguyen, H.H.; McMahon, D.M.; Nestoridi, E.; et al. National Population-based Estimates for Major Birth Defects, 2016–2020. Birth Defects Res. 2024, 116, e2301. [Google Scholar] [CrossRef] [PubMed]
- Szymanski, M.W.; Moore, S.M.; Kritzmire, S.M.; Thomas, A.; Goyal, A. Transposition of the Great Arteries. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- van der Palen, R.L.F.; Blom, N.A.; Kuipers, I.M.; Rammeloo, L.A.J.; Jongbloed, M.R.M.; Konings, T.C.; Bouma, B.J.; Koolbergen, D.R.; Hazekamp, M.G. Long-Term Outcome after the Arterial Switch Operation: 43 Years of Experience. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 2021, 59, 968–977. [Google Scholar] [CrossRef]
- Unolt, M.; Putotto, C.; Silvestri, L.M.; Marino, D.; Scarabotti, A.; Massaccesi, V.; Caiaro, A.; Versacci, P.; Marino, B. Transposition of Great Arteries: New Insights into the Pathogenesis. Front. Pediatr. 2013, 1, 11. [Google Scholar] [CrossRef]
- Crabb, D.W.; Matsumoto, M.; Chang, D.; You, M. Overview of the Role of Alcohol Dehydrogenase and Aldehyde Dehydrogenase and Their Variants in the Genesis of Alcohol-Related Pathology. Proc. Nutr. Soc. 2004, 63, 49–63. [Google Scholar] [CrossRef]
- Shabtai, Y.; Fainsod, A. Competition between Ethanol Clearance and Retinoic Acid Biosynthesis in the Induction of Fetal Alcohol Syndrome. Biochem. Cell Biol. 2018, 96, 148–160. [Google Scholar] [CrossRef]
- Cipollone, D.; Carsetti, R.; Tagliani, A.; Rosado, M.M.; Borgiani, P.; Novelli, G.; D’Amati, G.; Fumagalli, L.; Marino, B.; Businaro, R. Folic Acid and Methionine in the Prevention of Teratogen-Induced Congenital Defects in Mice. Cardiovasc. Pathol. 2009, 18, 100–109. [Google Scholar] [CrossRef]
- Houyel, L. Human Genetics of D-Transposition of Great Arteries. In Congenital Heart Diseases: The Broken Heart; Rickert-Sperling, S., Kelly, R.G., Haas, N., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2024; Volume 1441, pp. 671–681. ISBN 978-3-031-44086-1. [Google Scholar]
- De Ita, M.; Cisneros, B.; Rosas-Vargas, H. Genetics of Transposition of Great Arteries: Between Laterality Abnormality and Outflow Tract Defect. J. Cardiovasc. Transl. Res. 2021, 14, 390–399. [Google Scholar] [CrossRef]
- Gill, E.; Bamforth, S.D. Molecular Pathways and Animal Models of D-Transposition of the Great Arteries. In Congenital Heart Diseases: The Broken Heart; Rickert-Sperling, S., Kelly, R.G., Haas, N., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2024; Volume 1441, pp. 683–696. ISBN 978-3-031-44086-1. [Google Scholar]
- Petrelli, B.; Bendelac, L.; Hicks, G.G.; Fainsod, A. Insights into Retinoic Acid Deficiency and the Induction of Craniofacial Malformations and Microcephaly in Fetal Alcohol Spectrum Disorder. Genesis 2019, 57, e23278. [Google Scholar] [CrossRef]
- Petrelli, B.; Weinberg, J.; Hicks, G.G. Effects of Prenatal Alcohol Exposure (PAE): Insights into FASD Using Mouse Models of PAE. Biochem. Cell Biol. 2018, 96, 131–147. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paparella, R.; Putotto, C.; Fiore, M.; Colloridi, F.; Versacci, P.; Ceccanti, M.; Marino, B.; Tarani, L. Prenatal Alcohol Exposure and Congenital Heart Defects: Retinoic Acid Deficiency as a Potential Mechanism in Dextro-Type Transposition of the Great Arteries. Pathophysiology 2025, 32, 35. https://doi.org/10.3390/pathophysiology32030035
Paparella R, Putotto C, Fiore M, Colloridi F, Versacci P, Ceccanti M, Marino B, Tarani L. Prenatal Alcohol Exposure and Congenital Heart Defects: Retinoic Acid Deficiency as a Potential Mechanism in Dextro-Type Transposition of the Great Arteries. Pathophysiology. 2025; 32(3):35. https://doi.org/10.3390/pathophysiology32030035
Chicago/Turabian StylePaparella, Roberto, Carolina Putotto, Marco Fiore, Fiorenza Colloridi, Paolo Versacci, Mauro Ceccanti, Bruno Marino, and Luigi Tarani. 2025. "Prenatal Alcohol Exposure and Congenital Heart Defects: Retinoic Acid Deficiency as a Potential Mechanism in Dextro-Type Transposition of the Great Arteries" Pathophysiology 32, no. 3: 35. https://doi.org/10.3390/pathophysiology32030035
APA StylePaparella, R., Putotto, C., Fiore, M., Colloridi, F., Versacci, P., Ceccanti, M., Marino, B., & Tarani, L. (2025). Prenatal Alcohol Exposure and Congenital Heart Defects: Retinoic Acid Deficiency as a Potential Mechanism in Dextro-Type Transposition of the Great Arteries. Pathophysiology, 32(3), 35. https://doi.org/10.3390/pathophysiology32030035