Evaluation of Antibacterial and Antiviral Drug Effectiveness in COVID-19 Therapy: A Data-Driven Retrospective Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
- n = number of required samples
- Z = Z score (at 95% CI = 1.96)
- P = population proportion (unknown, therefore set at 0.5)
- d = alpha (0.10) (sampling error of 10%)
2.2. Data Collection
2.3. Drug Profile
2.4. Statistical Analysis
3. Results
3.1. Demographics
3.2. Drug Use Profile
3.3. Drug Effectiveness
3.4. Length of Stay
4. Discussion
4.1. Increased Use of Antibacterials and Antivirals during COVID-19 Pandemic
4.2. Antiviral Treatment Showed a Positive COVID-19 Outcome and Decreased Length of Stay
4.3. Comorbities Increase the Mortality Rate and Length of Stay of Patients with COVID-19
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Setiati, S.; Azwar, M.K. COVID-19 and Indonesia. Acta Med. Indones. 2020, 52, 84–89. [Google Scholar] [PubMed]
- Hasan, M.N.; Haider, N.; Stigler, F.L.; Khan, R.A.; McCoy, D.; Zumla, A.; Kock, R.A.; Uddin, M.J. The global Case-Fatality Rate of COVID-19 has been declining since May 2020. Am. J. Trop. Med. Hyg. 2021, 104, 2176–2184. [Google Scholar] [CrossRef] [PubMed]
- Surendra, H.; Elyazar, I.R.; Djaafara, B.A.; Ekawati, L.L.; Saraswati, K.; Adrian, V.; Widyastuti; Oktavia, D.; Salama, N.; Lina, R.N.; et al. Clinical characteristics and mortality associated with COVID-19 in Jakarta, Indonesia: A hospital-based retrospective cohort study. Lancet Reg. Health West Pac. 2021, 9, 100108. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Guerra, M.; Jadhav, P.; Vittorio, T.J. Current treatment in COVID-19 disease: A rapid review. Drugs Context. 2021, 10, 2020-10-3. [Google Scholar] [CrossRef] [PubMed]
- Baracco, G.J. Remdesivir use and hospital length of stay—The paradox of a clinical trial vs real-life use. JAMA 2021, 4, e2116057. [Google Scholar] [CrossRef]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of Covid-19—Final Report. N. Engl. J. Med. 2020, 5, 1813–1826. [Google Scholar] [CrossRef]
- Abubakar, A.R.; Sani, I.H.; Godman, B.; Kumar, S.; Islam, S.; Jahan, I.; Haque, M. Systematic review on the therapeutic options for COVID-19: Clinical evidence of drug efficacy and implications. Infect. Drug Resist. 2020, 13, 4673–4695. [Google Scholar] [CrossRef]
- Maciorowski, D.; Idrissi, S.Z.E.; Gupta, Y.; Medernach, B.J.; Burns, M.B.; Becker, D.P.; Durvasula, R.; Kempaiah, P. A review of the preclinical and clinical efficacy of remdesivir, hydroxychloroquine, and lopinavir-ritonavir treatments against COVID-19. SLAS DISCOVERY 2020, 25, 1108–1122. [Google Scholar] [CrossRef]
- Kim, M.S.; An, M.H.; Kim, W.J.; Hwang, T.-H. Comparative efficacy and safety of pharmacological interventions for the treatment of COVID-19: A systematic review and network metaanalysis. PLoS Med. 2020, 17, e1003501. [Google Scholar] [CrossRef]
- Rosenberg, E.S.; Dufort, E.M.; Udo, T.; Wilberschied, L.A.; Kumar, J.; Tesoriero, J.; Weinberg, P.; Kirkwood, J.; Muse, A.; DeHovitz, J.; et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York State. JAMA 2020, 323, 2493–2502. [Google Scholar] [CrossRef]
- Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA 2020, 323, 1824–1836. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Wang, L.; Kuo, H.-C.D.; Shannar, A.; Peter, R.; Chou, P.J.; Li, S.; Hudlikar, R.; Liu, X.; Liu, Z.; et al. An update on current therapeutic drugs treating COVID-19. Curr. Pharmacol. Rep. 2020, 6, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, J.; Zhou, Y.; Zhao, X.; Zhao, Q.; Liu, J. The effect of corticosteroid treatment on patients with coronavirus infection: A systematic review and meta-analysis. J. Infect. 2020, 81, e13–e20. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, W.; Chen, P.; Guo, J.; Liu, R.; Wen, P.; Li, K.; Lu, Y.; Ma, T.; Li, X.; et al. The proportion and effect of corticosteroid therapy in patients with COVID-19 infection: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0249481. [Google Scholar] [CrossRef]
