Critically Ill COVID-19 Patients Exhibit Anti-SARS-CoV-2 Serological Responses
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Study Participants and Clinical Data
5.2. Blood Draws
5.3. Immunoassays
5.4. Population Statistics
5.5. Machine Learning
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Armstrong, R.A.; Kane, A.D.; Cook, T.M. Outcomes from intensive care in patients with COVID-19: A systematic review and meta-analysis of observational studies. Anaesthesia 2020, 75, 1340–1349. [Google Scholar] [CrossRef] [PubMed]
- Koyama, S.; Ishii, K.J.; Coban, C.; Akira, S. Innate immune response to viral infection. Cytokine 2008, 43, 336–341. [Google Scholar] [CrossRef]
- Słomka, A.; Kowalewski, M.; Żekanowska, E. Coronavirus Disease 2019 (COVID–19): A Short Review on Hematological Manifestations. Pathogens 2020, 9, 493. [Google Scholar] [CrossRef]
- Garvin, M.R.; Alvarez, C.; Miller, J.I.; Prates, E.T.; Walker, A.M.; Amos, B.K.; Mast, A.E.; Justice, A.; Aronow, B.; Jacobson, D.A. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. eLife 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.E.; Dos Santos, C.C.; O’Gorman, D.B.; Carter, D.E.; Patterson, E.K.; Slessarev, M.; Martin, C.; Daley, M.; Miller, M.R.; Cepinskas, G.; et al. Transcriptional profiling of leukocytes in critically ill COVID19 patients: Implications for interferon response and coagulation. Intensiv. Care Med. Exp. 2020, 8, 75. [Google Scholar] [CrossRef] [PubMed]
- Fraser, D.D.; Cepinskas, G.; Slessarev, M.; Martin, C.; Daley, M.; Miller, M.R.; O’Gorman, D.B.; Gill, S.E.; Patterson, E.K.; Dos Santos, C.C. Inflammation Profiling of Critically Ill Coronavirus Disease 2019 Patients. Crit. Care Explor. 2020, 2, e0144. [Google Scholar] [CrossRef] [PubMed]
- Fraser, D.D.; Patterson, E.K.; Slessarev, M.; Gill, S.E.; Martin, C.; Daley, M.; Miller, M.R.; Patel, M.A.; Dos Santos, C.C.; Bosma, K.J.; et al. Endothelial Injury and Glycocalyx Degradation in Critically Ill Coronavirus Disease 2019 Patients: Implications for Microvascular Platelet Aggregation. Crit. Care Explor. 2020, 2, e0194. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef]
- Dörner, T.; Radbruch, A. Antibodies and B Cell Memory in Viral Immunity. Immunity 2007, 27, 384–392. [Google Scholar] [CrossRef] [Green Version]
- Long, Q.X.; Liu, B.Z.; Deng, H.J.; Wu, G.C.; Deng, K.; Chen, Y.K.; Liao, P.; Qiu, J.F.; Lin, Y.; Cai, X.F.; et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 2020, 26, 845–848. [Google Scholar] [CrossRef]
- Zhao, J.; Yuan, Q.; Wang, H.; Liu, W.; Liao, X.; Su, Y.; Wang, X.; Yuan, J.; Li, T.; Li, J.; et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin. Infect. Dis. 2020, 71, 2027–2034. [Google Scholar] [CrossRef] [PubMed]
- Kellam, P.; Barclay, W. The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection. J. Gen. Virol. 2020, 101, 791–797. [Google Scholar] [CrossRef]
- Tu, Y.P.; O’Leary, T.J. Testing for Severe Acute Respiratory Syndrome-Coronavirus 2: Challenges in Getting Good Specimens, Choosing the Right Test, and Interpreting the Results. Crit. Care. Med. 2020, 48, 1680–1689. [Google Scholar] [CrossRef]
