Linking Lipid Metabolism and Immune Function: New Insights into Chronic Respiratory Diseases
Abstract
:1. Introduction
2. Biological Significance of Lipids for Lung Function
2.1. The Lipid Landscape of the Lung
2.2. The Importance of Lipids for Macrophage Function
2.2.1. Concept of Cellular Immunometabolism
2.2.2. The Importance of Reverse Cholesterol Transport
2.3. The Role of Lipid Mediators of Inflammation
3. Clinical Significance of Lipids in Lung Diseases
3.1. Clinical Significance of Lipid Metabolism Disorders in COPD
3.2. Clinical Significance of Lipid Metabolism Disorders in Asthma
3.3. Clinical Significance of Lipid Metabolism Disorders in Idiopathic Pulmonary Fibrosis
3.4. Clinical Significance of Lipid Mediators in Pulmonary Hypertension
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABCA1 | ATP Binding Cassette Subfamily A Member 1 |
AEC2 | alveolar epithelial type II cells |
COPD | chronic obstructive pulmonary disease |
COX | cyclooxygenase |
CSE | cigarette smoke extract |
EVALI | e-cigarette and vaping product use-associated lung injury |
FASN | fatty acid synthase |
FEV1 | forced expiratory volume in 1 second |
IgE | immunoglobulin E |
IL | interleukin |
iNOS | inducible nitric oxide synthase |
LOX | lipoxygenase |
LPCAT1 | lysophosphatidylcholine acyltransferase 1 |
LPS | lipopolysaccharide |
LT | leukotriene |
LX | lipoxin |
LXR | liver X receptor |
MaR | maresin |
PD | protectin |
PH | pulmonary hypertension |
PG | prostaglandin |
PC | phosphatidylcholine |
Rv | resolvin |
S1P | sphingosine-1-phosphate |
SPT | serine palmitoyl-CoA transferase |
TLR4 | Toll-like receptor 4 |
TNFα | tumor necrosis factor-alpha |
TXA2 | thromboxane A2 |
References
- World Health Organization. Chronic Obstructive Pulmonary Disease (COPD). Available online: https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd) (accessed on 7 May 2025).
- Burden of Disease Scenarios for 204 Countries and Territories, 2022–2050: A Forecasting Analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2204–2256. [CrossRef] [PubMed]
- Wang, Z.; Lin, J.; Liang, L.; Huang, F.; Yao, X.; Peng, K.; Gao, Y.; Zheng, J. Global, Regional, and National Burden of Chronic Obstructive Pulmonary Disease and Its Attributable Risk Factors from 1990 to 2021: An Analysis for the Global Burden of Disease Study 2021. Respir. Res. 2025, 26, 2. [Google Scholar] [CrossRef]
- Chen, S.; Kuhn, M.; Prettner, K.; Yu, F.; Yang, T.; Bärnighausen, T.; Bloom, D.E.; Wang, C. The Global Economic Burden of Chronic Obstructive Pulmonary Disease for 204 Countries and Territories in 2020-50: A Health-Augmented Macroeconomic Modelling Study. Lancet. Glob. Health 2023, 11, e1183–e1193. [Google Scholar] [CrossRef]
- Swed, S.; Sawaf, B.; Al-Obeidat, F.; Hafez, W.; Rakab, A.; Alibrahim, H.; Nasif, M.N.; Alghalyini, B.; Zia Zaidi, A.R.; Alshareef, L.; et al. Asthma Prevalence Among United States Population Insights from NHANES Data Analysis. Sci. Rep. 2024, 14, 8059. [Google Scholar] [CrossRef]
- Al Wachami, N.; Guennouni, M.; Iderdar, Y.; Boumendil, K.; Arraji, M.; Mourajid, Y.; Bouchachi, F.Z.; Barkaoui, M.; Louerdi, M.L.; Hilali, A.; et al. Estimating the Global Prevalence of Chronic Obstructive Pulmonary Disease (COPD): A Systematic Review and Meta-Analysis. BMC Public Health 2024, 24, 297. [Google Scholar] [CrossRef]
- Amegadzie, J.E.; Mehareen, J.; Khakban, A.; Joshi, P.; Carlsten, C.; Sadatsafavi, M. Twenty-Year Trends in Excess Costs of Chronic Obstructive Pulmonary Disease. Eur. Respir. J. 2024, 65, 2400516. [Google Scholar] [CrossRef] [PubMed]
- Syamlal, G.; Dodd, K.E.; Mazurek, J.M. Prevalence and Burden of Asthma among US Working Adults by Industry and Occupation-United States, 2020-2021. J. Asthma 2024, 62, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Chi, H. Immunometabolism at the Intersection of Metabolic Signaling, Cell Fate, and Systems Immunology. Cell. Mol. Immunol. 2022, 19, 299–302. [Google Scholar] [CrossRef]
- Chavakis, T. Immunometabolism: Where Immunology and Metabolism Meet. J. Innate Immun. 2021, 14, 1–3. [Google Scholar] [CrossRef]
- Azzam, K.M.; Fessler, M.B. Crosstalk Between Reverse Cholesterol Transport and Innate Immunity. Trends Endocrinol. Metab. 2012, 23, 169–178. [Google Scholar] [CrossRef]
- Grigorescu, E.-D.; Lăcătușu, C.-M.; Floria, M.; Cazac, G.-D.; Onofriescu, A.; Ceasovschih, A.; Crețu, I.; Mihai, B.-M.; Șorodoc, L. Association of Inflammatory and Metabolic Biomarkers with Mitral Annular Calcification in Type 2 Diabetes Patients. J. Pers. Med. 2022, 12, 1484. [Google Scholar] [CrossRef] [PubMed]
- Markelić, I.; Hlapčić, I.; Rogić, D.; Rako, I.; Samaržija, M.; Popović-Grle, S.; Rumora, L.; Vukić Dugac, A. Lipid Profile and Atherogenic Indices in Patients with Stable Chronic Obstructive Pulmonary Disease. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 153–161. [Google Scholar] [CrossRef]
- Chen, H.; Li, Z.; Dong, L.; Wu, Y.; Shen, H.; Chen, Z. Lipid Metabolism in Chronic Obstructive Pulmonary Disease. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 1009–1018. [Google Scholar] [CrossRef]
- Vlahos, R. Lipids in Chronic Obstructive Pulmonary Disease: A Target for Future Therapy? Am. J. Respir. Cell Mol. Biol. 2020, 62, 273–274. [Google Scholar] [CrossRef]
- Hedhli, A.; Jelassi, W.; Euchi, K.; Mjid, M.; Ouahchi, Y.; Cheikhrouhou, S.; Toujani, S.; Dhahri, B. Inflammatory Lipid Mediators in Chronic Obstructive Pulmonary Disease: Association with the Disease Severity. Eur. Respir. J. 2024, 64, PA836. [Google Scholar] [CrossRef]
- Agudelo, C.W.; Samaha, G.; Garcia-Arcos, I. Alveolar Lipids in Pulmonary Disease. A Review. Lipids Health Dis. 2020, 19, 122. [Google Scholar] [CrossRef]
- Zemski Berry, K.A.; Murphy, R.C.; Kosmider, B.; Mason, R.J. Lipidomic Characterization and Localization of Phospholipids in the Human Lung. J. Lipid Res. 2017, 58, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Mason, R.J.; Williams, M.C. Type II Alveolar Cell. Defender of the Alveolus. Am. Rev. Respir. Dis. 1977, 115, 81–91. [Google Scholar] [PubMed]
- Dushianthan, A.; Goss, V.; Cusack, R.; Grocott, M.P.; Postle, A.D. Phospholipid Composition and Kinetics in Different Endobronchial Fractions from Healthy Volunteers. BMC Pulm. Med. 2014, 14, 10. [Google Scholar] [CrossRef]
- Hohlfeld, J.; Fabel, H.; Hamm, H. The Role of Pulmonary Surfactant in Obstructive Airways Disease. Eur. Respir. J. 1997, 10, 482–491. [Google Scholar] [CrossRef]
- Macklin, C.C. The Pulmonary Alveolar Mucoid Film and the Pneumonocytes. Lancet 1954, 266, 1099–1104. [Google Scholar] [CrossRef] [PubMed]
- Fehrenbach, H. Alveolar Epithelial Type II Cell: Defender of the Alveolus Revisited. Respir. Res. 2001, 2, 33–46. [Google Scholar] [CrossRef]
- Fisher, A.B. Chapter 22—Lung Lipid Composition and Surfactant Biology. In Comparative Biology of the Normal Lung, 2nd ed.; Parent, R.A., Ed.; Academic Press: San Diego, CA, USA, 2015; pp. 423–466. ISBN 978-0-12-404577-4. [Google Scholar]
- Ji, J.; Sun, L.; Luo, Z.; Zhang, Y.; Xianzheng, W.; Liao, Y.; Tong, X.; Shan, J. Potential Therapeutic Applications of Pulmonary Surfactant Lipids in the Host Defence Against Respiratory Viral Infections. Front. Immunol. 2021, 12, 730022. [Google Scholar] [CrossRef] [PubMed]
- Numata, M.; Kandasamy, P.; Voelker, D.R. The Anti-Inflammatory and Antiviral Properties of Anionic Pulmonary Surfactant Phospholipids. Immunol. Rev. 2023, 317, 166–186. [Google Scholar] [CrossRef] [PubMed]
- da Costa Loureiro, L.; da Costa Loureiro, L.; Gabriel-Junior, E.A.; Zambuzi, F.A.; Fontanari, C.; Sales-Campos, H.; Frantz, F.G.; Faccioli, L.H.; Sorgi, C.A. Pulmonary Surfactant Phosphatidylcholines Induce Immunological Adaptation of Alveolar Macrophages. Mol. Immunol. 2020, 122, 163–172. [Google Scholar] [CrossRef]
- Abate, W.; Alghaithy, A.A.; Parton, J.; Jones, K.P.; Jackson, S.K. Surfactant Lipids Regulate LPS-Induced Interleukin-8 Production in A549 Lung Epithelial Cells by Inhibiting Translocation of TLR4 into Lipid Raft Domains. J. Lipid Res. 2010, 51, 334–344. [Google Scholar] [CrossRef]
- Kishore, U.; Greenhough, T.J.; Waters, P.; Shrive, A.K.; Ghai, R.; Kamran, M.F.; Bernal, A.L.; Reid, K.B.M.; Madan, T.; Chakraborty, T. Surfactant Proteins SP-A and SP-D: Structure, Function and Receptors. Mol. Immunol. 2006, 43, 1293–1315. [Google Scholar] [CrossRef]
- Wright, J.R. Host Defense Functions of Pulmonary Surfactant. Biol. Neonate 2004, 85, 326–332. [Google Scholar] [CrossRef]
- Pastva, A.M.; Wright, J.R.; Williams, K.L. Immunomodulatory Roles of Surfactant Proteins A and D: Implications in Lung Disease. Proc. Am. Thorac. Soc. 2007, 4, 252–257. [Google Scholar] [CrossRef]
- Rynkiewicz, M.J.; Wu, H.; Cafarella, T.R.; Nikolaidis, N.M.; Head, J.F.; Seaton, B.A.; McCormack, F.X. Differential Ligand Binding Specificities of the Pulmonary Collectins Are Determined by the Conformational Freedom of a Surface Loop. Biochemistry 2017, 56, 4095–4105. [Google Scholar] [CrossRef]
- Goh, B.C.; Wu, H.; Rynkiewicz, M.J.; Schulten, K.; Seaton, B.A.; McCormack, F.X. Elucidation of Lipid Binding Sites on Lung Surfactant Protein A Using X-Ray Crystallography, Mutagenesis, and Molecular Dynamics Simulations. Biochemistry 2016, 55, 3692–3701. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.-H.; Chen, P.-C.; Hsu, H.-Y.; Liu, J.-C.; Ho, Y.-S.; Lin, Y.J.; Kuo, C.-W.; Kuo, W.-S.; Kao, H.-F.; Wang, S.-D.; et al. Surfactant Protein D Inhibits Lipid-Laden Foamy Macrophages and Lung Inflammation in Chronic Obstructive Pulmonary Disease. Cell. Mol. Immunol. 2023, 20, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Orgeig, S.; Daniels, C.B.; Johnston, S.D.; Sullivan, L.C. The Pattern of Surfactant Cholesterol during Vertebrate Evolution and Development: Does Ontogeny Recapitulate Phylogeny? Reprod. Fertil. Dev. 2003, 15, 55–73. [Google Scholar] [CrossRef]
- Orgeig, S.; Daniels, C.B. The Roles of Cholesterol in Pulmonary Surfactant: Insights from Comparative and Evolutionary Studies. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2001, 129, 75–89. [Google Scholar] [CrossRef]
- Pratt, S.A.; Finley, T.N.; Smith, M.H.; Ladman, A.J. A Comparison of Alveolar Macrophages and Pulmonary Surfactant(?) Obtained from the Lungs of Human Smokers and Nonsmokers by Endobronchial Lavage. Anat. Rec. 1969, 163, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Milad, N.; Morissette, M.C. Revisiting the Role of Pulmonary Surfactant in Chronic Inflammatory Lung Diseases and Environmental Exposure. Eur. Respir. Rev. 2021, 30, 210077. [Google Scholar] [CrossRef]