- Ghosh, S.; Bornman, C.; Zafer, M.M. Antimicrobial resistance threats in the emerging COVID-19 pandemic: Where do we stand? J. Infect. Public Health 2021, 14, 555–560. [Google Scholar] [CrossRef]
- Rawson, T.M.; Moore, L.S.P.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A. Bacterial and fungal co-infection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing. Clin. Infect. Dis. 2020, 71, 2459–2468. [Google Scholar] [CrossRef]
- Bogdanić, N.; Močibob, L.; Vidović, T.; Soldo, A.; Begovać, J. Azithromycin consumption during the COVID-19 pandemic in Croatia, 2020. PLoS ONE 2020, 17, e0263437. [Google Scholar] [CrossRef]
- Clinical Management of COVID-19 Interim Guidance—May 2020; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.who.int/publications-detail/clinical-management-of-covid-19 (accessed on 4 June 2020).
- Getahun, H.; Smith, I.; Trivedi, K.; Paulin, S.; Balkhy, H.H. Tackling antimicrobial resistance in the COVID-19 pandemic. Bull. World Health Organ. 2020, 98, 442–442A. [Google Scholar] [CrossRef]
- Egyir, B.; Obeng-Nkrumah, N.; Kyei, G.B. COVID-19 pandemic and antimicrobial resistance: Another call to strengthen laboratory diagnostic capacity in Africa. Afr. J. Lab. Med. 2020, 9, 1302. [Google Scholar] [CrossRef]
- Paul, P.; Pennell, M.L.; Lemeshow, S. Standardizing the power of the Hosmer-Lemeshow goodness of fit test in large data sets. Stat. Med. 2013, 32, 67–80. [Google Scholar] [CrossRef]
- Pourhoseingholi, M.A.; Vahedi, M.; Rahimzadeh, M. Sample size calculation in medical studies. Gastroenterol. Hepatol. Bed. Bench. 2013, 6, 14–17. [Google Scholar] [PubMed]
- COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available online: https://www.covid19treatmentguidelines.nih.gov (accessed on 29 August 2021).
- Grau, S.; Echeverria-Esnal, D.; Gómez-Zorrilla, S.; NavarreteRouco, M.E.; Masclans, J.R.; Espona, M.; Gracia-Arnillas, M.P.; Duran, X.; Comas, M.; Horcajada, J.P.; et al. Evolution of antimicrobial consumption during the first wave of COVID-19 pandemic. Antibiotics 2021, 10, 132. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. ATC/DDD Index 2021. Available online: https://www.whocc.no/atc_ddd_index/ (accessed on 29 August 2021).
- WHO International Working Group for Drug Statistics Methodology; WHO Collaborating Centre for Drug Statistics Methodology; WHO Collaborating Centre for Drug Utilization Research and Clinical Pharmacological Services. World Health Organization: Geneva, Switzerland, 2003. Available online: http://www.who.int/iris/handle/10665/42627 (accessed on 29 August 2021).
- Burhan, E.; Susanto, A.D.; Nasution, S.A.; Ginanjar, E.; Pitoyo, C.W.; Susilo, A.; Firdaus, I.; Santoso, A.; Juzar, D.A.; Arif, S.K.; et al. Tim COVID-19 IDAI. Pedoman Tatalaksana COVID-19 Edisi 2 Agustus 2020. Perhimpunan Dokter Paru Indonesia (PDPI), Perhimpunan Dokter Spesialis Kardiovaskular Indonesia (PERKI), Perhimpunan Dokter Spesialis Penyakit Dalam Indonesia (PAPDI), Perhimpunan Dokter Anestesiologi dan Terapi Intensif Indonesia (PERDATIN), Ikatan Dokter Anak Indonesia (IDAI). Tahun 2020. Available online: https://www.papdi.or.id/pdfs/938/Pedoman%20Tatalaksana%20COVID-19%20edisi%202.pdf (accessed on 29 August 2021).