- Longchamp, A.; Longchamp, J.; Croxatto, A.; Greub, G.; Sanchez, B.; Delaloye, J. on Behalf of the Study Group. Serum antibody response in critically ill patients with COVID-19. Intensiv. Care Med. 2020, 46, 1921–1923. [Google Scholar] [CrossRef] [PubMed]
- Fraser, D.D.; Cepinskas, G.; Slessarev, M.; Martin, C.M.; Daley, M.; Patel, M.A.; Miller, M.R.; Patterson, E.K.; O’Gorman, D.B.; Gill, S.E.; et al. Detection and Profiling of Human Coronavirus Immunoglobulins in Critically Ill Coronavirus Disease 2019 Patients. Crit. Care Explor. 2021, 3, e0369. [Google Scholar] [CrossRef] [PubMed]
- Knauer, M.J.; Hedley, B.D.; Bhayana, V.; Payne, M.; Chin-Yee, I.; Delport, J. Interim analysis of the clinical performance of five SARS-Cov-2 serology assays. Clin. Biochem. 2020, 86, 28–30. [Google Scholar] [CrossRef] [PubMed]
- Woof, J.M.; Kerr, M.A. The function of immunoglobulin A in immunity. J. Pathol. 2005, 208, 270–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Bhatraju, P.K.; Ghassemieh, B.J.; Nichols, M.; Kim, R.; Jerome, K.R.; Nalla, A.K.; Greninger, A.L.; Pipavath, S.; Wurfel, M.M.; Evans, L.; et al. Covid-19 in Critically Ill Patients in the Seattle Region—Case Series. N. Engl. J. Med. 2020, 382, 2012–2022. [Google Scholar] [CrossRef]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, D.D.; Cepinskas, G.; Patterson, E.K.; Slessarev, M.; Martin, C.; Daley, M.; Patel, M.A.; Miller, M.R.; O’Gorman, D.B.; Gill, S.E.; et al. Novel Outcome Biomarkers Identified With Targeted Proteomic Analyses of Plasma From Critically Ill Coronavirus Disease 2019 Patients. Crit. Care Explor. 2020, 2, e0189. [Google Scholar] [CrossRef] [PubMed]
- Fraser, D.D.; Slessarev, M.; Martin, C.M.; Daley, M.; Patel, M.A.; Miller, M.R.; Patterson, E.K.; O’Gorman, D.B.; Gill, S.E.; Wishart, D.S.; et al. Metabolomics Profiling of Critically Ill Coronavirus Disease 2019 Patients: Identification of Diagnostic and Prognostic Biomarkers. Crit. Care Explor. 2020, 2, e0272. [Google Scholar] [CrossRef]
- Pujadas, E.; Chaudhry, F.; McBride, R.; Richter, F.; Zhao, S.; Wajnberg, A.; Nadkarni, G.; Glicksberg, B.S.; Houldsworth, J.; Cordon-Cardo, C. SARS-CoV-2 viral load predicts COVID-19 mortality. Lancet Respir. Med. 2020, 8, e70. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, C.; Huang, F.; Yang, Y.; Wang, F.; Yuan, J.; Zhang, Z.; Qin, Y.; Li, X.; Zhao, D.; et al. Elevated plasma levels of selective cytokines in COVID-19 patients reflect viral load and lung injury. Natl. Sci. Rev. 2020, 7, 1003–1011. [Google Scholar] [CrossRef] [Green Version]
- Casadevall, A.; Pirofski, L.-A. The convalescent sera option for containing COVID-19. J. Clin. Investig. 2020, 130, 1545–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, K.; Liu, B.; Li, C.; Zhang, H.; Yu, T.; Qu, J.; Zhou, M.; Chen, L.; Meng, S.; Hu, Y.; et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl. Acad. Sci. USA 2020, 117, 9490–9496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharbharan, A.; Jordans, C.C.E.; GeurtsvanKessel, C.; Den Hollander, J.G.; Karim, F.; Mollema, F.P.N.; Stalenhoef, J.E.; Dofferhoff, A.; Ludwig, I.; Koster, A.; et al. Convalescent Plasma for COVID-19. A randomized clinical trial. medRxiv 2020. [Google Scholar] [CrossRef]
