Daytime Exposure to Blue Light Alters Cardiovascular Circadian Rhythms, Electrolyte Excretion and Melatonin Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Experimental Design
2.3. Monitoring of BP and ECG
2.4. Assessment of Electrolyte Excretion
2.5. Assessment of Epiphyseal Melatonin Secretion
2.6. Statistics
3. Results
3.1. Telemetric Monitoring of BP and HR
3.2. Electrolyte Excretion
3.3. Epiphyseal Melatonin Secretion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davies, T.W.; Smyth, T. Why artificial light at night should be a focus for global change research in the 21st century. Glob. Chang. Biol. 2018, 24, 872–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falchi, F.; Furgoni, R.; Gallaway, T.A.; Rybnikova, N.A.; Portnov, B.A.; Baugh, K.; Cinzano, P.; Elvidge, C.D. Light pollution in USA and Europe: The good, the bad and the ugly. J. Environ. Manag. 2019, 248, 109227. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.M.; Aeschbach, D.; Duffy, J.F.; Czeisler, C.A. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc. Natl. Acad. Sci. USA 2015, 112, 1232–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinoy, E.D.; Duffy, J.F.; Czeisler, C.A. Unrestricted evening use of light-emitting tablet computers delays self-selected bedtime and disrupts circadian timing and alertness. Physiol. Rep. 2018, 6, e13692. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.K.; Conger, J.R.; Hedayati, B.; Kim, J.J.; Amoozadeh, S.; Mehta, M. The Effect of a Screen Protector on Blue Light Intensity Emitted from Different Hand-held Devices. Middle East Afr. J. Ophthalmol. 2020, 27, 177–181. [Google Scholar] [CrossRef]
- Arushanian, E.B.; Baturin, V.A.; Popov, A.V. The suprachiasmatic nucleus of the hypothalamus as a regulator of the circadian system of mammals. Usp. Fiziol. Nauk. 1988, 19, 67–87. [Google Scholar]
- Weaver, D.R. The suprachiasmatic nucleus: A 25-year retrospective. J. Biol. Rhythm. 1998, 13, 100–112. [Google Scholar] [CrossRef]
- Herzog, E.D.; Hermanstyne, T.; Smyllie, N.J.; Hastings, M.H. Regulating the Suprachiasmatic Nucleus (SCN) Circadian Clockwork: Interplay between Cell-Autonomous and Circuit-Level Mechanisms. Cold Spring Harb. Perspect. Biol. 2017, 9, a027706. [Google Scholar] [CrossRef]
- Tähkämö, L.; Partonen, T.; Pesonen, A.K. Systematic review of light exposure impact on human circadian rhythm. Chronobiol. Int. 2019, 36, 151–170. [Google Scholar] [CrossRef] [Green Version]
- Gabel, V.; Maire, M.; Reichert, C.F.; Chellappa, S.L.; Schmidt, C.; Hommes, V.; Viola, A.U.; Cajochen, C. Effects of artificial dawn and morning blue light on daytime cognitive performance, well-being, cortisol and melatonin levels. Chronobiol. Int. 2013, 30, 988–997. [Google Scholar] [CrossRef] [Green Version]
- Wahl, S.; Engelhardt, M.; Schaupp, P.; Lappe, C.; Ivanov, I.V. The inner clock-Blue light sets the human rhythm. J. Biophotonics 2019, 12, e201900102. [Google Scholar] [CrossRef] [PubMed]
- Mosendane, T.; Mosendane, T.; Raal, F.J. Shift work and its effects on the cardiovascular system. Cardiovasc. J. Afr. 2008, 19, 210–215. [Google Scholar] [PubMed]
- Wadei, H.M.; Textor, S.C. The role of the kidney in regulating arterial blood pressure. Nat. Rev. Nephrol. 2012, 8, 602–609. [Google Scholar] [CrossRef]
- Johnston, J.G.; Pollock, D.M. Circadian regulation of renal function. Free Radic. Biol. Med. 2018, 119, 93–107. [Google Scholar] [CrossRef]
- Zuther, P.; Gorbey, S.; Lemmer, B. Chronos-Fit 1.06. 2009. Available online: http://chronos-fit.sharewarejunction.com (accessed on 13 March 2017).
- Bespyatykh, A.Y.; Brodskiy, V.Y.; Burlakova, O.V.; Golichenkov, V.A.; Voznesenskaya, L.A.; Kolesnikov, D.B.; Molchanov, A.Y.; Rapoport, S.I. Melatonin: Theory and practice; MEDPRAKTIKA-M: Moscow, Russia, 2009; p. 100. [Google Scholar]
- Levels of Interleukins and Melatonin in Patients with Acute Coronary Syndrome. Available online: https://www.researchgate.net/publication/276311849_LEVELS_OF_INTERLEUKINS_AND_MELATONIN_IN_PATIENTS_WITH_ACUTE_CORONARY_SYNDROME (accessed on 11 March 2022).