- Finley, T.N.; Ladman, A.J. Low Yield of Pulmonary Surfactant in Cigarette Smokers. N. Engl. J. Med. 1972, 286, 223–227. [Google Scholar] [CrossRef]
- Agudelo, C.W.; Kumley, B.K.; Area-Gomez, E.; Xu, Y.; Dabo, A.J.; Geraghty, P.; Campos, M.; Foronjy, R.; Garcia-Arcos, I. Decreased Surfactant Lipids Correlate with Lung Function in Chronic Obstructive Pulmonary Disease (COPD). PLoS ONE 2020, 15, e0228279. [Google Scholar] [CrossRef]
- Morissette, M.C.; Lamontagne, M.; Bérubé, J.-C.; Gaschler, G.; Williams, A.; Yauk, C.; Couture, C.; Laviolette, M.; Hogg, J.C.; Timens, W.; et al. Impact of Cigarette Smoke on the Human and Mouse Lungs: A Gene-Expression Comparison Study. PLoS ONE 2014, 9, e92498. [Google Scholar] [CrossRef]
- Thimmulappa, R.K.; Gang, X.; Kim, J.-H.; Sussan, T.E.; Witztum, J.L.; Biswal, S. Oxidized Phospholipids Impair Pulmonary Antibacterial Defenses: Evidence in Mice Exposed to Cigarette Smoke. Biochem. Biophys. Res. Commun. 2012, 426, 253–259. [Google Scholar] [CrossRef]
- Liu, D.; Meister, M.; Zhang, S.; Vong, C.-I.; Wang, S.; Fang, R.; Li, L.; Wang, P.G.; Massion, P.; Ji, X. Identification of Lipid Biomarker from Serum in Patients with Chronic Obstructive Pulmonary Disease. Respir. Res. 2020, 21, 242. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I.; van Schadewijk, A.A.M.; Crowther, A.J.L.; Hiemstra, P.S.; Stolk, J.; MacNee, W.; De Boer, W.I. 4-Hydroxy-2-Nonenal, a Specific Lipid Peroxidation Product, Is Elevated in Lungs of Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2002, 166, 490–495. [Google Scholar] [CrossRef]
- Berenson, C.S.; Kruzel, R.L.; Eberhardt, E.; Sethi, S. Phagocytic Dysfunction of Human Alveolar Macrophages and Severity of Chronic Obstructive Pulmonary Disease. J. Infect. Dis. 2013, 208, 2036–2045. [Google Scholar] [CrossRef]
- Arcos, J.; Sasindran, S.J.; Fujiwara, N.; Turner, J.; Schlesinger, L.S.; Torrelles, J.B. Human Lung Hydrolases Delineate Mycobacterium Tuberculosis-Macrophage Interactions and the Capacity to Control Infection. J. Immunol. 2011, 187, 372–381. [Google Scholar] [CrossRef]
- Olmo-Fontánez, A.M.; Scordo, J.M.; Schami, A.; Garcia-Vilanova, A.; Pino, P.A.; Hicks, A.; Mishra, R.; Jose Maselli, D.; Peters, J.I.; Restrepo, B.I.; et al. Human Alveolar Lining Fluid from the Elderly Promotes Mycobacterium Tuberculosis Intracellular Growth and Translocation into the Cytosol of Alveolar Epithelial Cells. Mucosal Immunol. 2024, 17, 155–168. [Google Scholar] [CrossRef]
- Fan, L.-C.; McConn, K.; Plataki, M.; Kenny, S.; Williams, N.C.; Kim, K.; Quirke, J.A.; Chen, Y.; Sauler, M.; Möbius, M.E.; et al. Alveolar Type II Epithelial Cell FASN Maintains Lipid Homeostasis in Experimental COPD. JCI Insight 2023, 8, e163403. [Google Scholar] [CrossRef] [PubMed]
- Fhu, C.W.; Ali, A. Fatty Acid Synthase: An Emerging Target in Cancer. Molecules 2020, 25, 3935. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Hyatt, B.A.; Mucenski, M.L.; Mason, R.J.; Shannon, J.M. Identification and Characterization of a Lysophosphatidylcholine Acyltransferase in Alveolar Type II Cells. Proc. Natl. Acad. Sci. USA 2006, 103, 11724–11729. [Google Scholar] [CrossRef]
- Tanosaki, T.; Mikami, Y.; Shindou, H.; Suzuki, T.; Hashidate-Yoshida, T.; Hosoki, K.; Kagawa, S.; Miyata, J.; Kabata, H.; Masaki, K.; et al. Lysophosphatidylcholine Acyltransferase 1 Deficiency Promotes Pulmonary Emphysema via Apoptosis of Alveolar Epithelial Cells. Inflammation 2022, 45, 1765–1779. [Google Scholar] [CrossRef]
- Chen, L.; Xue, J.; Zhao, L.; He, Y.; Fu, S.; Ma, X.; Yu, W.; Tang, Y.; Wang, Y.; Gao, Z. Lysophosphatidylcholine Acyltransferase Level Predicts the Severity and Prognosis of Patients with Community-Acquired Pneumonia: A Prospective Multicenter Study. Front. Immunol. 2023, 14, 1295353. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y.; Liu, X.; Zheng, N.; Gu, Y.; Song, Y.; Wang, X. Regulatory Roles of External Cholesterol in Human Airway Epithelial Mitochondrial Function Through STARD3 Signalling. Clin. Transl. Med. 2022, 12, e902. [Google Scholar] [CrossRef] [PubMed]
- Goldklang, M.; Golovatch, P.; Zelonina, T.; Trischler, J.; Rabinowitz, D.; Lemaître, V.; D’Armiento, J. Activation of the TLR4 Signaling Pathway and Abnormal Cholesterol Efflux Lead to Emphysema in ApoE-Deficient Mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012, 302, L1200–L1208. [Google Scholar] [CrossRef] [PubMed]
- Iwata, A.; Shirai, R.; Ishii, H.; Kushima, H.; Otani, S.; Hashinaga, K.; Umeki, K.; Kishi, K.; Tokimatsu, I.; Hiramatsu, K.; et al. Inhibitory Effect of Statins on Inflammatory Cytokine Production from Human Bronchial Epithelial Cells. Clin. Exp. Immunol. 2012, 168, 234–240. [Google Scholar] [CrossRef]
- Davis, B.B.; Zeki, A.A.; Bratt, J.M.; Wang, L.; Filosto, S.; Walby, W.F.; Kenyon, N.J.; Goldkorn, T.; Schelegle, E.S.; Pinkerton, K.E. Simvastatin Inhibits Smoke-Induced Airway Epithelial Injury: Implications for COPD Therapy. Eur. Respir. J. 2013, 42, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Zeki, A.A.; Thai, P.; Kenyon, N.J.; Wu, R. Differential Effects of Simvastatin on IL-13-Induced Cytokine Gene Expression in Primary Mouse Tracheal Epithelial Cells. Respir. Res. 2012, 13, 38. [Google Scholar] [CrossRef]
- Zeki, A.A.; Bratt, J.M.; Chang, K.Y.; Franzi, L.M.; Ott, S.; Silveria, M.; Fiehn, O.; Last, J.A.; Kenyon, N.J. Intratracheal Instillation of Pravastatin for the Treatment of Murine Allergic Asthma: A Lung-Targeted Approach to Deliver Statins. Physiol. Rep. 2015, 3, e12352. [Google Scholar] [CrossRef]
- Vlahos, R.; Bozinovski, S. Role of Alveolar Macrophages in Chronic Obstructive Pulmonary Disease. Front. Immunol. 2014, 5, 435. [Google Scholar] [CrossRef]
- Finicelli, M.; Digilio, F.A.; Galderisi, U.; Peluso, G. The Emerging Role of Macrophages in Chronic Obstructive Pulmonary Disease: The Potential Impact of Oxidative Stress and Extracellular Vesicle on Macrophage Polarization and Function. Antioxidants 2022, 11, 464. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, X.; Xiao, C.; Xiong, G.; Ye, X.; Li, L.; Fang, Y.; Chen, H.; Yang, W.; Du, X. The Role of Lung Macrophages in Chronic Obstructive Pulmonary Disease. Respir. Med. 2022, 205, 107035. [Google Scholar] [CrossRef]
- Wang, N.; Liang, H.; Zen, K. Molecular Mechanisms That Influence the Macrophage M1–M2 Polarization Balance. Front. Immunol. 2014, 5, 614. [Google Scholar] [CrossRef]
- Yunna, C.; Mengru, H.; Lei, W.; Weidong, C. Macrophage M1/M2 Polarization. Eur. J. Pharmacol. 2020, 877, 173090. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Saeed, A.F.U.H.; Liu, Q.; Jiang, Q.; Xu, H.; Xiao, G.G.; Rao, L.; Duo, Y. Macrophages in Immunoregulation and Therapeutics. Signal Transduct. Target. Ther. 2023, 8, 207. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.-X.; Xu, X.-H.; Jin, L. Effects of Metabolism on Macrophage Polarization Under Different Disease Backgrounds. Front. Immunol. 2022, 13, 880286. [Google Scholar] [CrossRef]
- Viola, A.; Munari, F.; Sánchez-Rodríguez, R.; Scolaro, T.; Castegna, A. The Metabolic Signature of Macrophage Responses. Front. Immunol. 2019, 10, 1462. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, R.; Gu, H.; Zhang, E.; Qu, J.; Cao, W.; Huang, X.; Yan, H.; He, J.; Cai, Z. Metabolic Reprogramming in Macrophage Responses. Biomark. Res. 2021, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Rath, M.; Müller, I.; Kropf, P.; Closs, E.I.; Munder, M. Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. Front. Immunol. 2014, 5, 532. [Google Scholar] [CrossRef]
- Yang, Z.; Ming, X.-F. Functions of Arginase Isoforms in Macrophage Inflammatory Responses: Impact on Cardiovascular Diseases and Metabolic Disorders. Front. Immunol. 2014, 5, 533. [Google Scholar] [CrossRef]
- Bazzan, E.; Turato, G.; Tinè, M.; Radu, C.M.; Balestro, E.; Rigobello, C.; Biondini, D.; Schiavon, M.; Lunardi, F.; Baraldo, S.; et al. Dual Polarization of Human Alveolar Macrophages Progressively Increases with Smoking and COPD Severity. Respir. Res. 2017, 18, 40. [Google Scholar] [CrossRef]
- Angajala, A.; Lim, S.; Phillips, J.B.; Kim, J.-H.; Yates, C.; You, Z.; Tan, M. Diverse Roles of Mitochondria in Immune Responses: Novel Insights into Immuno-Metabolism. Front. Immunol. 2018, 9, 1605. [Google Scholar] [CrossRef]
- Shao, N.; Qiu, H.; Liu, J.; Xiao, D.; Zhao, J.; Chen, C.; Wan, J.; Guo, M.; Liang, G.; Zhao, X.; et al. Targeting Lipid Metabolism of Macrophages: A New Strategy for Tumor Therapy. J. Adv. Res. 2024, 8, 99–114. [Google Scholar] [CrossRef]
- Muralidharan, S.; Torta, F.; Lin, M.K.; Olona, A.; Bagnati, M.; Moreno-Moral, A.; Ko, J.-H.; Ji, S.; Burla, B.; Wenk, M.R.; et al. Immunolipidomics Reveals a Globoside Network During the Resolution of Pro-Inflammatory Response in Human Macrophages. Front. Immunol. 2022, 13, 926220. [Google Scholar] [CrossRef] [PubMed]
- Batista-Gonzalez, A.; Vidal, R.; Criollo, A.; Carreño, L.J. New Insights on the Role of Lipid Metabolism in the Metabolic Reprogramming of Macrophages. Front. Immunol. 2020, 10, 2993. [Google Scholar] [CrossRef] [PubMed]
- Kruglov, V.; Jang, I.H.; Camell, C.D. Inflammaging and Fatty Acid Oxidation in Monocytes and Macrophages. Immunometabolism 2024, 6, e00038. [Google Scholar] [CrossRef]
- Castoldi, A.; Monteiro, L.B.; van Teijlingen Bakker, N.; Sanin, D.E.; Rana, N.; Corrado, M.; Cameron, A.M.; Hässler, F.; Matsushita, M.; Caputa, G.; et al. Triacylglycerol Synthesis Enhances Macrophage Inflammatory Function. Nat. Commun. 2020, 11, 4107. [Google Scholar] [CrossRef] [PubMed]
- Sims, K.; Haynes, C.A.; Kelly, S.; Allegood, J.C.; Wang, E.; Momin, A.; Leipelt, M.; Reichart, D.; Glass, C.K.; Sullards, M.C.; et al. Kdo2-Lipid A, a TLR4-Specific Agonist, Induces de Novo Sphingolipid Biosynthesis in RAW264.7 Macrophages, Which Is Essential for Induction of Autophagy. J. Biol. Chem. 2010, 285, 38568–38579. [Google Scholar] [CrossRef]
- Olona, A.; Hateley, C.; Muralidharan, S.; Wenk, M.R.; Torta, F.; Behmoaras, J. Sphingolipid Metabolism during Toll-like Receptor 4 (TLR4)-Mediated Macrophage Activation. Br. J. Pharmacol. 2021, 178, 4575–4587. [Google Scholar] [CrossRef]
- Utermöhlen, O.; Herz, J.; Schramm, M.; Krönke, M. Fusogenicity of Membranes: The Impact of Acid Sphingomyelinase on Innate Immune Responses. Immunobiology 2008, 213, 307–314. [Google Scholar] [CrossRef]
- Jongsma, M.L.M.; de Waard, A.A.; Raaben, M.; Zhang, T.; Cabukusta, B.; Platzer, R.; Blomen, V.A.; Xagara, A.; Verkerk, T.; Bliss, S.; et al. The SPPL3-Defined Glycosphingolipid Repertoire Orchestrates HLA Class I-Mediated Immune Responses. Immunity 2021, 54, 132–150.e9. [Google Scholar] [CrossRef]