- World Health Organization. The 2019 WHO AWaRe Classification of Antibiotics for Evaluation and Monitoring of Use. World Health Organization, 2019. Available online: https://apps.who.int/iris/handle/10665/327957 (accessed on 29 August 2021).
- The AWaRe Classification of Antibiotics Database. World Health Organization: Geneva, Switzerland, 2019. Available online: https://adoptaware.org/ (accessed on 4 June 2020).
- Rodríguez-Baño, J.; Rossolini, G.M.; Schultsz, C.; Tacconelli, E.; Murthy, S.; Ohmagari, N.; Holmes, A.; Bachmann, T.; Goossens, H.; Canton, R.; et al. Key considerations on the potential impacts of the COVID-19 pandemic on antimicrobial resistance research and surveillance. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Sulis, G.; Batomen, B.; Kotwani, A.; Pai, M.; Gandra, S. Sales of antibiotics and hydroxychloroquine in India during the COVID-19 epidemic: An interrupted time series analysis. PLoS Med. 2021, 18, e1003682. [Google Scholar] [CrossRef]
- Giacomelli, A.; Ridolfo, A.L.; Oreni, L.; Vimercati, S.; Albrecht, M.; Cattaneo, D.; Rimoldi, S.G.; Rizzardini, G.; Galli, M.; Antinori, S. Consumption of antibiotics at an Italian university hospital during the early months of the COVID-19 pandemic: Were all antibiotic prescriptions appropriate? Pharmacol. Res. 2021, 164, 105403. [Google Scholar] [CrossRef]
- Chedid, M.; Waked, R.; Haddad, E.; Chetata, N.; Saliba, G.; Choucair, J. Antibiotics in treatment of COVID-19 complications: A review of frequency, indications, and efficacy. J. Infect. Public Health 2021, 14, 570–576. [Google Scholar] [CrossRef]
- Silva, T.M.; Estrela, M.; Gomes, E.R.; Piñeiro-Lamas, M.; Figueiras, A.; Roque, F.; Herdeiro, M.T. The impact of the COVID-19 pandemic on antibiotic prescribing trends in outpatient care: A nationwide, quasi-experimental approach. Antibiotics 2021, 10, 1040. [Google Scholar] [CrossRef]
- Limato, R.; Nelwan, E.J.; Mudia, M.; de Brabander, J.; Guterres, H.; Enty, E.; Mauleti, I.Y.; Mayasari, M.; Firmansyah, I.; Hizrani, M.; et al. A multicentre point prevalence survey of patterns and quality of antibiotic prescribing in Indonesian hospitals. JAC Antimicrob. Resist. 2021, 3, dlab047. [Google Scholar] [CrossRef]
- Adebisi, Y.A.; Alaran, A.J.; Okereke, M.; Oke, G.I.; Amos, O.A.; Olaoye, O.C.; Oladunjoye, I.; Olanrewaju, A.Y.; Ukor, N.A.; Lucero-Prisno, D.E. COVID-19 and antimicrobial resistance: A review. Infect. Dis. Res. Treat. 2021, 14, 1–9. [Google Scholar] [CrossRef]
- Tavares, R.C.A.; Mahadeshwar, G.; Wan, H.; Huston, N.C.; Pyle, A.M. The global and local distribution of RNA structure throughout the SARS-CoV-2 genome. J. Virol. 2020, 95, e02190-20. [Google Scholar] [CrossRef]
- FDA. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19 (accessed on 29 November 2021).