- Abeysuriya, R.G.; Lockley, S.W.; Robinson, P.A.; Postnova, S. A unified model of melatonin, 6-sulfatoxymelatonin, and sleep dynamics. J. Pineal Res. 2018, 64, e12474. [Google Scholar] [CrossRef]
- Amaral, F.; Cipolla-Neto, J. A brief review about melatonin, a pineal hormone. Arch. Endocrinol. Metab. 2018, 62, 472–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mistry, P.; Duong, A.; Kirshenbaum, L.; Martino, T.A. Cardiac Clocks and Preclinical Translation. Heart Fail. Clin. 2017, 13, 657–672. [Google Scholar] [CrossRef]
- Douma, L.G.; Gumz, M.L. Circadian clock-mediated regulation of blood pressure. Free Radic. Biol. Med. 2018, 119, 108–114. [Google Scholar] [CrossRef]
- Stern, M.; Broja, M.; Sansone, R.; Gröne, M.; Skene, S.S.; Liebmann, J.; Suschek, C.V.; Born, M.; Kelm, M.; Heiss, C. Blue light exposure decreases systolic blood pressure, arterial stiffness, and improves endothelial function in humans. Eur. J. Prev. Cardiol. 2018, 25, 1875–1883. [Google Scholar] [CrossRef]
- Scheer, F.A.; van Doornen, L.J.; Buijs, R.M. Light and diurnal cycle affect human heart rate: Possible role for the circadian pacemaker. J. Biol. Rhythm. 1999, 14, 202–212. [Google Scholar] [CrossRef]
- Scheer, F.A.; Van Doornen, L.J.; Buijs, R.M. Light and diurnal cycle affect autonomic cardiac balance in human; possible role for the biological clock. Auton. Neurosci. 2004, 110, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Chellappa, S.L.; Lasauskaite, R.; Cajochen, C. In a Heartbeat: Light and Cardiovascular Physiology. Front. Neurol. 2017, 8, 541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cajochen, C.; Münch, M.; Kobialka, S.; Kräuchi, K.; Steiner, R.; Oelhafen, P.; Orgül, S.; Wirz-Justice, A. High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. J. Clin. Endocrinol. Metab. 2005, 90, 1311–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modi, P.; Jha, K.; Kumar, Y.; Kumar, T.; Singh, R.; Mishra, A. The effect of short-term exposure to red and blue light on the autonomic tone of the individuals with newly diagnosed essential hypertension. J. Family Med. Prim. Care 2019, 8, 14–21. [Google Scholar] [CrossRef]
- Yuda, E.; Ogasawara, H.; Yoshida, Y.; Hayano, J. Suppression of vagal cardiac modulation by blue light in healthy subjects. J. Physiol. Anthropol. 2016, 35, 24. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, A.; Kratky, K.W. The effect of colored illumination on heart rate variability. Forsch. Komplementmed. 2006, 13, 167–173. [Google Scholar] [CrossRef]
- Blagonravov, M.L.; Medvedeva, E.V.; Bryk, A.A.; Goryachev, V.A.; Rabinovich, A.E.; Letoshneva, A.S.; Demurov, E.A. 24-Hour Profile of Blood Pressure, Heart Rate, Excretion of Electrolytes, and Locomotor Activity in Wistar–Kyoto and SHR Rats Under Conditions of Free-Run Rhythm. Bull. Exp. Biol. Med. 2018, 166, 192–196. [Google Scholar] [CrossRef]
- Blagonravov, M.L.; Bryk, A.A.; Medvedeva, E.V.; Goryachev, V.A.; Chibisov, S.M.; Kurlaeva, A.O.; Agafonov, E.D. Structure of Rhythms of Blood Pressure, Heart Rate, Excretion of Electrolytes, and Secretion of Melatonin in Normotensive and Spontaneously Hypertensive Rats Maintained under Conditions of Prolonged Daylight Duration. Bull. Exp. Biol. Med. 2019, 168, 18–23. [Google Scholar] [CrossRef]
- Cambar, J.; Lemoigne, F.; Toussaint, C.; Dost, C. Nycthemeral variations of blood and urine urea, creatinine and total proteins in rats. Comptes Rendus Seances Soc. Biol. Fil. 1978, 172, 894–901. [Google Scholar]