- Aerts, J.M.F.G.; Artola, M.; van Eijk, M.; Ferraz, M.J.; Boot, R.G. Glycosphingolipids and Infection. Potential New Therapeutic Avenues. Front. Cell Dev. Biol. 2019, 7, 324. [Google Scholar] [CrossRef]
- Niekamp, P.; Guzman, G.; Leier, H.C.; Rashidfarrokhi, A.; Richina, V.; Pott, F.; Barisch, C.; Holthuis, J.C.M.; Tafesse, F.G. Sphingomyelin Biosynthesis Is Essential for Phagocytic Signaling During Mycobacterium Tuberculosis Host Cell Entry. mBio 2021, 12, e03141-20. [Google Scholar] [CrossRef]
- Nicholas, D.A.; Zhang, K.; Hung, C.; Glasgow, S.; Aruni, A.W.; Unternaehrer, J.; Payne, K.J.; Langridge, W.H.R.; De Leon, M. Palmitic Acid Is a Toll-like Receptor 4 Ligand That Induces Human Dendritic Cell Secretion of IL-1β. PLoS ONE 2017, 12, e0176793. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.H.; Kim, J.-A.; Lee, J.Y. Mechanisms for the Activation of Toll-like Receptor 2/4 by Saturated Fatty Acids and Inhibition by Docosahexaenoic Acid. Eur. J. Pharmacol. 2016, 785, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Yamada, H.; Umemoto, T.; Kawano, M.; Kawakami, M.; Kakei, M.; Momomura, S.-I.; Ishikawa, S.-E.; Hara, K. High-Density Lipoprotein and Apolipoprotein A-I Inhibit Palmitate-Induced Translocation of Toll-like Receptor 4 into Lipid Rafts and Inflammatory Cytokines in 3T3-L1 Adipocytes. Biochem. Biophys. Res. Commun. 2017, 484, 403–408. [Google Scholar] [CrossRef]
- Wong, S.W.; Kwon, M.-J.; Choi, A.M.K.; Kim, H.-P.; Nakahira, K.; Hwang, D.H. Fatty Acids Modulate Toll-Like Receptor 4 Activation Through Regulation of Receptor Dimerization and Recruitment into Lipid Rafts in a Reactive Oxygen Species-Dependent Manner. J. Biol. Chem. 2009, 284, 27384–27392. [Google Scholar] [CrossRef] [PubMed]
- Rocha, D.M.; Caldas, A.P.; Oliveira, L.L.; Bressan, J.; Hermsdorff, H.H. Saturated Fatty Acids Trigger TLR4-Mediated Inflammatory Response. Atherosclerosis 2016, 244, 211–215. [Google Scholar] [CrossRef]
- Suganami, T.; Yuan, X.; Shimoda, Y.; Uchio-Yamada, K.; Nakagawa, N.; Shirakawa, I.; Usami, T.; Tsukahara, T.; Nakayama, K.; Miyamoto, Y.; et al. Activating Transcription Factor 3 Constitutes a Negative Feedback Mechanism That Attenuates Saturated Fatty Acid/Toll-like Receptor 4 Signaling and Macrophage Activation in Obese Adipose Tissue. Circ. Res. 2009, 105, 25–32. [Google Scholar] [CrossRef]
- Li, B.; Leung, J.C.K.; Chan, L.Y.Y.; Yiu, W.H.; Tang, S.C.W. A Global Perspective on the Crosstalk Between Saturated Fatty Acids and Toll-like Receptor 4 in the Etiology of Inflammation and Insulin Resistance. Prog. Lipid Res. 2020, 77, 101020. [Google Scholar] [CrossRef]
- Morissette, M.C.; Shen, P.; Thayaparan, D.; Stämpfli, M.R. Disruption of Pulmonary Lipid Homeostasis Drives Cigarette Smoke-Induced Lung Inflammation in Mice. Eur. Respir. J. 2015, 46, 1451–1460. [Google Scholar] [CrossRef]
- Shields, P.G.; Song, M.-A.; Freudenheim, J.L.; Brasky, T.M.; McElroy, J.P.; Reisinger, S.A.; Weng, D.Y.; Ren, R.; Eissenberg, T.; Wewers, M.D.; et al. Lipid Laden Macrophages and Electronic Cigarettes in Healthy Adults. EBioMedicine 2020, 60, 102982. [Google Scholar] [CrossRef]
- Guerrini, V.; Panettieri, R.A.; Gennaro, M.L. Lipid-Laden Macrophages as Biomarkers of Vaping-Associated Lung Injury. Lancet Respir. Med. 2020, 8, e6. [Google Scholar] [CrossRef]
- Warren, K.J.; Beck, E.M.; Callahan, S.J.; Helms, M.N.; Middleton, E.; Maddock, S.; Carr, J.R.; Harris, D.; Blagev, D.P.; Lanspa, M.J.; et al. Alveolar Macrophages from EVALI Patients and E-Cigarette Users: A Story of Shifting Phenotype. Respir. Res. 2023, 24, 162. [Google Scholar] [CrossRef] [PubMed]
- Gibeon, D.; Zhu, J.; Sogbesan, A.; Banya, W.; Rossios, C.; Saito, J.; Rocha, J.P.; Hull, J.H.; Menzies-Gow, A.N.; Bhavsar, P.K.; et al. Lipid-Laden Bronchoalveolar Macrophages in Asthma and Chronic Cough. Respir. Med. 2014, 108, 71–77. [Google Scholar] [CrossRef]
- Zhu, Y.; Choi, D.; Somanath, P.R.; Zhang, D. Lipid-Laden Macrophages in Pulmonary Diseases. Cells 2024, 13, 889. [Google Scholar] [CrossRef]
- Knauer-Fischer, S.; Ratjen, F. Lipid-Laden Macrophages in Bronchoalveolar Lavage Fluid as a Marker for Pulmonary Aspiration. Pediatr. Pulmonol. 1999, 27, 419–422. [Google Scholar] [CrossRef]
- Lawlor, C.M.; Choi, S.S. Lipid-Laden Macrophage Index as a Diagnostic Tool for Pediatric Aspiration: A Systematic Review. OTO Open 2023, 7, e33. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Gordon, S.; Martinez, F.O. Foam Cell Macrophages in Tuberculosis. Front. Immunol. 2021, 12, 775326. [Google Scholar] [CrossRef]
- Kotlyarov, S.; Kotlyarova, A. Clinical Significance of Lipid Transport Function of ABC Transporters in the Innate Immune System. Membranes 2022, 12, 1083. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Owen, J.S.; Wilson, M.D.; Li, H.; Griffiths, G.L.; Thomas, M.J.; Hiltbold, E.M.; Fessler, M.B.; Parks, J.S. Macrophage ABCA1 Reduces MyD88-Dependent Toll-like Receptor Trafficking to Lipid Rafts by Reduction of Lipid Raft Cholesterol. J. Lipid Res. 2010, 51, 3196–3206. [Google Scholar] [CrossRef]
- Fantini, J.; Barrantes, F.J. How Cholesterol Interacts with Membrane Proteins: An Exploration of Cholesterol-Binding Sites Including CRAC, CARC, and Tilted Domains. Front. Physiol. 2013, 4, 31. [Google Scholar] [CrossRef]
- Fantini, J.; Epand, R.M.; Barrantes, F.J. Cholesterol-Recognition Motifs in Membrane Proteins. Adv. Exp. Med. Biol. 2019, 1135, 3–25. [Google Scholar] [CrossRef]
- Fantini, J.; Di Scala, C.; Baier, C.J.; Barrantes, F.J. Molecular Mechanisms of Protein-Cholesterol Interactions in Plasma Membranes: Functional Distinction Between Topological (Tilted) and Consensus (CARC/CRAC) Domains. Chem. Phys. Lipids 2016, 199, 52–60. [Google Scholar] [CrossRef]
- Ruysschaert, J.-M.; Lonez, C. Role of Lipid Microdomains in TLR-Mediated Signalling. Biochim. Biophys. Acta 2015, 1848, 1860–1867. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Ou, Z.; Ruan, X.; Gong, J. Role of Liver X Receptors in Cholesterol Efflux and Inflammatory Signaling (Review). Mol. Med. Rep. 2012, 5, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Higham, A.; Lea, S.; Plumb, J.; Maschera, B.; Simpson, K.; Ray, D.; Singh, D. The Role of the Liver X Receptor in Chronic Obstructive Pulmonary Disease. Respir. Res. 2013, 14, 106. [Google Scholar] [CrossRef]
- Kikuchi, T.; Sugiura, H.; Koarai, A.; Ichikawa, T.; Minakata, Y.; Matsunaga, K.; Nakanishi, M.; Hirano, T.; Akamatsu, K.; Yanagisawa, S.; et al. Increase of 27-Hydroxycholesterol in the Airways of Patients with COPD: Possible Role of 27-Hydroxycholesterol in Tissue Fibrosis. Chest 2012, 142, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, H.; Koarai, A.; Ichikawa, T.; Minakata, Y.; Matsunaga, K.; Hirano, T.; Akamatsu, K.; Yanagisawa, S.; Furusawa, M.; Uno, Y.; et al. Increased 25-Hydroxycholesterol Concentrations in the Lungs of Patients with Chronic Obstructive Pulmonary Disease. Respirology 2012, 17, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Qin, J.; Huang, F.; Feng, F.; Luo, L. The Combination of Machine Learning and Untargeted Metabolomics Identifies the Lipid Metabolism -Related Gene CH25H as a Potential Biomarker in Asthma. Inflamm. Res. 2023, 72, 1099–1119. [Google Scholar] [CrossRef]
- Sokolowska, M.; Rovati, G.E.; Diamant, Z.; Untersmayr, E.; Schwarze, J.; Lukasik, Z.; Sava, F.; Angelina, A.; Palomares, O.; Akdis, C.A.; et al. Current Perspective on Eicosanoids in Asthma and Allergic Diseases: EAACI Task Force Consensus Report, Part I. Allergy 2021, 76, 114–130. [Google Scholar] [CrossRef]
- Sanak, M. Eicosanoid Mediators in the Airway Inflammation of Asthmatic Patients: What Is New? Allergy Asthma Immunol. Res. 2016, 8, 481–490. [Google Scholar] [CrossRef]
- Lone, A.M.; Taskén, K. Proinflammatory and Immunoregulatory Roles of Eicosanoids in T Cells. Front. Immunol. 2013, 4, 130. [Google Scholar] [CrossRef]
- Uzan, G.C.; Borekci, S.; Doventas, Y.E.; Koldas, M.; Gemicioglu, B. The Relationship Between Inflammatory Markers and Spirometric Parameters in ACOS, Asthma, and COPD. J. Asthma 2020, 57, 1273–1279. [Google Scholar] [CrossRef] [PubMed]
- Maher, S.A.; Birrell, M.A.; Adcock, J.J.; Wortley, M.A.; Dubuis, E.D.; Bonvini, S.J.; Grace, M.S.; Belvisi, M.G. Prostaglandin D2 and the Role of the DP1, DP2 and TP Receptors in the Control of Airway Reflex Events. Eur. Respir. J. 2014, 45, 1108–1118. [Google Scholar] [CrossRef] [PubMed]
- Alving, K.; Matran, R.; Lundberg, J.M. The Possible Role of Prostaglandin D2 in the Long-Lasting Airways Vasodilatation Induced by Allergen in the Sensitized Pig. Acta Physiol. Scand. 1991, 143, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Marom, Z.; Shelhamer, J.H.; Kaliner, M. Effects of Arachidonic Acid, Monohydroxyeicosatetraenoic Acid and Prostaglandins on the Release of Mucous Glycoproteins from Human Airways In Vitro. J. Clin. Invest. 1981, 67, 1695–1702. [Google Scholar] [CrossRef]
- Flower, R.J.; Harvey, E.A.; Kingston, W.P. Inflammatory Effects of Prostaglandin D2 in Rat and Human Skin. Br. J. Pharmacol. 1976, 56, 229–233. [Google Scholar] [CrossRef]
- Sampson, S.E.; Sampson, A.P.; Costello, J.F. Effect of Inhaled Prostaglandin D2 in Normal and Atopic Subjects, and of Pretreatment with Leukotriene D4. Thorax 1997, 52, 513–518. [Google Scholar] [CrossRef]
- Xue, L.; Fergusson, J.; Salimi, M.; Panse, I.; Ussher, J.E.; Hegazy, A.N.; Vinall, S.L.; Jackson, D.G.; Hunter, M.G.; Pettipher, R.; et al. Prostaglandin D2 and Leukotriene E4 Synergize to Stimulate Diverse TH2 Functions and TH2 Cell/Neutrophil Crosstalk. J. Allergy Clin. Immunol. 2015, 135, 1358–1366.e1–11. [Google Scholar] [CrossRef]
- Zeng, C.; Liu, J.; Zheng, X.; Hu, X.; He, Y. Prostaglandin and Prostaglandin Receptors: Present and Future Promising Therapeutic Targets for Pulmonary Arterial Hypertension. Respir. Res. 2023, 24, 263. [Google Scholar] [CrossRef]
- Hanusrichterova, J.; Kolomaznik, M.; Barosova, R.; Adamcakova, J.; Mokra, D.; Mokry, J.; Skovierova, H.; Kelly, M.M.; de Heuvel, E.; Wiehler, S.; et al. Pulmonary Surfactant and Prostaglandin E2 in Airway Smooth Muscle Relaxation of Human and Male Guinea Pigs. Physiol. Rep. 2024, 12, e70026. [Google Scholar] [CrossRef]
- Serhan, C.N. Resolution Phase of Inflammation: Novel Endogenous Anti-Inflammatory and Proresolving Lipid Mediators and Pathways. Annu. Rev. Immunol. 2007, 25, 101–137. [Google Scholar] [CrossRef]