- Zanella, I.; Zizioli, D.; Castelli, F.; Quiros-Roldan, E. Tenofovir, another inexpensive, well-known and widely available old drug repurposed for SARS-CoV-2 infection. Pharmaceuticals 2021, 14, 454. [Google Scholar] [CrossRef]
- Holec, A.D.; Mandal, S.; Prathipati, P.K.; Destache, C.J. Nucleotide Reverse Transcriptase Inhibitors: A thorough review, present status and future perspective as HIV therapeutics. Curr. HIV Res. 2017, 15, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Kocayigit, H.; Ozmen Suner, K.; Tomak, Y.; Demir, G.; Yaylaci, S.; Dheir, H. Observational study of the effects of favipiravir vs lopinavir/ritonavir on clinical outcomes in critically ill patients with COVID-19. J. Clin. Pharm. Ther. 2021, 46, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Aumpan, N.; Vilaichone, R.K.; Ratana-Amornpin, S.; Teerakapibal, S.; Toochinda, P.; Witoonchart, G.; Nitikraipot, S. Antiviral treatment could not provide clinical benefit in management of mild COVID-19: A retrospective experience from field hospital. J. Infect. Public Health 2021, 14, 1206–1211. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med. 2020, 382, 1787–1799. [Google Scholar] [CrossRef]
- Mash, R.J.; Presence-Vollenhoven, M.; Adeniji, A.; Christoffels, R.; Doubell, K.; Eksteen, L.; Hendrikse, A.; Hutton, L.; Jenkins, L.; Kapp, P.; et al. Evaluation of patient characteristics, management and outcomes for COVID-19 at district hospitals in the Western Cape, South Africa: Descriptive observational study. BMJ Open 2021, 11, e047016. [Google Scholar] [CrossRef]
- Wu, X.; Li, Y.; Peng, K.; Zhou, H. HIV protease inhibitors in gut barrier dysfunction and liver injury. Curr. Opin. Pharmacol. 2014, 19, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Olry, A.; Meunier, L.; Délire, B.; Larrey, D.; Horsmans, Y.; Le Louët, H. Drug-induced liver injury and COVID-19 infection: The rules remain the same. Drug Saf. 2020, 43, 615–617. [Google Scholar] [CrossRef]
- Joshi, S.; Parkar, J.; Ansari, A.; Vora, A.; Talwar, D.; Tiwaskar, M.; Patil, S.; Barkate, H. Role of favipiravir in the treatment of COVID-19. Int. J. Infect. Dis. 2021, 102, 501–508. [Google Scholar] [CrossRef]
- Cai, Q.; Yang, M.; Liu, D.; Chen, J.; Shu, D.; Xia, J.; Liao, X.; Gu, Y.; Cai, Q.; Yang, Y.; et al. Experimental treatment with favipiravir for COVID-19: An open-label control study. Engineering 2020, 6, 1192–1198. [Google Scholar] [CrossRef]
- Shinkai, M.; Tsushima, K.; Tanaka, S.; Hagiwara, E.; Tarumoto, N.; Kawada, I.; Hirai, Y.; Fujiwara, S.; Komase, Y.; Saraya, T.; et al. Efficacy and safety of favipiravir in moderate COVID-19 pneumonia patients without oxygen therapy: A randomized, phase III clinical trial. Infect. Dis. Ther. 2021, 10, 2489–2509. [Google Scholar] [CrossRef] [PubMed]
- Manabe, T.; Kambayashi, D.; Akatsu, H.; Kudo, K. Favipiravir for the treatment of patients with COVID-19: A systematic review and meta-analysis. BMC Infect. Dis. 2021, 21, 489. [Google Scholar] [CrossRef] [PubMed]
- Popp, M.; Stegemann, M.; Riemer, M.; Metzendorf, M.-I.; Romero, C.S.; Mikolajewska, A.; Kranke, P.; Meybohm, P.; Skoetz, N.; Weibel, S. Antibiotics for the treatment of COVID-19. Cochrane Database Syst. Rev. 2021, 10, CD015025. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, L.; Tolaj, I.; Baftiu, N.; Fejza, H. Use of antibiotics in COVID-19 ICU patients. J. Infect. Dev. Ctries. 2021, 15, 501–505. [Google Scholar] [CrossRef]
- Biswas, M.; Rahaman, S.; Biswas, T.K.; Haque, Z.; Ibrahim, B. Association of sex, age, and comorbidities with mortality in COVID-19 patients: A systematic review and meta-analysis. Intervirology 2021, 64, 36–47. [Google Scholar] [CrossRef]