- Kamperis, K.; Hagstroem, S.; Radvanska, E.; Rittig, S.; Djurhuus, J.C. Excess diuresis and natriuresis during acute sleep deprivation in healthy adults. Am. J. Physiol. Renal Physiol. 2010, 299, F404–F411. [Google Scholar] [CrossRef]
- Crislip, G.R.; Masten, S.H.; Gumz, M.L. Recent advances in understanding the circadian clock in renal physiology. Curr. Opin. Physiol. 2018, 5, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Bryukhanov, V.M.; Zvereva, A.J. The kidney role in regulation of circade rithms of the organism. Nephrology 2010, 14, 17–31. (In Russian) [Google Scholar] [CrossRef]
- Stoynev, A.G.; Ikonomov, O.C. Effect of constant light and darkness on the circadian rhythms in rats: I. Food and water intake, urine output and electrolyte excretion. Acta Physiol. Pharmacol. Bulg. 1983, 9, 58–64. [Google Scholar] [PubMed]
- Mistlberger, R.E.; Rechtschaffen, A. Periodic water availability is not a potent zeitgeber for entrainment of circadian locomotor rhythms in rats. Physiol. Behav. 1985, 34, 17–22. [Google Scholar] [CrossRef]
- Semenenko, S.B.; Tkachuk, S.S.; Tkachuk, O.V.; Karateeva, S.Y.; Antsupova, V.V. Specific features of chronorhythmologic changes of the ion-regulating function of the kidneys un- der the hypofunction of the pineal gland. Fiziolohichnyi Zhurnal 2016, 62, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Olgaard, K.; Madsen, S.; Roosen, J.; Hammer, M. Circadian rhythm of plasma aldosterone and plasma renin activity in steroid and non-steroid treated kidney transplanted patients. Scand. J. Clin. Lab. Invest. 1977, 37, 431–437. [Google Scholar] [CrossRef]
- Doi, M.; Takahashi, Y.; Komatsu, R.; Yamazaki, F.; Yamada, H.; Haraguchi, S.; Emoto, N.; Okuno, Y.; Tsujimoto, G.; Kanematsu, A.; et al. Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nat. Med. 2010, 16, 67–74. [Google Scholar] [CrossRef]
- Firsov, D.; Bonny, O. Circadian regulation of renal function. Kidney Int. 2010, 78, 640–645. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Hurtado, G.; Ruilope, L.M. Microvascular injury and the kidney in hypertension. Hipertens. Riesgo Vasc. 2018, 35, 24–29. [Google Scholar] [CrossRef]
- Ruilope, L.M.; Campo, C.; Lahera, V. The kidney and arterial hypertension. Drugs 1993, 46 (Suppl. 2), 108–112. [Google Scholar] [CrossRef]
- Fang, Z.; Carlson, S.H.; Peng, N.; Wyss, J.M. Circadian rhythm of plasma sodium is disrupted in spontaneously hypertensive rats fed a high-NaCl diet. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 278, R1490–R1495. [Google Scholar] [CrossRef] [PubMed]
- Budnevsky, A.V.; Ovsyannikov, E.S.; Rezova, N.V.; Shkatova, Y.S. Melatonin and hypertension: A possible role in combination therapy. Ter. Arkhiv 2017, 89, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Blagonravov, M.L.; Medvedeva, E.V.; Bryk, A.A.; Goryachev, V.A.; Azova, M.M.; Velichko, E.V. Specific Features of Electrolyte Excretion at the Early Stages of Arterial Hypertension in SHR Rats. Bull. Exp. Biol. Med. 2017, 164, 15–17. [Google Scholar] [CrossRef]
- Bauer, M.; Glenn, T.; Monteith, S.; Gottlieb, J.F.; Ritter, P.S.; Geddes, J.; Whybrow, P.C. The potential influence of LED lighting on mental illness. World J. Biol. Psychiatry 2018, 19, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Ryu, S.H.; Lee, B.R.; Kim, K.H.; Lee, E.; Choi, J. Effects of artificial light at night on human health: A literature review of observational and experimental studies applied to exposure assessment. Chronobiol. Int. 2015, 32, 1294–1310. [Google Scholar] [CrossRef] [PubMed]