- Serhan, C.N.; Chiang, N.; Dalli, J. The Resolution Code of Acute Inflammation: Novel Pro-Resolving Lipid Mediators in Resolution. Semin. Immunol. 2015, 27, 200–215. [Google Scholar] [CrossRef]
- Serhan, C.N.; Dalli, J.; Colas, R.A.; Winkler, J.W.; Chiang, N. Protectins and Maresins: New pro-Resolving Families of Mediators in Acute Inflammation and Resolution Bioactive Metabolome. Biochim. Biophys. Acta 2015, 1851, 397–413. [Google Scholar] [CrossRef]
- Julliard, W.A.; Myo, Y.P.A.; Perelas, A.; Jackson, P.D.; Thatcher, T.H.; Sime, P.J. Specialized Pro-Resolving Mediators as Modulators of Immune Responses. Semin. Immunol. 2022, 59, 101605. [Google Scholar] [CrossRef] [PubMed]
- Basil, M.C.; Levy, B.D. Specialized Pro-Resolving Mediators: Endogenous Regulators of Infection and Inflammation. Nat. Rev. Immunol. 2016, 16, 51–67. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Wan, M.; Huang, W.; Stanton, R.C.; Xu, Y. Maresins: Specialized Proresolving Lipid Mediators and Their Potential Role in Inflammatory-Related Diseases. Mediat. Inflamm. 2018, 2018, 2380319. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.; Falcato, F.; Bandarra, N.; Rauter, A.P. Resolvins, Protectins, and Maresins: DHA-Derived Specialized Pro-Resolving Mediators, Biosynthetic Pathways, Synthetic Approaches, and Their Role in Inflammation. Molecules 2022, 27, 1677. [Google Scholar] [CrossRef]
- Christman, B.W.; Christman, J.W.; Dworski, R.; Blair, I.A.; Prakash, C. Prostaglandin E2 Limits Arachidonic Acid Availability and Inhibits Leukotriene B4 Synthesis in Rat Alveolar Macrophages by a Nonphospholipase A2 Mechanism. J. Immunol. 1993, 151, 2096–2104. [Google Scholar] [CrossRef]
- Serhan, C.N.; Levy, B.D. Resolvins in Inflammation: Emergence of the Pro-Resolving Superfamily of Mediators. J. Clin. Invest. 2018, 128, 2657–2669. [Google Scholar] [CrossRef]
- Samuelsson, B.; Dahlén, S.-E.; Lindgren, J.A.; Rouzer, C.A.; Serhan, C.N. Leukotrienes and Lipoxins: Structures, Biosynthesis, and Biological Effects. Science 1987, 237, 1171–1176. [Google Scholar] [CrossRef]
- Malawista, S.E.; de Boisfleury Chevance, A.; van Damme, J.; Serhan, C.N. Tonic Inhibition of Chemotaxis in Human Plasma. Proc. Natl. Acad. Sci. USA 2008, 105, 17949–17954. [Google Scholar] [CrossRef]
- Levy, B.D.; Clish, C.B.; Schmidt, B.; Gronert, K.; Serhan, C.N. Lipid Mediator Class Switching During Acute Inflammation: Signals in Resolution. Nat. Immunol. 2001, 2, 612–619. [Google Scholar] [CrossRef]
- Chi, J.; Cheng, J.; Wang, S.; Li, C.; Chen, M. Promising Anti-Inflammatory Tools: Biomedical Efficacy of Lipoxins and Their Synthetic Pathways. Int. J. Mol. Sci. 2023, 24, 13282. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N. Lipoxins and Aspirin-Triggered 15-Epi-Lipoxins Are the First Lipid Mediators of Endogenous Anti-Inflammation and Resolution. Prostaglandins Leukot. Essent. Fat. Acids 2005, 73, 141–162. [Google Scholar] [CrossRef]
- Libreros, S.; Shay, A.E.; Nshimiyimana, R.; Fichtner, D.; Martin, M.J.; Wourms, N.; Serhan, C.N. A New E-Series Resolvin: RvE4 Stereochemistry and Function in Efferocytosis of Inflammation-Resolution. Front. Immunol. 2021, 11, 631319. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Wu, Y.; Yu, G.; Wang, H. Role of Specialized Pro-Resolving Lipid Mediators in Pulmonary Inflammation Diseases: Mechanisms and Development. Respir. Res. 2021, 22, 204. [Google Scholar] [CrossRef]
- Pope, N.H.; Salmon, M.; Davis, J.P.; Chatterjee, A.; Su, G.; Conte, M.S.; Ailawadi, G.; Upchurch, G.R. D-Series Resolvins Inhibit Murine Abdominal Aortic Aneurysm Formation and Increase M2 Macrophage Polarization. FASEB J. 2016, 30, 4192–4201. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, H.-M.; Sapinoro, R.E.; Thatcher, T.H.; Croasdell, A.; Levy, E.P.; Fulton, R.A.; Olsen, K.C.; Pollock, S.J.; Serhan, C.N.; Phipps, R.P.; et al. A Novel Anti-Inflammatory and Pro-Resolving Role for Resolvin D1 in Acute Cigarette Smoke-Induced Lung Inflammation. PLoS ONE 2013, 8, e58258. [Google Scholar] [CrossRef]
- Sun, Y.-P.; Oh, S.F.; Uddin, J.; Yang, R.; Gotlinger, K.; Campbell, E.; Colgan, S.P.; Petasis, N.A.; Serhan, C.N. Resolvin D1 and Its Aspirin-Triggered 17R Epimer. Stereochemical Assignments, Anti-Inflammatory Properties, and Enzymatic Inactivation. J. Biol. Chem. 2007, 282, 9323–9334. [Google Scholar] [CrossRef]
- Kasuga, K.; Yang, R.; Porter, T.F.; Agrawal, N.; Petasis, N.A.; Irimia, D.; Toner, M.; Serhan, C.N. Rapid Appearance of Resolvin Precursors in Inflammatory Exudates: Novel Mechanisms in Resolution. J. Immunol. 2008, 181, 8677–8687. [Google Scholar] [CrossRef]
- Pirault, J.; Bäck, M. Lipoxin and Resolvin Receptors Transducing the Resolution of Inflammation in Cardiovascular Disease. Front. Pharmacol. 2018, 9, 1273. [Google Scholar] [CrossRef]
- Serhan, C.N.; Clish, C.B.; Brannon, J.; Colgan, S.P.; Chiang, N.; Gronert, K. Novel Functional Sets of Lipid-Derived Mediators with Antiinflammatory Actions Generated from Omega-3 Fatty Acids via Cyclooxygenase 2-Nonsteroidal Antiinflammatory Drugs and Transcellular Processing. J. Exp. Med. 2000, 192, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Campbell, E.L.; Louis, N.A.; Tomassetti, S.E.; Canny, G.O.; Arita, M.; Serhan, C.N.; Colgan, S.P. Resolvin E1 Promotes Mucosal Surface Clearance of Neutrophils: A New Paradigm for Inflammatory Resolution. FASEB J. 2007, 21, 3162–3170. [Google Scholar] [CrossRef]
- Tjonahen, E.; Oh, S.F.; Siegelman, J.; Elangovan, S.; Percarpio, K.B.; Hong, S.; Arita, M.; Serhan, C.N. Resolvin E2: Identification and Anti-Inflammatory Actions: Pivotal Role of Human 5-Lipoxygenase in Resolvin E Series Biosynthesis. Chem. Biol. 2006, 13, 1193–1202. [Google Scholar] [CrossRef] [PubMed]
- Schwab, J.M.; Chiang, N.; Arita, M.; Serhan, C.N. Resolvin E1 and Protectin D1 Activate Inflammation-Resolution Programs. Nature 2007, 447, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.F.; Pillai, P.S.; Recchiuti, A.; Yang, R.; Serhan, C.N. Pro-Resolving Actions and Stereoselective Biosynthesis of 18S E-Series Resolvins in Human Leukocytes and Murine Inflammation. J. Clin. Invest. 2011, 121, 569–581. [Google Scholar] [CrossRef]
- Arita, M.; Yoshida, M.; Hong, S.; Tjonahen, E.; Glickman, J.N.; Petasis, N.A.; Blumberg, R.S.; Serhan, C.N. Resolvin E1, an Endogenous Lipid Mediator Derived from Omega-3 Eicosapentaenoic Acid, Protects against 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis. Proc. Natl. Acad. Sci. USA 2005, 102, 7671–7676. [Google Scholar] [CrossRef]
- Seki, H.; Fukunaga, K.; Arita, M.; Arai, H.; Nakanishi, H.; Taguchi, R.; Miyasho, T.; Takamiya, R.; Asano, K.; Ishizaka, A.; et al. The Anti-Inflammatory and Proresolving Mediator Resolvin E1 Protects Mice from Bacterial Pneumonia and Acute Lung Injury. J. Immunol. 2010, 184, 836–843. [Google Scholar] [CrossRef]
- El Kebir, D.; Gjorstrup, P.; Filep, J.G. Resolvin E1 Promotes Phagocytosis-Induced Neutrophil Apoptosis and Accelerates Resolution of Pulmonary Inflammation. Proc. Natl. Acad. Sci. USA 2012, 109, 14983–14988. [Google Scholar] [CrossRef]
- Arita, M.; Ohira, T.; Sun, Y.-P.; Elangovan, S.; Chiang, N.; Serhan, C.N. Resolvin E1 Selectively Interacts with Leukotriene B4 Receptor BLT1 and ChemR23 to Regulate Inflammation. J. Immunol. 2007, 178, 3912–3917. [Google Scholar] [CrossRef]
- Ohira, T.; Arita, M.; Omori, K.; Recchiuti, A.; Van Dyke, T.E.; Serhan, C.N. Resolvin E1 Receptor Activation Signals Phosphorylation and Phagocytosis. J. Biol. Chem. 2010, 285, 3451–3461. [Google Scholar] [CrossRef]
- Hansen, T.V.; Vik, A.; Serhan, C.N. The Protectin Family of Specialized Pro-Resolving Mediators: Potent Immunoresolvents Enabling Innovative Approaches to Target Obesity and Diabetes. Front. Pharmacol. 2018, 9, 1582. [Google Scholar] [CrossRef] [PubMed]
- Ariel, A.; Fredman, G.; Sun, Y.-P.; Kantarci, A.; Van Dyke, T.E.; Luster, A.D.; Serhan, C.N. Apoptotic Neutrophils and T Cells Sequester Chemokines During Immune Response Resolution through Modulation of CCR5 Expression. Nat. Immunol. 2006, 7, 1209–1216. [Google Scholar] [CrossRef]
- Bannenberg, G.L.; Chiang, N.; Ariel, A.; Arita, M.; Tjonahen, E.; Gotlinger, K.H.; Hong, S.; Serhan, C.N. Molecular Circuits of Resolution: Formation and Actions of Resolvins and Protectins. J. Immunol. 2005, 174, 4345–4355. [Google Scholar] [CrossRef]
- Ariel, A.; Li, P.-L.; Wang, W.; Tang, W.-X.; Fredman, G.; Hong, S.; Gotlinger, K.H.; Serhan, C.N. The Docosatriene Protectin D1 Is Produced by TH2 Skewing and Promotes Human T Cell Apoptosis via Lipid Raft Clustering. J. Biol. Chem. 2005, 280, 43079–43086. [Google Scholar] [CrossRef] [PubMed]
- Schett, G.; Neurath, M.F. Resolution of Chronic Inflammatory Disease: Universal and Tissue-Specific Concepts. Nat. Commun. 2018, 9, 3261. [Google Scholar] [CrossRef]
- Dalli, J.; Winkler, J.W.; Colas, R.A.; Arnardottir, H.; Cheng, C.-Y.C.; Chiang, N.; Petasis, N.A.; Serhan, C.N. Resolvin D3 and Aspirin-Triggered Resolvin D3 Are Potent Immunoresolvents. Chem. Biol. 2013, 20, 188–201. [Google Scholar] [CrossRef]
- Serhan, C.N.; Yang, R.; Martinod, K.; Kasuga, K.; Pillai, P.S.; Porter, T.F.; Oh, S.F.; Spite, M. Maresins: Novel Macrophage Mediators with Potent Antiinflammatory and Proresolving Actions. J. Exp. Med. 2009, 206, 15–23. [Google Scholar] [CrossRef]
- Chiang, N.; Riley, I.R.; Dalli, J.; Rodriguez, A.R.; Spur, B.W.; Serhan, C.N. New Maresin Conjugates in Tissue Regeneration Pathway Counters Leukotriene D4-Stimulated Vascular Responses. FASEB J. 2018, 32, 4043–4052. [Google Scholar] [CrossRef] [PubMed]
- Marcon, R.; Bento, A.F.; Dutra, R.C.; Bicca, M.A.; Leite, D.F.P.; Calixto, J.B. Maresin 1, a Proresolving Lipid Mediator Derived from Omega-3 Polyunsaturated Fatty Acids, Exerts Protective Actions in Murine Models of Colitis. J. Immunol. 2013, 191, 4288–4298. [Google Scholar] [CrossRef]
- Viola, J.R.; Lemnitzer, P.; Jansen, Y.; Csaba, G.; Winter, C.; Neideck, C.; Silvestre-Roig, C.; Dittmar, G.; Döring, Y.; Drechsler, M.; et al. Resolving Lipid Mediators Maresin 1 and Resolvin D2 Prevent Atheroprogression in Mice. Circ. Res. 2016, 119, 1030–1038. [Google Scholar] [CrossRef]
- Hwang, S.-M.; Chung, G.; Kim, Y.H.; Park, C.-K. The Role of Maresins in Inflammatory Pain: Function of Macrophages in Wound Regeneration. Int. J. Mol. Sci. 2019, 20, 5849. [Google Scholar] [CrossRef]
- Rodriguez, A.R.; Spur, B.W. First Total Synthesis of the Macrophage Derived Anti-Inflammatory and pro-Resolving Lipid Mediator Maresin 2. Tetrahedron Lett. 2015, 56, 256–259. [Google Scholar] [CrossRef]