- Chiam, T.; Subedi, K.; Chen, D.; Best, E.; Bianco, F.B.; Dobler, G.; Papas, M. Hospital length of stay among COVID-19-positive patients. J. Clin. Transl. Res. 2021, 7, 377–385. [Google Scholar] [CrossRef]
- Jang, S.Y.; Seon, J.-Y.; Yoon, S.-J.; Park, S.-Y.; Lee, S.H.; Oh, I.-H. Comorbidities and factors determining medical expenses and length of stay for admitted COVID-19 patients in Korea. Risk Manag. Healthc. Policy 2021, 14, 2021–2033. [Google Scholar] [CrossRef]
- Mahendra, M.; Nuchin, A.; Kumar, R.; Shreedhar, S.; Mahesh, P.A. Predictors of mortality in patients with severe COVID-19 pneumonia—A retrospective study. Adv. Respir. Med. 2021, 89, 135–144. [Google Scholar] [CrossRef]
- Kassam, N.; Aghan, E.; Aziz, O.; Mbithe, H.; Hameed, K.; Shah, R.; Surani, S.; Orwa, J.; Somji, S. Factors associated with mortality among hospitalized adults with COVID-19 pneumonia at a Private Tertiary Hospital in Tanzania: A retrospective cohort study. Int. J. Gen. Med. 2021, 14, 5431–5440. [Google Scholar] [CrossRef]
- Peña, J.E.; Rascón-Pacheco, R.A.; Ascencio-Montiel, I.J.; González-Figueroa, E.; Fernández-Gárate, J.E.; Medina-Gómez, O.S.; Borja-Bustamante, P.; Santillán-Oropeza, J.A.; Borja-Aburto, V.H. Hypertension, diabetes and obesity, major risk factors for death in patients with COVID-19 in Mexico. Arch. Med. Res. 2021, 52, 443–449. [Google Scholar] [CrossRef]
- Ge, E.; Li, Y.; Wu, S.; Candido, E.; Wei, X. Association of pre-existing comorbidities with mortality and disease severity among 167,500 individuals with COVID-19 in Canada: A population-based cohort study. PLoS ONE 2021, 16, e0258154. [Google Scholar] [CrossRef] [PubMed]
- Pi-Sunyer, X. The medical risks of obesity. Postgrad. Med. 2009, 121, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Nasrin, P.T.; Mohaimenul, I.M.; Chia, Y.H.; Chin, L.M.; Wen-Shan, J.; Min-Huei, H.; Yu-Chuan, J.L. Obesity and mortality among patients diagnosed with COVID-19: A systematic review and meta-analysis. Front. Med. 2021, 8, 28. [Google Scholar] [CrossRef]
- Yates, T.; Razieh, C.; Zaccardi, F.; Rowlands, A.V.; Seidu, S.; Davies, M.J.; Khunti, K. Obesity, walking pace and risk of severe COVID-19 and mortality: Analysis of UK Biobank. Int. J. Obes. 2021, 45, 1155–1159. [Google Scholar] [CrossRef]
- Dana, R.; Bannay, A.; Bourst, P.; Ziegler, C.; Losser, M.R.; Gibot, S.; Levy, B.; Audibert, G.; Ziegler, O. Obesity and mortality in critically ill COVID-19 patients with respiratory failure. Int. J. Obes. 2021, 45, 2028–2037. [Google Scholar] [CrossRef]
- Rees, E.M.; Nightingale, E.S.; Jafari, Y.; Waterlow, N.R.; Clifford, S.; Pearson, C.A.B.; Jombart, T.; Procter, S.R.; Knight, G.M. COVID-19 length of hospital stay: A systematic review and data synthesis. 2020. BMC Med. 2020, 18, 270. [Google Scholar] [CrossRef]
- Rahmani, H.; Davoudi-Monfared, E.; Nourian, A.; Nabiee, M.; Sadeghi, S.; Khalili, H.; Abbasian, L.; Ghiasvand, F.; Seifi, A.; Hasannezhad, M.; et al. Comparing outcomes of hospitalized patients with moderate and severe COVID-19 following treatment with hydroxychloroquine plus atazanavir/ritonavir. Daru 2020, 28, 625–634. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Mendes, N.F.; Jara, C.P.; Mansour, E.; Araújo, E.P.; Velloso, L.A. Asthma and COVID-19: A systematic review. Allergy Asthma Clin. Immunol. 2021, 17, 5. [Google Scholar] [CrossRef]
- Hartmann-Boyce, J.; Rees, K.; Otunla, A.; Suklan, J.; Schofield, E.; Gunnell, J.; Mighiu, A.; Hobbs, R.; Dennison, P. Risks of and from SARS-CoV-2 (COVID-19) Infection in People with Asthma. Centre for Evidence-Based Medicine [website]: Oxford, UK, 2021. Available online: https://www.cebm.net/covid-19/risks-of-and-from-sars-cov-2-covid-19-infection-in-people-with-asthma/ (accessed on 4 December 2021).