- Touitou, Y.; Reinberg, A.; Touitou, D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption. Life Sci. 2017, 173, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Shanahan, T.L.; Zeitzer, J.M.; Czeisler, C.A. Resetting the melatonin rhythm with light in humans. J. Biol. Rhythm. 1997, 12, 556–567. [Google Scholar] [CrossRef] [Green Version]
- Prayag, A.S.; Münch, M.; Aeschbach, D.; Chellappa, S.L.; Gronfier, C. Light Modulation of Human Clocks, Wake, and Sleep. Clocks Sleep 2019, 1, 193–208. [Google Scholar] [CrossRef] [Green Version]
- Wright, H.R.; Lack, L.C. Effect of light wavelength on suppression and phase delay of the melatonin rhythm. Chronobiol. Int. 2001, 18, 801–808. [Google Scholar] [CrossRef]
- Wright, H.R.; Lack, L.C.; Kennaway, D.J. Differential effects of light wavelength in phase advancing the melatonin rhythm. J. Pineal Res. 2004, 36, 140–144. [Google Scholar] [CrossRef] [Green Version]
- Lockley, S.W.; Brainard, G.C.; Czeisler, C.A. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J. Clin. Endocrinol. Metab. 2003, 88, 4502–4505. [Google Scholar] [CrossRef] [PubMed]
- Arendt, J.; Skene, D.J. Melatonin as a chronobiotic. Sleep Med. Rev. 2005, 9, 25–39. [Google Scholar] [CrossRef] [PubMed]
Parameter | Ordinary White Light | Monochromatic Blue Light |
---|---|---|
Wistar-Kyoto rats | ||
24 h period | ||
Na+ | 1.70 ± 0.25 | 19.93 ± 3.07 * |
K+ | 4.8 ± 0.99 | 7.93 ± 1.14 |
Ca2+ | 0.17 ± 0.02 | 0.40 ± 0.08 * |
Mg2+ | 0.83 ± 0.12 | 1.07 ± 0.14 |
Daytime period | ||
Na+ | 0.16 ± 0.06 | 7.15 ± 1.39 * |
K+ | 1.04 ± 0.22 | 2.55 ± 0.58 * |
Ca2+ | 0.07 ± 0.02 | 0.23 ± 0.06 * |
Mg2+ | 0.22 ± 0.04 | 0.50 ± 0.10 * |
Nighttime period | ||
Na+ | 1.54 ± 0.28 ♦ | 12.78 ± 1.95 ♦* |
K+ | 3.76 ± 0.84 ♦ | 5.39 ± 0.58 ♦ |
Ca2+ | 0.1 ± 0.01 | 0.16 ± 0.03 |
Mg2+ | 0.61 ± 0.08 ♦ | 0.57 ± 0.11 |
SHR rats | ||
24 h period | ||
Na+ | 3.94 ± 1.5 | 1.63 ± 0.65 |
K+ | 7.96 ± 2.31 | 5.97 ± 0.74 |
Ca2+ | 0.23 ± 0.08 | 0.19 ± 0.03 |
Mg2+ | 1.52 ± 0.39 | 0.88 ± 0.17 |
Daytime period | ||
Na+ | 1.07 ± 0.19 | 1.44 ± 0.39 |
K+ | 3.92 ± 0.62 | 1.98 ± 0.27 * |
Ca2+ | 0.08 ± 0.02 | 0.11 ± 0.01 |
Mg2+ | 0.73 ± 0.12 | 0.60 ± 0.14 |
Nighttime period | ||
Na+ | 2.86 ± 1.34 | 0.98 ± 0.19 |
K+ | 4.04 ± 1.76 | 3.99 ± 0.61 ♦ |
Ca2+ | 0.15 ± 0.06 | 0.09 ± 0.02 |
Mg2+ | 0.79 ± 0.3 | 0.28 ± 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bryk, A.A.; Blagonravov, M.L.; Goryachev, V.A.; Chibisov, S.M.; Azova, M.M.; Syatkin, S.P. Daytime Exposure to Blue Light Alters Cardiovascular Circadian Rhythms, Electrolyte Excretion and Melatonin Production. Pathophysiology 2022, 29, 118-133. https://doi.org/10.3390/pathophysiology29010011
Bryk AA, Blagonravov ML, Goryachev VA, Chibisov SM, Azova MM, Syatkin SP. Daytime Exposure to Blue Light Alters Cardiovascular Circadian Rhythms, Electrolyte Excretion and Melatonin Production. Pathophysiology. 2022; 29(1):118-133. https://doi.org/10.3390/pathophysiology29010011
Chicago/Turabian StyleBryk, Anna A., Mikhail L. Blagonravov, Vyacheslav A. Goryachev, Sergey M. Chibisov, Madina M. Azova, and Sergey P. Syatkin. 2022. "Daytime Exposure to Blue Light Alters Cardiovascular Circadian Rhythms, Electrolyte Excretion and Melatonin Production" Pathophysiology 29, no. 1: 118-133. https://doi.org/10.3390/pathophysiology29010011
APA StyleBryk, A. A., Blagonravov, M. L., Goryachev, V. A., Chibisov, S. M., Azova, M. M., & Syatkin, S. P. (2022). Daytime Exposure to Blue Light Alters Cardiovascular Circadian Rhythms, Electrolyte Excretion and Melatonin Production. Pathophysiology, 29(1), 118-133. https://doi.org/10.3390/pathophysiology29010011