- Li, Y.; Dalli, J.; Chiang, N.; Baron, R.M.; Quintana, C.; Serhan, C.N. Plasticity of Leukocytic Exudates in Resolving Acute Inflammation Is Regulated by MicroRNA and Proresolving Mediators. Immunity 2013, 39, 885–898. [Google Scholar] [CrossRef] [PubMed]
- Dalli, J.; Zhu, M.; Vlasenko, N.A.; Deng, B.; Haeggström, J.Z.; Petasis, N.A.; Serhan, C.N. The Novel 13S,14S-Epoxy-Maresin Is Converted by Human Macrophages to Maresin 1 (MaR1), Inhibits Leukotriene A4 Hydrolase (LTA4H), and Shifts Macrophage Phenotype. FASEB J. 2013, 27, 2573–2583. [Google Scholar] [CrossRef]
- Ou, G.; Liu, Q.; Yu, C.; Chen, X.; Zhang, W.; Chen, Y.; Wang, T.; Luo, Y.; Jiang, G.; Zhu, M.; et al. The Protective Effects of Maresin 1 in the OVA-Induced Asthma Mouse Model. Mediat. Inflamm. 2021, 2021, 4131420. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Shi, Z.; Ou, G.; Chen, X.; Liu, Q.; Zeng, D.; Nie, X.; Chen, J. Maresin-2 Alleviates Allergic Airway Inflammation in Mice by Inhibiting the Activation of NLRP3 Inflammasome, Th2 Type Immune Response and Oxidative Stress. Mol. Immunol. 2022, 146, 78–86. [Google Scholar] [CrossRef]
- Spelta, F.; Fratta Pasini, A.M.; Cazzoletti, L.; Ferrari, M. Body Weight and Mortality in COPD: Focus on the Obesity Paradox. Eat. Weight. Disord. 2018, 23, 15–22. [Google Scholar] [CrossRef]
- Yamauchi, Y.; Hasegawa, W.; Yasunaga, H.; Sunohara, M.; Jo, T.; Takami, K.; Matsui, H.; Fushimi, K.; Nagase, T. Paradoxical Association between Body Mass Index and In-Hospital Mortality in Elderly Patients with Chronic Obstructive Pulmonary Disease in Japan. Int. J. Chron. Obstr. Pulm. Dis. 2014, 9, 1337–1346. [Google Scholar] [CrossRef]
- Kotlyarov, S. High-Density Lipoproteins: A Role in Inflammation in COPD. Int. J. Mol. Sci. 2022, 23, 8128. [Google Scholar] [CrossRef]
- Xuan, L.; Han, F.; Gong, L.; Lv, Y.; Wan, Z.; Liu, H.; Zhang, D.; Jia, Y.; Yang, S.; Ren, L.; et al. Association Between Chronic Obstructive Pulmonary Disease and Serum Lipid Levels: A Meta-Analysis. Lipids Health Dis. 2018, 17, 263. [Google Scholar] [CrossRef]
- Huang, P.; Zhao, Y.; Wei, H.; Wu, W.; Guo, Z.; Ma, S.; Xu, M.; Wang, Q.; Jia, C.; Xiang, T.; et al. Causal Relationships Between Blood Lipid Levels and Chronic Obstructive Pulmonary Disease: A Mendelian Randomization Analysis. Int. J. COPD 2025, 20, 83–93. [Google Scholar] [CrossRef]
- Shen, Y.; Yang, T.; Guo, S.; Li, X.; Chen, L.; Wang, T.; Wen, F. Increased Serum Ox-LDL Levels Correlated with Lung Function, Inflammation, and Oxidative Stress in COPD. Mediat. Inflamm. 2013, 2013, e972347. [Google Scholar] [CrossRef]
- Li, C.; Yan, L.; Xu, J. Correlations between Lipid Ratio/Oxidative Stress Status in COPD Patients and Pulmonary Hypertension as Well as Prognosis. J. Cent. South Univ. Med. Sci. 2016, 41, 1168–1174. [Google Scholar] [CrossRef]
- Yu, H.; Yang, Y.; Zhou, J.; Wu, M.; Chen, Z. Lipoprotein-Associated Phospholipase A2 and Its Possible Association with COPD Development: A Case-Control Study. BMC Pulm. Med. 2024, 24, 565. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Yin, Y.; Zhang, Q.; Zhou, X.; Hou, G. Identification of Inflammation-Related Biomarker Lp-PLA2 for Patients with COPD by Comprehensive Analysis. Front. Immunol. 2021, 12, 670971. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Deng, M.; Gao, Q.; Zhang, Q.; Bian, Y.; Wang, Z.; Li, J.; Xu, W.; Li, C.; Wang, K.; et al. Predictive and Therapeustic Value of Lipoprotein-Associated phospholipaseA2 in Sarcopenia in Chronic Obstructive Pulmonary Disease. Int. J. Biol. Macromol. 2024, 275, 133741. [Google Scholar] [CrossRef]
- van der Does, A.M.; Heijink, M.; Persson, L.J.; Kloos, D.-P.; Aanerud, M.; Bakke, P.; Taube, C.; Eagan, T.; Hiemstra, P.S.; Giera, M. Disturbed Fatty Acid Metabolism in Airway Secretions of Patients with Chronic Obstructive Pulmonary Disease. Eur. Respir. Soc. 2017, 50, PA3913. [Google Scholar] [CrossRef]
- Wada, H.; Goto, H.; Saitoh, E.; Ieki, R.; Okamura, T.; Ota, T.; Hagiwara, S.-I.; Kodaka, T.; Yamamoto, Y. Reduction in Plasma Free Fatty Acid in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2005, 171, 1465. [Google Scholar] [CrossRef]
- Michalski, J.; Kanaji, N.; Liu, X.; Nogel, S.; Wang, X.; Basma, H.; Nakanishi, M.; Sato, T.; Gunji, Y.; Fahrid, M.; et al. Attenuation of Inhibitory Prostaglandin E2 Signaling in Human Lung Fibroblasts Is Mediated by Phosphodiesterase 4. Am. J. Respir. Cell Mol. Biol. 2012, 47, 729–737. [Google Scholar] [CrossRef]
- Verma, A.K.; Pandey, A.K.; Singh, A.; Kant, S.; Mahdi, A.A.; Prakash, V.; Ansari, K.M.; Dixit, R.K.; Chaudhary, S.C. Increased Serum Levels of Matrix-Metalloproteinase-9, Cyclo-Oxygenase-2 and Prostaglandin E-2 in Patients with Chronic Obstructive Pulmonary Disease (COPD). Indian J. Clin. Biochem. 2022, 37, 169–177. [Google Scholar] [CrossRef]
- Bonanno, A.; Albano, G.D.; Siena, L.; Montalbano, A.M.; Riccobono, L.; Anzalone, G.; Chiappara, G.; Gagliardo, R.; Profita, M.; Sala, A. Prostaglandin E2 Possesses Different Potencies in Inducing Vascular Endothelial Growth Factor and Interleukin-8 Production in COPD Human Lung Fibroblasts. Prostaglandins Leukot. Essent. Fat. Acids 2016, 106, 11–18. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, P.; Hanaoka, M.; Droma, Y.; Kubo, K. Enhanced Levels of Prostaglandin E2 and Matrix Metalloproteinase-2 Correlate with the Severity of Airflow Limitation in Stable COPD. Respirology 2008, 13, 1014–1021. [Google Scholar] [CrossRef] [PubMed]
- Tejwani, V.; Villabona-Rueda, A.F.; Khare, P.; Zhang, C.; Le, A.; Putcha, N.; D’Alessio, F.; Alexis, N.E.; Hansel, N.N.; Fawzy, A. Airway and Systemic Prostaglandin E2 Association with COPD Symptoms and Macrophage Phenotype. Chronic. Obstr. Pulm. Dis. 2023, 10, 159–169. [Google Scholar] [CrossRef]
- Antczak, A.; Ciebiada, M.; Pietras, T.; Piotrowski, W.J.; Kurmanowska, Z.; Górski, P. Exhaled Eicosanoids and Biomarkers of Oxidative Stress in Exacerbation of Chronic Obstructive Pulmonary Disease. Arch. Med Sci. 2012, 8, 277–285. [Google Scholar] [CrossRef]
- Ye, L.; Wang, B.; Xu, H.; Zhang, X. The Emerging Therapeutic Role of Prostaglandin E2 Signaling in Pulmonary Hypertension. Metabolites 2023, 13, 1152. [Google Scholar] [CrossRef] [PubMed]
- Long, W.A.; Rubin, L.J. Prostacyclin and PGE1 Treatment of Pulmonary Hypertension. Am. Rev. Respir. Dis. 1987, 136, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Naeije, R.; Mélot, C.; Mols, P.; Hallemans, R. Reduction in Pulmonary Hypertension by Prostaglandin E1 in Decompensated Chronic Obstructive Pulmonary Disease. Am. Rev. Respir. Dis. 1982, 125, 1–5. [Google Scholar]
- Sato, T.; Liu, X.; Nelson, A.; Nakanishi, M.; Kanaji, N.; Wang, X.; Kim, M.; Li, Y.; Sun, J.; Michalski, J.; et al. Reduced miR-146a Increases Prostaglandin E2in Chronic Obstructive Pulmonary Disease Fibroblasts. Am. J. Respir. Crit. Care Med. 2010, 182, 1020–1029. [Google Scholar] [CrossRef]
- Dagouassat, M.; Gagliolo, J.-M.; Chrusciel, S.; Bourin, M.-C.; Duprez, C.; Caramelle, P.; Boyer, L.; Hue, S.; Stern, J.-B.; Validire, P.; et al. The Cyclooxygenase-2-Prostaglandin E2 Pathway Maintains Senescence of Chronic Obstructive Pulmonary Disease Fibroblasts. Am. J. Respir. Crit. Care Med. 2013, 187, 703–714. [Google Scholar] [CrossRef]
- Balode, L.; Strazda, G.; Jurka, N.; Kopeika, U.; Kislina, A.; Bukovskis, M.; Beinare, M.; Gardjušina, V.; Taivāns, I. Lipoxygenase-Derived Arachidonic Acid Metabolites in Chronic Obstructive Pulmonary Disease. Medicina 2012, 48, 292–298. [Google Scholar] [CrossRef]
- Balode, L.; Isajevs, S.; Svirina, D.; Kopeika, U.; Strazda, G.; Taivans, I. Lipoxin A4 Receptor Expression in Smokers with and without COPD. Eur. Respir. Soc. 2011, 38, p3900. [Google Scholar]
- Fritscher, L.G.; Post, M.; Rodrigues, M.T.; Silverman, F.; Balter, M.; Chapman, K.R.; Zamel, N. Profile of Eicosanoids in Breath Condensate in Asthma and COPD. J. Breath Res. 2012, 6, 026001. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Liu, K.; Shi, M.; Zeng, X.; Liu, X. LXA4 Alleviates Inflammation and Ferroptosis in Cigarette Smoke Induced Chronic Obstructive Pulmonary Disease via the ALX/FPR2 Receptor. Int. Immunopharmacol. 2025, 151, 114322. [Google Scholar] [CrossRef]
- Fisk, M.; Gomez, E.A.; Sun, Y.; Mickute, M.; McEniery, C.; Cockcroft, J.R.; Bolton, C.; Fuld, J.; Cheriyan, J.; MacNee, W.; et al. Dysregulation of Lipid Mediators in Patients with Frequent Exacerbations of COPD. ERJ Open Res. 2025, 11, 00950–02023. [Google Scholar] [CrossRef] [PubMed]
- Scarpa, M.C.; Baraldo, S.; Marian, E.; Turato, G.; Calabrese, F.; Saetta, M.; Maestrelli, P. Ceramide Expression and Cell Homeostasis in Chronic Obstructive Pulmonary Disease. Respiration 2013, 85, 342–349. [Google Scholar] [CrossRef]
- Chakinala, R.C.; Khatri, A.; Gupta, K.; Koike, K.; Epelbaum, O. Sphingolipids in COPD. Eur. Respir. Rev. 2019, 28, 190047. [Google Scholar] [CrossRef]
- Stancevic, B.; Kolesnick, R. Ceramide-Rich Platforms in Transmembrane Signaling. FEBS Lett. 2010, 584, 1728–1740. [Google Scholar] [CrossRef] [PubMed]
- Pullmannová, P.; Pavlíková, L.; Kováčik, A.; Sochorová, M.; Školová, B.; Slepička, P.; Maixner, J.; Zbytovská, J.; Vávrová, K. Permeability and Microstructure of Model Stratum Corneum Lipid Membranes Containing Ceramides with Long (C16) and Very Long (C24) Acyl Chains. Biophys. Chem. 2017, 224, 20–31. [Google Scholar] [CrossRef]
- Goñi, F.M.; Contreras, F.-X.; Montes, L.-R.; Sot, J.; Alonso, A. Biophysics (and Sociology) of Ceramides. Biochem. Soc. Symp. 2005, 72, 177–188. [Google Scholar] [CrossRef]
- Megha; London, E. Ceramide Selectively Displaces Cholesterol from Ordered Lipid Domains (Rafts): Implications for Lipid Raft Structure and Function. J. Biol. Chem. 2004, 279, 9997–10004. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Becker, K.A.; Gulbins, E. Ceramide-Enriched Membrane Domains—Structure and Function. Biochim. Et Biophys. Acta BBA Biomembr. 2009, 1788, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, D. Ceramide-Mediated Apoptosis of Hepatocytes In Vivo: A Matter of the Nucleus? J. Hepatol. 1999, 31, 161–164. [Google Scholar] [CrossRef]
- Siskind, L.J. Mitochondrial Ceramide and the Induction of Apoptosis. J. Bioenerg. Biomembr. 2005, 37, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Koike, K.; Berdyshev, E.V.; Bowler, R.P.; Scruggs, A.K.; Cao, D.; Schweitzer, K.S.; Serban, K.A.; Petrache, I. Bioactive Sphingolipids in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Ann. Am. Thorac. Soc. 2018, 15, S249–S252. [Google Scholar] [CrossRef]