- Schultze, A.; Walker, A.J.; MacKenna, B.; Morton, C.E.; Bhaskaran, K.; Brown, J.P.; Rentsch, C.T.; Williamson, E.; Drysdale, H.; Croker, R.; et al. Risk of COVID-19-related death among patients with chronic obstructive pulmonary disease or asthma prescribed inhaled corticosteroids: An observational cohort study using the OpenSAFELY platform. Lancet Respir. Med. 2020, 8, 1106–1120. [Google Scholar] [CrossRef]
- Gupta, N.; Dhar, R.; Swarnakar, R.; Bedi, R.; Chawla, R. Impact of COVID-19 on (Non-COVID) chronic respiratory disease outcome survey in India (CCROS study). Lung India 2021, 38, 454–459. [Google Scholar] [CrossRef] [PubMed]
Variable | RS A (N = 94) | RS B (N = 92) | RS C (N = 100) | RS D (N = 146) |
---|---|---|---|---|
Hospital Ownership | Government (Police) | Government (Navy) | Government | Government |
Hospital type † | B | B | B | B |
Number of beds | 234 | 692 | 225 | 366 |
Gender | ||||
Male | 58 (62%) | 58 (63%) | 61 (61%) | 72 (49%) |
Female | 36 (38%) | 34 (37%) | 39 (39%) | 74 (51%) |
Age (years) | ||||
0–5 | 1 (1%) | 0 | 0 | 0 |
5–11 | 1 (1%) | 0 | 0 | 0 |
12–16 | 3 (3%) | 0 | 0 | 0 |
17–25 | 32 (34%) | 3 (3%) | 0 | 13 (9%) |
25–45 | 36 (38%) | 21 (23%) | 27 (27%) | 59 (40%) |
45–65 | 21 (23%) | 61 (66%) | 57 (57%) | 63 (43%) |
>65 | 0 | 7 (8%) | 16 (16%) | 11 (8%) |
Clinical spectrum | ||||
Asymptomatic | 5 (5%) | 0 | 0 | 0 |
Mild | 46 (49%) | 0 | 0 | 0 |
Moderate | 43 (46%) | 58 (63%) | 81 (81%) | 59 (60%) |
Severe | 0 | 34 (37%) | 19 (19%) | 87 (40%) |
Length of Stay (mean, SD) | ||||
Asymptomatic | 9.6 (3.1) | 0 | 0 | 0 |
Mild | 11 (4.8) | 0 | 0 | 0 |
Moderate | 12.7 (4.4) | 12.6 (5.2) | 11.1 (5.2) | 8.9 (4.1) |
Severe | 0 | 8.9 (5.6) | 8.7 (5.1) | 9 (3.7) |
Moderate and Severe | 12.7 (4.4) | 11.2 (5.6) | 10.7 (5.2) | 9 (3.8) |
Comorbidity | ||||
COVID induced Pneumonia | 0 | 92 (100%) | 100 (100%) | 48 (32.9%) |
Heart | 9 (9.6%) | 37 (40.2%) | 28 (28%) | 15 (10.3%) |
Diabetes | 2 (2.1%) | 28 (30.4%) | 24 (24%) | 24 (16.4%) |
Digestion | 4 (4.3%) | 4 (4.3%) | 21 (21%) | 8 (5.5%) |
Respiration | 1 (1.2%) | 0 | 18 (18%) | 9 (6.2%) |
Blood | 0 | 13 (14.1%) | 25 (25%) | 5 (3.4%) |
Immune | 0 | 0 | 1 (1%) | 27 (18.5%) |
Nerve | 2 (2.1%) | 3 (3.3%) | 6 (6%) | 2 (1.2%) |
Kidney | 0 | 0 | 2 (2%) | 0 |
Liver | 0 | 0 | 2 (2%) | 1 (0.7%) |
Obesity | 0 | 3 (3.3%) | 0 | 0 |
Cancer | 0 | 3 (3.3%) | 0 | 0 |
Skin | 0 | 0 | 1 (1%) | 0 |