- Serban, K.A.; Rezania, S.; Petrusca, D.N.; Poirier, C.; Cao, D.; Justice, M.J.; Patel, M.; Tsvetkova, I.; Kamocki, K.; Mikosz, A.; et al. Structural and Functional Characterization of Endothelial Microparticles Released by Cigarette Smoke. Sci. Rep. 2016, 6, 31596. [Google Scholar] [CrossRef] [PubMed]
- Gharib, A.R.; Jensen, P.N.; Psaty, B.M.; Hoofnagle, A.N.; Siscovick, D.; Gharib, S.A.; Sitlani, C.M.; Sotoodehnia, N.; Lemaitre, R.N. Plasma Sphingolipids, Lung Function and COPD: The Cardiovascular Health Study. ERJ Open Res. 2023, 9, 00346–02022. [Google Scholar] [CrossRef]
- Petrache, I.; Petrusca, D.N. The Involvement of Sphingolipids in Chronic Obstructive Pulmonary Diseases. Handb. Exp. Pharmacol. 2013, 216, 247–264. [Google Scholar] [CrossRef]
- Petrache, I.; Natarajan, V.; Zhen, L.; Medler, T.R.; Richter, A.T.; Cho, C.; Hubbard, W.C.; Berdyshev, E.V.; Tuder, R.M. Ceramide Upregulation Causes Pulmonary Cell Apoptosis and Emphysema-Like Disease in Mice. Nat. Med. 2005, 11, 491–498. [Google Scholar] [CrossRef]
- Bowler, R.P.; Jacobson, S.; Cruickshank, C.; Hughes, G.J.; Siska, C.; Ory, D.S.; Petrache, I.; Schaffer, J.E.; Reisdorph, N.; Kechris, K. Plasma Sphingolipids Associated with Chronic Obstructive Pulmonary Disease Phenotypes. Am. J. Respir. Crit. Care Med. 2015, 191, 275–284. [Google Scholar] [CrossRef]
- Hyde, R.; Hajduch, E.; Powell, D.J.; Taylor, P.M.; Hundal, H.S. Ceramide Down-Regulates System a Amino Acid Transport and Protein Synthesis in Rat Skeletal Muscle Cells. FASEB J. 2005, 19, 461–463. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Zhang, X.; Yuan, Y.L.; Chen, Z.H.; Chen-Yu Hsu, A.; Oliver, B.G.; Xie, M.; Qin, L.; Li, W.M.; et al. Dyslipidemia Is Associated with Worse Asthma Clinical Outcomes: A Prospective Cohort Study. J. Allergy Clin. Immunol. Pr. 2023, 11, 863–872.e8. [Google Scholar] [CrossRef]
- Gong, Z.; Wu, D.; Ku, Y.; Zou, C.; Qiu, L.; Hao, X.; Liu, L. Lipid-Lowering Drug Targets Associated with Risk of Respiratory Disease: A Mendelian Randomization Study. BMC Pulm. Med. 2025, 25, 71. [Google Scholar] [CrossRef]
- Oguma, T.; Asano, K.; Ishizaka, A. Role of Prostaglandin D2 and Its Receptors in the Pathophysiology of Asthma. Allergol. Int. 2008, 57, 307–312. [Google Scholar] [CrossRef]
- Gazi, L.; Gyles, S.; Rose, J.; Lees, S.; Allan, C.; Xue, L.; Jassal, R.; Speight, G.; Gamble, V.; Pettipher, R. Δ12-Prostaglandin D2 Is a Potent and Selective CRTH2 Receptor Agonist and Causes Activation of Human Eosinophils and Th2 Lymphocytes. Prostaglandins Other Lipid Mediat. 2005, 75, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Hanzawa, S.; Sugiura, M.; Nakae, S.; Masuo, M.; Morita, H.; Matsumoto, K.; Takeda, K.; Okumura, K.; Nakamura, M.; Ohno, T.; et al. The Prostaglandin D2 Receptor CRTH2 Contributes to Airway Hyperresponsiveness During Airway Inflammation Induced by Sensitization without an Adjuvant in Mice. Int. Arch. Allergy Immunol. 2024, 185, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Pettipher, R.; Hansel, T.T. Antagonists of the Prostaglandin D2 Receptor CRTH2. Drug News Perspect. 2008, 21, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Castellani, M.L.; Felaco, M.; Pandolfi, F.; Salini, V.; De Amicis, D.; Orso, C.; Vecchiet, J.; Tetè, S.; Ciampoli, C.; Conti, F.; et al. Mast Cells and Arachidonic Acid Cascade in Inflammation. Eur. J. Inflamm. 2009, 7, 131–137. [Google Scholar] [CrossRef]
- Chung, K.F. Evaluation of Selective Prostaglandin E2 (PGE2) Receptor Agonists as Therapeutic Agents for the Treatment of Asthma. Sci. STKE Signal Transduct. Knowl. Environ. 2005, 2005, pe47. [Google Scholar] [CrossRef]
- Michael, J.V.; Gavrila, A.; Nayak, A.P.; Pera, T.; Liberato, J.R.; Polischak, S.R.; Shah, S.D.; Deshpande, D.A.; Penn, R.B. Cooperativity of E-Prostanoid Receptor Subtypes in Regulating Signaling and Growth Inhibition in Human Airway Smooth Muscle. FASEB J. 2019, 33, 4780–4789. [Google Scholar] [CrossRef]
- Tang, E.H.C.; Libby, P.; Vanhoutte, P.M.; Xu, A. Anti-Inflammation Therapy by Activation of Prostaglandin EP4 Receptor in Cardiovascular and Other Inflammatory Diseases. J. Cardiovasc. Pharmacol. 2012, 59, 116–123. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, W.; Zhao, C.; Wang, Y.; Wu, H.; Sun, X.; Guan, Y.; Zhang, Y. Prostaglandin E2 Inhibits Group 2 Innate Lymphoid Cell Activation and Allergic Airway Inflammation Through E-Prostanoid 4-Cyclic Adenosine Monophosphate Signaling. Front. Immunol. 2018, 9, 501. [Google Scholar] [CrossRef] [PubMed]
- Akaba, T.; Komiya, K.; Suzaki, I.; Kozaki, Y.; Tamaoki, J.; Rubin, B.K. Activating Prostaglandin E2 Receptor Subtype EP4 Increases Secreted Mucin from Airway Goblet Cells. Pulm. Pharmacol. Ther. 2018, 48, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Cao, Y.; Zhang, Y.; Edvinsson, L.; Xu, C.-B. Enhanced Airway Smooth Muscle Cell Thromboxane Receptor Signaling via Activation of JNK MAPK and Extracellular Calcium Influx. Eur. J. Pharmacol. 2011, 650, 629–638. [Google Scholar] [CrossRef]
- Allen, I.C.; Hartney, J.M.; Coffman, T.M.; Penn, R.B.; Wess, J.; Koller, B.H. Thromboxane A2 Induces Airway Constriction through an M 3 Muscarinic Acetylcholine Receptor-Dependent Mechanism. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006, 290, L526–L533. [Google Scholar] [CrossRef]
- Ding, Y.-P.; Yao, H.-X.; He, H.-W.; Shi, H.-F.; Lin, L. Effect of TXA2 Inhibitor on the Proliferation and Apoptosis of Hypoxic Pulmonary Artery Smooth Muscle Cells of Porcines. Natl. Med. J. China 2011, 91, 277–281. [Google Scholar] [CrossRef]
- Suzuki, Y.; Asano, K.; Shiraishi, Y.; Oguma, T.; Shiomi, T.; Fukunaga, K.; Nakajima, T.; Niimi, K.; Yamaguchi, K.; Ishizaka, A. Human Bronchial Smooth Muscle Cell Proliferation via Thromboxane A 2 Receptor. Prostaglandins Leukot. Essent. Fat. Acids 2004, 71, 375–382. [Google Scholar] [CrossRef]
- Ishitsuka, Y.; Moriuchi, H.; Isohama, Y.; Tokunaga, H.; Hatamoto, K.; Kurita, S.; Irikura, M.; Iyama, K.-I.; Irie, T. A Selective Thromboxane A2 (TXA2) Synthase Inhibitor, Ozagrel, Attenuates Lung Injury and Decreases Monocyte Chemoattractant Protein-1 and Interleukin-8 mRNA Expression in Oleic Acid-Induced Lung Injury in Guinea Pigs. J. Pharmacol. Sci. 2009, 111, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Boyce, J.A.; Barrett, N.A. Cysteinyl Leukotrienes in Allergic Inflammation. Annu. Rev. Pathol. Mech. Dis. 2025, 20, 115–141. [Google Scholar] [CrossRef]
- O’Byrne, P.M.; Gauvreau, G.M.; Murphy, D.M. Efficacy of Leukotriene Receptor Antagonists and Synthesis Inhibitors in Asthma. J. Allergy Clin. Immunol. 2009, 124, 397–403. [Google Scholar] [CrossRef]
- Harmanci, K. Montelukast: Its Role in the Treatment of Childhood Asthma. Ther. Clin. Risk Manag. 2007, 3, 885–892. [Google Scholar]
- Ogawa, Y.; Calhoun, W.J. The Role of Leukotrienes in Airway Inflammation. J. Allergy Clin. Immunol. 2006, 118, 789–798. [Google Scholar] [CrossRef]
- Montuschi, P.; Peters-Golden, M.L. Leukotriene Modifiers for Asthma Treatment. Clin. Exp. Allergy 2010, 40, 1732–1741. [Google Scholar] [CrossRef]
- Wallerstedt, S.M.; Brunlöf, G.; Sundström, A.; Eriksson, A.L. Montelukast and Psychiatric Disorders in Children. Pharmacoepidemiol. Drug Saf. 2009, 18, 858–864. [Google Scholar] [CrossRef]
- Park, J.S.; Cho, Y.J.; Yun, J.-Y.; Lee, H.J.; Yu, J.; Yang, H.-J.; Suh, D.I. Leukotriene Receptor Antagonists and Risk of Neuropsychiatric Events in Children, Adolescents and Young Adults: A Self-Controlled Case Series. Eur. Respir. J. 2022, 60, 2102467. [Google Scholar] [CrossRef]
- Koga, T.; Yokomizo, T. Leukotriene B 4receptors. In Bioactive Lipid Mediators: Current Reviews and Protocols; Springer: Berlin/Heidelberg, Germany, 2015; pp. 85–93. [Google Scholar]
- Kwak, D.-W.; Park, D.; Kim, J.-H. Leukotriene B4 Receptors Are Necessary for the Stimulation of NLRP3 Inflammasome and IL-1β Synthesis in Neutrophil-Dominant Asthmatic Airway Inflammation. Biomedicines 2021, 9, 535. [Google Scholar] [CrossRef] [PubMed]
- Kwak, D.-W.; Park, D.; Kim, J.-H. Leukotriene B4 Receptors Play Critical Roles in House Dust Mites-Induced Neutrophilic Airway Inflammation and IL-17 Production. Biochem. Biophys. Res. Commun. 2021, 534, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Pal, K.; Feng, X.; Steinke, J.W.; Burdick, M.D.; Shim, Y.M.; Sung, S.-S.; Gerald Teague, W.; Borish, L. Leukotriene A4 Hydrolase Activation and Leukotriene B4 Production by Eosinophils in Severe Asthma. Am. J. Respir. Cell Mol. Biol. 2019, 60, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Hicks, A.; Goodnow, R., Jr.; Cavallo, G.; Tannu, S.A.; Ventre, J.D.; Lavelle, D.; Lora, J.M.; Satjawatcharaphong, J.; Brovarney, M.; Dabbagh, K.; et al. Effects of LTB4 Receptor Antagonism on Pulmonary Inflammation in Rodents and Non-Human Primates. Prostaglandins Other Lipid Mediat. 2010, 92, 33–43. [Google Scholar] [CrossRef]
- Di Gennaro, A.; Haeggström, J.Z. Targeting Leukotriene B4 in Inflammation. Expert Opin. Ther. Targets 2014, 18, 79–93. [Google Scholar] [CrossRef]
- Zhao, J.; Maskrey, B.; Balzar, S.; Chibana, K.; Mustovich, A.; Hu, H.; Trudeau, J.B.; O’Donnell, V.; Wenzel, S.E. Interleukin-13-Induced MUC5AC Is Regulated by 15-Lipoxygenase 1 Pathway in Human Bronchial Epithelial Cells. Am. J. Respir. Crit. Care Med. 2009, 179, 782–790. [Google Scholar] [CrossRef]
- Kowalski, M.L.; Ptasinska, A.; Jedrzejczak, M.; Bienkiewicz, B.; Cieslak, M.; Grzegorczyk, J.; Pawliczak, R.; DuBuske, L. Aspirin-Triggered 15-HETE Generation in Peripheral Blood Leukocytes Is a Specific and Sensitive Aspirin-Sensitive Patients Identification Test (ASPITest). Allergy Eur. J. Allergy Clin. Immunol. 2005, 60, 1139–1145. [Google Scholar] [CrossRef]
- Jedrzejczak-Czechowicz, M.; Lewandowska-Polak, A.; Bienkiewicz, B.; Kowalski, M.L. Involvement of 15-Lipoxygenase and Prostaglandin EP Receptors in Aspirin- Triggered 15-Hydroxyeicosatetraenoic Acid Generation in Aspirin-Sensitive Asthmatics. Clin. Exp. Allergy 2008, 38, 1108–1116. [Google Scholar] [CrossRef] [PubMed]
- Kytikova, O.Y.; Kovalenko, I.S.; Novgorodtseva, T.P.; Denisenko, Y.K. The Role of Hydroxyeicosatetraenoic Acids in the Regulation of Inflammation in Bronchial Asthma. Dokl. Biochem. Biophys. 2024, 519, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Levy, B.D. Lipoxins and Lipoxin Analogs in Asthma. Prostaglandins Leukot. Essent. Fat. Acids 2005, 73, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Bhavsar, P.K.; Levy, B.D.; Hew, M.J.; Pfeffer, M.A.; Kazani, S.; Israel, E.; Chung, K.F. Corticosteroid Suppression of Lipoxin A4 and Leukotriene B4 from Alveolar Macrophages in Severe Asthma. Respir. Res. 2010, 11, 71. [Google Scholar] [CrossRef]
- Levy, B.D.; Bonnans, C.; Silverman, E.S.; Palmer, L.J.; Marigowda, G.; Israel, E. Severe Asthma Research Program, National Heart, Lung, and Blood Institute Diminished Lipoxin Biosynthesis in Severe Asthma. Am. J. Respir. Crit. Care Med. 2005, 172, 824–830. [Google Scholar] [CrossRef]
- Planagumà, A.; Kazani, S.; Marigowda, G.; Haworth, O.; Mariani, T.J.; Israel, E.; Bleecker, E.R.; Curran-Everett, D.; Erzurum, S.C.; Calhoun, W.J.; et al. Airway Lipoxin A4 Generation and Lipoxin A4 Receptor Expression Are Decreased in Severe Asthma. Am. J. Respir. Crit. Care Med. 2008, 178, 574–582. [Google Scholar] [CrossRef]
- Vachier, I.; Bonnans, C.; Chavis, C.; Farce, M.; Godard, P.; Bousquet, J.; Chanez, P. Severe Asthma Is Associated with a Loss of LX4, an Endogenous Anti-Inflammatory Compound. J. Allergy Clin. Immunol. 2005, 115, 55–60. [Google Scholar] [CrossRef]
- Christie, P.E.; Spur, B.W.; Lee, T.H. The Effects of Lipoxin A4 on Airway Responses in Asthmatic Subjects. Am. Rev. Respir. Dis. 1992, 145, 1281–1284. [Google Scholar] [CrossRef]
- Kong, X.; Wu, S.-H.; Zhang, L.; Chen, X.-Q. Roles of Lipoxin A4 Receptor Activation and Anti-Interleukin-1β Antibody on the Toll-like Receptor 2/Mycloid Differentiation Factor 88/Nuclear Factor-κB Pathway in Airway Inflammation Induced by Ovalbumin. Mol. Med. Rep. 2015, 12, 895–904. [Google Scholar] [CrossRef]
- Aoki, H.; Hisada, T.; Ishizuka, T.; Utsugi, M.; Ono, A.; Koga, Y.; Sunaga, N.; Nakakura, T.; Okajima, F.; Dobashi, K.; et al. Protective Effect of Resolvin E1 on the Development of Asthmatic Airway Inflammation. Biochem. Biophys. Res. Commun. 2010, 400, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Hisada, T.; Ishizuka, T.; Aoki, H.; Mori, M. Resolvin E1 as a Novel Agent for the Treatment of Asthma. Expert. Opin. Ther. Targets 2009, 13, 513–522. [Google Scholar] [CrossRef]
- Dong, J.J.; Zhang, M.K.; Liao, Z.L.; Wu, W.; Wang, T.; Chen, L.; Yang, T.; Guo, L.L.; Xu, D.; Wen, F.Q. Resolvin-D1 Inhibits Interleukin-8 and Hydrogen Peroxide Production Induced by Cigarette Smoke Extract in 16HBE Cells via Attenuating NF-κB Activation. Chin. Med. J. 2014, 127, 511–517. [Google Scholar] [CrossRef]
- Chung, K.F. Lipid Mediators: Platelet-Activating Factors. In Encyclopedia of Respiratory Medicine, Four-Volume Set; Academic Press: Cambridge, MA, USA, 2006; pp. 589–594. [Google Scholar]
- Kasperska-Zajac, A.; Brzoza, Z.; Rogala, B. Platelet Activating Factor as a Mediator and Therapeutic Approach in Bronchial Asthma. Inflammation 2008, 31, 112–120. [Google Scholar] [CrossRef]
- Kuboshima, S.; Takafuji, S.; Ishida, A.; Nakagawa, T. Effects of Platelet-Activating Factor (PAF) on the Activation of Human Lung Fibroblasts. J. Tokyo Med. Univ. 2004, 62, 389–395. [Google Scholar]
- Uhlig, S.; Göggel, R.; Engel, S. Mechanisms of Platelet-Activating Factor (PAF)-Mediated Responses in the Lung. Pharmacol. Rep. 2005, 57, 206–221. [Google Scholar]
- Barnes, P.J. Platelet Activating Factor in Respiratory Disease. In Lipid Mediators in Allergic Diseases of the Respiratory Tract; CRC Press: Boca Raton, FL, USA, 2024; pp. 147–158. [Google Scholar]
- Rivera, J.; Proia, R.L.; Olivera, A. The Alliance of Sphingosine-1-Phosphate and Its Receptors in Immunity. Nat. Rev. Immunol. 2008, 8, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Olivera, A.; Mizugishi, K.; Tikhonova, A.; Ciaccia, L.; Odom, S.; Proia, R.L.; Rivera, J. The Sphingosine Kinase-Sphingosine-1-Phosphate Axis Is a Determinant of Mast Cell Function and Anaphylaxis. Immunity 2007, 26, 287–297. [Google Scholar] [CrossRef]
- Price, M.M.; Oskeritzian, C.A.; Falanga, Y.T.; Harikumar, K.B.; Allegood, J.C.; Alvarez, S.E.; Conrad, D.; Ryan, J.J.; Milstien, S.; Spiegel, S. A Specific Sphingosine Kinase 1 Inhibitor Attenuates Airway Hyperresponsiveness and Inflammation in a Mast Cell-Dependent Murine Model of Allergic Asthma. J. Allergy Clin. Immunol. 2013, 131, 501–511.e1. [Google Scholar] [CrossRef]
- Sudhadevi, T.; Ackerman, S.J.; Jafri, A.; Basa, P.; Ha, A.W.; Natarajan, V.; Harijith, A. Sphingosine Kinase 1-Specific Inhibitor PF543 Reduces Goblet Cell Metaplasia of Bronchial Epithelium in an Acute Asthma Model. Am. J. Physiol. Lung Cell. Mol. Physiol. 2024, 326, L377–L392. [Google Scholar] [CrossRef]
- Chiba, Y.; Takeuchi, H.; Sakai, H.; Misawa, M. SKI-II, an Inhibitor of Sphingosine Kinase, Ameliorates Antigen- Induced Bronchial Smooth Muscle Hyperresponsiveness, but not Airway Inflammation, in Mice. J. Pharmacol. Sci. 2010, 114, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Roviezzo, F.; D’Agostino, B.; Brancaleone, V.; De Gruttola, L.; Bucci, M.; De Dominicis, G.; Orlotti, D.; D’Aiuto, E.; De Palma, R.; Rossi, F.; et al. Systemic Administration of Sphingosine-1-Phosphate Increases Bronchial Hyperresponsiveness in the Mouse. Am. J. Respir. Cell Mol. Biol. 2010, 42, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Xue, Y.; Fei, X.; Zhao, L.; Han, L.; Su, H.; Lin, Y.; Zhou, Y.; Zhang, Y.; Xie, G.; et al. PLK1 Mediates the Proliferation and Contraction of Airway Smooth Muscle Cells and Has a Role in T2-High Asthma with Neutrophilic Inflammation Model. J. Inflamm. Res. 2025, 18, 4381–4394. [Google Scholar] [CrossRef]
- Urata, Y.; Nishimura, Y.; Hirase, T.; Yokoyama, M. Sphingosine 1-Phosphate Induces Alpha-Smooth Muscle Actin Expression in Lung Fibroblasts via Rho-Kinase. Kobe J. Med. Sci. 2005, 51, 17–27. [Google Scholar]
- Maguire, T.J.A.; Yung, S.; Ortiz-Zapater, E.; Kayode, O.S.; Till, S.; Corrigan, C.; Siew, L.Q.C.; Knock, G.A.; Woszczek, G. Sphingosine-1-Phosphate Induces Airway Smooth Muscle Hyperresponsiveness and Proliferation. J. Allergy Clin. Immunol. 2023, 152, 1131–1140.e6. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, S.; Zeng, D.; Zhu, L. Research Progress of Sphingosine 1-Phosphate(S1P) in Respiratory Diseases. J. Chin. Physician 2021, 23, 1909–1913. [Google Scholar] [CrossRef]
- Karmouty-Quintana, H.; Siddiqui, S.; Hassan, M.; Tsuchiya, K.; Risse, P.-A.; Xicota-Vila, L.; Marti-Solano, M.; Martin, J.G. Treatment with a Sphingosine-1-Phosphate Analog Inhibits Airway Remodeling Following Repeated Allergen Exposure. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012, 302, L736–L745. [Google Scholar] [CrossRef]
- Roviezzo, F.; Sorrentino, R.; Iacono, V.M.; Brancaleone, V.; Terlizzi, M.; Riemma, M.A.; Bertolino, A.; Rossi, A.; Matteis, M.; Spaziano, G.; et al. Disodium Cromoglycate Inhibits Asthma-Like Features Induced by Sphingosine-1-Phosphate. Pharmacol. Res. 2016, 113, 626–635. [Google Scholar] [CrossRef]
- James, B.N.; Oyeniran, C.; Sturgill, J.L.; Newton, J.; Martin, R.K.; Bieberich, E.; Weigel, C.; Maczis, M.A.; Palladino, E.N.D.; Lownik, J.C.; et al. Ceramide in Apoptosis and Oxidative Stress in Allergic Inflammation and Asthma. J. Allergy Clin. Immunol. 2021, 147, 1936–1948.e9. [Google Scholar] [CrossRef]
- Oyeniran, C.; Sturgill, J.L.; Hait, N.C.; Huang, W.-C.; Avni, D.; Maceyka, M.; Newton, J.; Allegood, J.C.; Montpetit, A.; Conrad, D.H.; et al. Aberrant ORM (Yeast)-like Protein Isoform 3 (ORMDL3) Expression Dysregulates Ceramide Homeostasis in Cells and Ceramide Exacerbates Allergic Asthma in Mice. J. Allergy Clin. Immunol. 2015, 136, 1035–1046.e6. [Google Scholar] [CrossRef]
- Worgall, T.S. Sphingolipids and Asthma. Adv. Exp. Med. Biol. 2022, 1372, 145–155. [Google Scholar] [CrossRef]
- Worgall, T.S.; Veerappan, A.; Sung, B.; Kim, B.I.; Weiner, E.; Bholah, R.; Silver, R.B.; Jiang, X.-C.; Worgall, S. Impaired Sphingolipid Synthesis in the Respiratory Tract Induces Airway Hyperreactivity. Sci. Transl. Med. 2013, 5, 186ra67. [Google Scholar] [CrossRef] [PubMed]
- Heras, A.F.; Veerappan, A.; Silver, R.B.; Emala, C.W.; Worgall, T.S.; Perez-Zoghbi, J.; Worgall, S. Increasing Sphingolipid Synthesis Alleviates Airway Hyperreactivity. Am. J. Respir. Cell Mol. Biol. 2020, 63, 690–698. [Google Scholar] [CrossRef]
- Ono, J.G.; Worgall, T.S.; Worgall, S. Airway Reactivity and Sphingolipids—Implications for Childhood Asthma. Mol. Cell. Pediatr. 2015, 2, 13. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Jung, H.-W.; Kim, M.; Moon, J.-Y.; Ban, G.-Y.; Kim, S.J.; Yoo, H.-J.; Park, H.-S. Ceramide/Sphingosine-1-Phosphate Imbalance Is Associated with Distinct Inflammatory Phenotypes of Uncontrolled Asthma. Allergy 2020, 75, 1991–2004. [Google Scholar] [CrossRef]
- Chen, R.; Dai, J. Lipid Metabolism in Idiopathic Pulmonary Fibrosis: From Pathogenesis to Therapy. J. Mol. Med. 2023, 101, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zhong, G.; Ji, T.; Xu, Q.; Liu, H.; Xu, Q.; Chen, L.; Dai, J. Serum Cholesterol Levels Predict the Survival in Patients with Idiopathic Pulmonary Fibrosis: A Long-Term Follow up Study. Respir. Med. 2025, 237, 107937. [Google Scholar] [CrossRef]
- Ouyang, X.; Qian, Y.; Tan, Y.; Shen, Q.; Zhang, Q.; Song, M.; Shi, J.; Peng, H. The Prognostic Role of High-Density Lipoprotein Cholesterol/C-Reactive Protein Ratio in Idiopathic Pulmonary Fibrosis. QJM Int. J. Med. 2024, 117, 858–865. [Google Scholar] [CrossRef]
- Tian, Y.; Duan, C.; Feng, J.; Liao, J.; Yang, Y.; Sun, W. Roles of Lipid Metabolism and Its Regulatory Mechanism in Idiopathic Pulmonary Fibrosis: A Review. Int. J. Biochem. Cell Biol. 2023, 155, 106361. [Google Scholar] [CrossRef]
- Zhao, Y.D.; Yin, L.; Archer, S.; Lu, C.; Zhao, G.; Yao, Y.; Wu, L.; Hsin, M.; Waddell, T.K.; Keshavjee, S.; et al. Metabolic Heterogeneity of Idiopathic Pulmonary Fibrosis: A Metabolomic Study. BMJ Open Respir. Res. 2017, 4, e000183. [Google Scholar] [CrossRef]
- Polverino, F.; Mora, A. Alveolar Epithelial Cell Dysfunction in Idiopathic Pulmonary Fibrosis Linked to Lipid Alterations: Therapeutic Implications. Am. J. Respir. Cell Mol. Biol. 2024, 70, 233–234. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Park, S.; Hong, J.; Baek, A.-R.; Lee, J.; Kim, D.-J.; Jang, A.-S.; Chin, S.S.; Jeong, S.H.; Park, S.-W. Overexpression of Fatty Acid Synthase Attenuates Bleomycin Induced Lung Fibrosis by Restoring Mitochondrial Dysfunction in Mice. Sci. Rep. 2023, 13, 9044. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Liu, Y.; Dai, H.; Wang, C. Fatty Acid Metabolism and Idiopathic Pulmonary Fibrosis. Front. Physiol. 2022, 12, 794629. [Google Scholar] [CrossRef]