Others | 0 | 0 | 6 (6%) | 1 (0.7%) |
Group | Name | ATC Code | RS A | RS B | RS C | RS D |
---|---|---|---|---|---|---|
Access * | ||||||
Penicillin beta-lactam (J01C) | ampicillin | J01CA01 | 0 | 0 | 0.2 | 0 |
ampicillin and sulbactam | J01CR01 | 0 | 0.3 | 0.2 | 0 | |
Aminoglycoside (J01G) | amikacin | J01GB06 | 0 | 2.1 | 0 | 0 |
Imidazole (J01XD) | metronidazole | J01XD01 | 0 | 0.6 | 0 | 0 |
Watch * | ||||||
Other beta-lactam (J01D) | cefuroxime | J01DC02 | 0 | 0 | 0 | 0.2 |
cefditoren | J01DD16 | 0 | 0 | 0 | 0.2 | |
ceftazidime | J01DD02 | 0 | 1.9 | 0 | 1.8 | |
ceftriaxone | J01DD04 | 0 | 0.1 | 13.5 | 12.6 | |
cefixime | J01DD08 | 0 | 0 | 0.2 | 60.6 | |
cefoperazone | J01DD12 | 0 | 0.02 | 0 | 0 | |
cefoperazone and sulbactam | J01DD62 | 2.9 | 0.7 | 0 | 0 | |
cefepime | J01DE01 | 0 | 0.1 | 0 | 0 | |
meropenem | J01DH02 | 0.5 | 2.9 | 1.3 | 18.4 | |
Macrolide (J01FA) | azithromycin | J01FA10 | 55 | 64.2 | 65.3 | 33 |
Quinolone (J01M) | ciprofloxacin | J01MA02 | 0 | 0.5 | 1.9 | 0 |
levofloxacin | J01MA12 | 23.9 | 17.6 | 45 | 12.2 | |
moxifloxacin | J01MA14 | 4.3 | 0.7 | 0 | 61.7 | |
Total | 86.6 | 91.7 | 127.6 | 200.7 |
Name | ATC Code | RS A (N = 94) | RS B (N = 92) | RS C (N = 100) | RS D (N = 146) |
---|---|---|---|---|---|
Remdesivir | J05AB16 | 6 (6.4%) | 7 (7.6%) | 0 | 49 (33.6%) |
Tenofovir disoproxil | J05AF07 | 0 | 0 | 1 (1%) | 0 |
Efavirenz | J05AG03 | 0 | 0 | 1 (1%) | 0 |
Oseltamivir | J05AH02 | 4 (4.3%) | 0 | 94 (94%) | 107 (73.3) |
Lamivudine, zidovudine | J05AR01 | 0 | 0 | 1 (1%) | 0 |
Lopinavir, ritonavir | J05AR10 | 40 (42.6%) | 86 (93.5) | 3 (3%) | 10 (6.8) |
Favipiravir | J05AX27 | 43 (45.7%) | 0 | 1 (1%) | 31 (21.2) |
Total | 93 (99%) | 93 (101.1%) | 101 (101%) | 197 (134.9%) |
Antibacterials and Antivirals Class | Level of Significance | Odds Ratio (Lower-Upper Bound at 95%) |
---|---|---|
J01C | n.s. | - |
J01D | <0.001 | 3.006 (0.962–9.397) |
J01E | n.s. | - |
J01F | n.s. | - |
J01G | n.s. | - |
J01M | n.s. | - |
J01X | n.s. | - |
J05AB | n.s. | - |
J05AF | n.s. | - |
J05AG | n.s. | - |
J05AH | n.s. | - |
J05AR | n.s. | - |
J05AX | <0.001 | 6.820 (0.983–47.323) |
Confounding and Comorbidity Factors | Standardised Coefficients | Level of Significance |
---|---|---|
Demographics | ||
Gender | - | n.s. |
Age | 0.315 | <0.001 |
Comorbidities | ||
COVID induced Pneumonia | 0.412 | <0.001 |
Heart | 0.215 | <0.01 |