- Mamazhakypov, A.; Schermuly, R.T.; Schaefer, L.; Wygrecka, M. Lipids—Two Sides of the Same Coin in Lung Fibrosis. Cell. Signal. 2019, 60, 65–80. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Shimizu, Y. Cellular and Molecular Control of Lipid Metabolism in Idiopathic Pulmonary Fibrosis: Clinical Application of the Lysophosphatidic Acid Pathway. Cells 2023, 12, 548. [Google Scholar] [CrossRef]
- Ding, F.; Wang, Z.; Wang, J.; Ma, Y.; Jin, J. Serum S1P Level in Interstitial Lung Disease (ILD) Is a Potential Biomarker Reflecting the Severity of Pulmonary Function. BMC Pulm. Med. 2024, 24, 266. [Google Scholar] [CrossRef]
- Yang, J.; Pan, X.; Xu, M.; Li, Y.; Liang, C.; Liu, L.; Li, Z.; Wang, L.; Yu, G. Downregulation of HMGCS2 Mediated AECIIs Lipid Metabolic Alteration Promotes Pulmonary Fibrosis by Activating Fibroblasts. Respir. Res. 2024, 25, 176. [Google Scholar] [CrossRef]
- Guo, L.-L.; Chen, Y.-J.; Wang, T.; An, J.; Wang, C.-N.; Shen, Y.-C.; Yang, T.; Zhao, L.; Zuo, Q.-N.; Zhang, X.-H.; et al. Ox-LDL-Induced TGF-Β1 Production in Human Alveolar Epithelial Cells: Involvement of the Ras/ERK/PLTP Pathway. J. Cell. Physiol. 2012, 227, 3185–3191. [Google Scholar] [CrossRef]
- Yue, X.; Shan, B.; Lasky, J.A. TGF-β: Titan of Lung Fibrogenesis. Curr. Enzym. Inhib. 2010, 6, 67–77. [Google Scholar] [CrossRef]
- Shi, L.; Dong, N.; Fang, X.; Wang, X. Regulatory Mechanisms of TGF-Β1-Induced Fibrogenesis of Human Alveolar Epithelial Cells. J. Cell. Mol. Med. 2016, 20, 2183–2193. [Google Scholar] [CrossRef]
- Hayashi, I.; Endo, H.; Katagiri, M.; Kitasato, H. Role of Prostaglandin (PG) and Peroxisome Proliferator-Activated Gamma (PPAR γ) in Pulmonary Fibrosis. Curr. Respir. Med. Rev. 2009, 5, 3–5. [Google Scholar] [CrossRef]
- Coward, W.R.; Watts, K.; Feghali-Bostwick, C.A.; Knox, A.; Pang, L. Defective Histone Acetylation Is Responsible for the Diminished Expression of Cyclooxygenase 2 in Idiopathic Pulmonary Fibrosis. Mol. Cell. Biol. 2009, 29, 4325–4339. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.K.; Fisher, A.S.; Scruggs, A.M.; White, E.S.; Hogaboam, C.M.; Richardson, B.C.; Peters-Golden, M. Hypermethylation of PTGER2 Confers Prostaglandin E2 Resistance in Fibrotic Fibroblasts from Humans and Mice. Am. J. Pathol. 2010, 177, 2245–2255. [Google Scholar] [CrossRef] [PubMed]
- Lappi-Blanco, E.; Kaarteenaho-Wiik, R.; Maasilta, P.K.; Anttila, S.; Pääkkö, P.; Wolff, H.J. COX-2 Is Widely Expressed in Metaplastic Epithelium in Pulmonary Fibrous Disorders. Am. J. Clin. Pathol. 2006, 126, 717–724. [Google Scholar] [CrossRef]
- Ivanova, V.; Garbuzenko, O.B.; Reuhl, K.R.; Reimer, D.C.; Pozharov, V.P.; Minko, T. Inhalation Treatment of Pulmonary Fibrosis by Liposomal Prostaglandin E2. Eur. J. Pharm. Biopharm. 2013, 84, 335–344. [Google Scholar] [CrossRef]
- Smith, J.N.P.; Witkin, M.D.; Jogasuria, A.P.; Christo, K.F.; Raffay, T.M.; Markowitz, S.D.; Desai, A.B. Therapeutic Targeting of 15-PGDH in Murine Pulmonary Fibrosis. Sci. Rep. 2020, 10, 11657. [Google Scholar] [CrossRef]
- Roach, K.M.; Feghali-Bostwick, C.A.; Amrani, Y.; Bradding, P. Lipoxin A4 Attenuates Constitutive and TGF-Β1-Dependent Profibrotic Activity in Human Lung Myofibroblasts. J. Immunol. 2015, 195, 2852–2860. [Google Scholar] [CrossRef]
- Naeije, R.; Barberà, J.A. Pulmonary Hypertension Associated with COPD. Crit. Care 2001, 5, 286–289. [Google Scholar] [CrossRef]
- Olschewski, H. Prostacyclins. Handb. Exp. Pharmacol. 2013, 218, 177–198. [Google Scholar] [CrossRef]
- Cho, S.; Namgoong, H.; Kim, H.J.; Vorn, R.; Yoo, H.Y.; Kim, S.J. Downregulation of Soluble Guanylate Cyclase and Protein Kinase G with Upregulated ROCK2 in the Pulmonary Artery Leads to Thromboxane A2 Sensitization in Monocrotaline-Induced Pulmonary Hypertensive Rats. Front. Physiol. 2021, 12, 624967. [Google Scholar] [CrossRef]
- Alqarni, A.A.; Brand, O.J.; Pasini, A.; Alahmari, M.; Alghamdi, A.; Pang, L. Imbalanced Prostanoid Release Mediates Cigarette Smoke-Induced Human Pulmonary Artery Cell Proliferation. Respir. Res. 2022, 23, 136. [Google Scholar] [CrossRef] [PubMed]
- Cracowski, J.-L.; Degano, B.; Chabot, F.; Labarère, J.; Schwedhelm, E.; Monneret, D.; Iuliano, L.; Schwebel, C.; Chaouat, A.; Reynaud-Gaubert, M.; et al. Independent Association of Urinary F2-Isoprostanes with Survival in Pulmonary Arterial Hypertension. Chest 2012, 142, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Ricciotti, E.; FitzGerald, G.A. Prostaglandins and Inflammation. Arter. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef]
- Cracowski, J.L.; Cracowski, C.; Bessard, G.; Pepin, J.L.; Bessard, J.; Schwebel, C.; Stanke-Labesque, F.; Pison, C. Increased Lipid Peroxidation in Patients with Pulmonary Hypertension. Am. J. Respir. Crit. Care Med. 2001, 164, 1038–1042. [Google Scholar] [CrossRef]
- Li, Q.; Mao, M.; Qiu, Y.; Liu, G.; Sheng, T.; Yu, X.; Wang, S.; Zhu, D. Key Role of ROS in the Process of 15-Lipoxygenase/15-Hydroxyeicosatetraenoiccid-Induced Pulmonary Vascular Remodeling in Hypoxia Pulmonary Hypertension. PLoS ONE 2016, 11, e0149164. [Google Scholar] [CrossRef]
- Yu, X.; Li, T.; Liu, X.; Yu, H.; Hao, Z.; Chen, Y.; Zhang, C.; Liu, Y.; Li, Q.; Mao, M.; et al. Modulation of Pulmonary Vascular Remodeling in Hypoxia: Role of 15-LOX-2/15-HETE-MAPKs Pathway. Cell. Physiol. Biochem. 2015, 35, 2079–2097. [Google Scholar] [CrossRef]
- Ye, H.; Bi, H.-R.; Lü, C.-L.; Tang, X.-B.; Zhu, D.-L. 15-Hydroxyeicosatetraenoic Acid Depressed Endothelial Nitric Oxide Synthase Activity in Pulmonary Artery. Sheng Li Xue Bao 2005, 57, 612–618. [Google Scholar] [PubMed]
- Zhu, D.; Ran, Y. Role of 15-Lipoxygenase/15-Hydroxyeicosatetraenoic Acid in Hypoxia-Induced Pulmonary Hypertension. J. Physiol. Sci. 2012, 62, 163–172. [Google Scholar] [CrossRef]
- Liu, G.; Wan, N.; Liu, Q.; Chen, Y.; Cui, H.; Wang, Y.; Ren, J.; Shen, X.; Lu, W.; Yu, Y.; et al. Resolvin E1 Attenuates Pulmonary Hypertension by Suppressing Wnt7a/β-Catenin Signaling. Hypertension 2021, 78, 1914–1926. [Google Scholar] [CrossRef]
- Liu, G.; Gong, Y.; Zhang, R.; Piao, L.; Li, X.; Liu, Q.; Yan, S.; Shen, Y.; Guo, S.; Zhu, M.; et al. Resolvin E1 Attenuates Injury-Induced Vascular Neointimal Formation by Inhibition of Inflammatory Responses and Vascular Smooth Muscle Cell Migration. FASEB J. 2018, 32, 5413–5425. [Google Scholar] [CrossRef]
- Jannaway, M.; Torrens, C.; Warner, J.A.; Sampson, A.P. Resolvin E1, Resolvin D1 and Resolvin D2 Inhibit Constriction of Rat Thoracic Aorta and Human Pulmonary Artery Induced by the Thromboxane Mimetic U46619. Br. J. Pharmacol. 2018, 175, 1100–1108. [Google Scholar] [CrossRef]
- Hiram, R.; Rizcallah, E.; Marouan, S.; Sirois, C.; Sirois, M.; Morin, C.; Fortin, S.; Rousseau, E. Resolvin E1 Normalizes Contractility, Ca2+ Sensitivity and Smooth Muscle Cell Migration Rate in TNF-α- and IL-6-Pretreated Human Pulmonary Arteries. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015, 309, L776–L788. [Google Scholar] [CrossRef] [PubMed]
- Young, R.P.; Hopkins, R.; Eaton, T.E. Pharmacological Actions of Statins: Potential Utility in COPD. Eur. Respir. Rev. 2009, 18, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Young, R.P.; Hopkins, R.; Eaton, T.E. Potential Benefits of Statins on Morbidity and Mortality in Chronic Obstructive Pulmonary Disease: A Review of the Evidence. Postgrad. Med. J. 2009, 85, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-C.; Chan, W.-L.; Chen, Y.-C.; Chen, T.-J.; Chou, K.-T.; Lin, S.-J.; Chen, J.-W.; Leu, H.-B. Statin Use and Hospitalization in Patients with Chronic Obstructive Pulmonary Disease: A Nationwide Population-Based Cohort Study in Taiwan. Clin. Ther. 2011, 33, 1365–1370. [Google Scholar] [CrossRef]
- Olgun Yıldızeli, Ş.; Balcan, B.; Eryüksel, E.; Bağcı Ceyhan, B.; Karakurt, S.; Çelikel, T. Influence of Statin Therapy on Exacerbation Frequency in Patients with Chronic Obstructive Pulmonary Disease. Turk. Thorac. J. 2017, 18, 29–32. [Google Scholar] [CrossRef]
- Hemmeti, A.A.; Zerafatfard, M.R.; Goudarzi, M.; Khodayar, M.J.; Rezaie, A.; Nooshabadi, M.R.R.; Kiani, M. Ameliorative Effects of Atorvastatin on Bleomycin-Induced Pulmonary Fibrosis in Rats. Jundishapur J. Nat. Pharm. Prod. 2016, 11, e13370. [Google Scholar] [CrossRef]
- Santos, D.M.; Pantano, L.; Pronzati, G.; Grasberger, P.; Probst, C.K.; Black, K.E.; Spinney, J.J.; Hariri, L.P.; Nichols, R.; Lin, Y.; et al. Screening for YAP Inhibitors Identifies Statins as Modulators of Fibrosis. Am. J. Respir. Cell Mol. Biol. 2020, 62, 479–492. [Google Scholar] [CrossRef]
- Kreuter, M.; Bonella, F.; Maher, T.M.; Costabel, U.; Spagnolo, P.; Weycker, D.; Kirchgaessler, K.-U.; Kolb, M. Effect of Statins on Disease-Related Outcomes in Patients with Idiopathic Pulmonary Fibrosis. Thorax 2017, 72, 148–153. [Google Scholar] [CrossRef]
- Zhang, W.-T.; Wang, X.-J.; Xue, C.-M.; Ji, X.-Y.; Pan, L.; Weng, W.-L.; Li, Q.-Y.; Hua, G.-D.; Zhu, B.-C. The Effect of Cardiovascular Medications on Disease-Related Outcomes in Idiopathic Pulmonary Fibrosis: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2021, 12, 771804. [Google Scholar] [CrossRef]
Therapeutic Goals | Mechanism | Interventions |
---|---|---|
Suppression of inflammatory processes | Excess pro-inflammatory lipids (leukotrienes, prostaglandins) increase lung tissue damage | Leukotriene receptor antagonists (montelukast) Inhibitors of eicosanoid synthesis (omega-3 PUFAs) |
Reduction of oxidative stress | Lipid peroxidation causes alveolar damage and fibrosis | Antioxidants Stimulation of endogenous antioxidant systems |
Correction of cholesterol metabolism disorders | Cholesterol accumulation in macrophages stimulates inflammation through several mechanisms | Statins |
Stimulation of anti-inflammatory mechanisms | Specialized pro-resolving mediators promote resolution of inflammation | Specialized pro-resolving mediators and their synthetic analogs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotlyarov, S. Linking Lipid Metabolism and Immune Function: New Insights into Chronic Respiratory Diseases. Pathophysiology 2025, 32, 26. https://doi.org/10.3390/pathophysiology32020026
Kotlyarov S. Linking Lipid Metabolism and Immune Function: New Insights into Chronic Respiratory Diseases. Pathophysiology. 2025; 32(2):26. https://doi.org/10.3390/pathophysiology32020026
Chicago/Turabian StyleKotlyarov, Stanislav. 2025. "Linking Lipid Metabolism and Immune Function: New Insights into Chronic Respiratory Diseases" Pathophysiology 32, no. 2: 26. https://doi.org/10.3390/pathophysiology32020026
APA StyleKotlyarov, S. (2025). Linking Lipid Metabolism and Immune Function: New Insights into Chronic Respiratory Diseases. Pathophysiology, 32(2), 26. https://doi.org/10.3390/pathophysiology32020026