Diabetes | - | n.s. |
Digestion | - | n.s. |
Respiration | 0.280 | <0.01 |
Blood | - | n.s. |
Liver | 0.224 | <0.05 |
Others | 0.157 | <0.05 |
Antibacterials and Antivirals Class | Level of Significance | Difference of Length of Stay |
---|---|---|
J01C | n.s. | - |
J01D | n.s. | - |
J01E | n.s. | - |
J01F | <0.05 | 0.44 |
J01G | n.s. | - |
J01M | n.s. | - |
J01X | n.s. | - |
J05AB | n.s. | - |
J05AF | <0.05 | 2.38 |
J05AG | n.s. | - |
J05AH | <0.05 | 0.17 |
J05AR | n.s. | - |
J05AX | <0.001 | 1.79 |
Confounding and Comorbidity Factors | Level of Significance | Difference in Length of Stay |
---|---|---|
Demographics | ||
Gender | n.s. | - |
Age | n.s. | - |
COVID-related factors | ||
COVID clinical spectrum | <0.05 | 1.62 |
COVID induced Pneumonia | n.s. | - |
Comorbidities | ||
Heart | n.s. | - |
Diabetes | n.s. | - |
Digestion | n.s. | - |
Respiration | <0.01 | 1.81 |
Blood | n.s. | - |
Liver | n.s. | - |
Others | n.s. | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yulia, R.; Ikasanti, P.A.I.; Herawati, F.; Hartono, R.; Hanum, P.S.; Lestiono; Ramdani, D.; Jaelani, A.K.; Kantono, K.; Wijono, H. Evaluation of Antibacterial and Antiviral Drug Effectiveness in COVID-19 Therapy: A Data-Driven Retrospective Approach. Pathophysiology 2022, 29, 92-105. https://doi.org/10.3390/pathophysiology29010009
Yulia R, Ikasanti PAI, Herawati F, Hartono R, Hanum PS, Lestiono, Ramdani D, Jaelani AK, Kantono K, Wijono H. Evaluation of Antibacterial and Antiviral Drug Effectiveness in COVID-19 Therapy: A Data-Driven Retrospective Approach. Pathophysiology. 2022; 29(1):92-105. https://doi.org/10.3390/pathophysiology29010009
Chicago/Turabian StyleYulia, Rika, Putri Ayu Irma Ikasanti, Fauna Herawati, Ruddy Hartono, Puri Safitri Hanum, Lestiono, Dewi Ramdani, Abdul Kadir Jaelani, Kevin Kantono, and Heru Wijono. 2022. "Evaluation of Antibacterial and Antiviral Drug Effectiveness in COVID-19 Therapy: A Data-Driven Retrospective Approach" Pathophysiology 29, no. 1: 92-105. https://doi.org/10.3390/pathophysiology29010009
APA StyleYulia, R., Ikasanti, P. A. I., Herawati, F., Hartono, R., Hanum, P. S., Lestiono, Ramdani, D., Jaelani, A. K., Kantono, K., & Wijono, H. (2022). Evaluation of Antibacterial and Antiviral Drug Effectiveness in COVID-19 Therapy: A Data-Driven Retrospective Approach. Pathophysiology, 29(1), 92-105. https://doi.org/10.3390/pathophysiology29010009