- Wooding, D.J.; Bach, H. Treatment of COVID-19 with convalescent plasma: Lessons from past coronavirus outbreaks. Clin. Microbiol. Infect. 2020, 26, 1436–1446. [Google Scholar] [CrossRef]
- Ovsyannikova, I.G.; Haralambieva, I.H.; Crooke, S.N.; Poland, G.A.; Kennedy, R.B. The role of host genetics in the immune response to SARS-CoV-2 and COVID-19 susceptibility and severity. Immunol. Rev. 2020, 296, 205–219. [Google Scholar] [CrossRef]
- Engin, A.B.; Engin, E.D.; Engin, A. Two important controversial risk factors in SARS-CoV-2 infection: Obesity and smoking. Environ. Toxicol. Pharmacol. 2020, 78, 103411. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Garreau, D.; Von Luxburg, U. When do random forests fail? In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 2–8 December 2018; pp. 2987–2997. [Google Scholar]
- Centers for Disease Control and Prevention. Overview of Testing for SARS-CoV-2 (COVID-19). Available online: https://www.cdc.gov/coronavirus/2019-nCoV/hcp/clinical-criteria.html (accessed on 13 May 2021).
- Centers for Disease Control and Prevention (CDC). CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel. Available online: https://www.fda.gov/media/134922/download (accessed on 13 May 2021).
- Priestap, F.; Kao, R.; Martin, C.M. External validation of a prognostic model for intensive care unit mortality: A retrospective study using the Ontario Critical Care Information System. Can. J. Anesth. 2020, 67, 981–991. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Brisson, A.R.; Matsui, D.; Rieder, M.J.; Fraser, D.D. Translational Research in Pediatrics: Tissue Sampling and Biobanking. Pediatrics 2011, 129, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Gillio-Meina, C.; Cepinskas, G.; Cecchini, E.L.; Fraser, D.D. Translational Research in Pediatrics II: Blood Collection, Processing, Shipping, and Storage. Pediatrics 2013, 131, 754–766. [Google Scholar] [CrossRef] [Green Version]
- Fraser, D.D.; Patterson, E.K.; Daley, M.; Cepinskas, G. Case Report: Inflammation and Endothelial Injury Profiling of COVID-19 Pediatric Multisystem Inflammatory Syndrome (MIS-C). Front. Pediatr. 2021, 9, 597926. [Google Scholar] [CrossRef]
- NIH Clinical Center. POLICY: Guidelines for Limits of Blood Drawn for Research Purposes in the Clinical Center M95-9; NIH: Bethesda, MD, USA, 2009.
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
Variable | COVID-19+ Critically Ill | COVID-19− Critically Ill | COVID-19+ Mildly Ill | Healthy Controls | p-Value |
---|---|---|---|---|---|
n | 14 | 14 | 14 | 14 | 1.000 |
Age in years | 61.0 (54.0, 67.0) | 58.5 (52.5, 63.0) | 60.0 (55.8, 65.0) | 57.5 (53.3, 63.0) | 0.645 |
Sex | 8F:6M | 8F:6M | 8F:6M | 8F:6M | 1.000 |
MODS | 4.0 (3.0, 5.5) | 6.0 (3.0, 8.0) | 0.286 | ||
SOFA | 4.5 (2.0, 9.3) | 6.0 (4.3, 10.5) | 0.204 | ||
Comorbidities,n(%) | |||||
Hypertension | 7 (50.0) | 9 (64.3) | 0.445 | ||
Diabetes | 5 (35.7) | 5 (35.7) | 1.000 | ||
Chronic kidney disease | 2 (14.3) | 1 (7.1) | 1.000 | ||
Cancer | 2 (14.3) | 1 (7.1) | 1.000 | ||
COPD | 1 (7.1) | 3 (21.4) | 0.596 | ||
Heart disease | 2 (14.3) | 2 (14.3) | 1.000 | ||
Chronic heart failure | 0 (0) | 2 (14.3) | 0.481 | ||
Baseline labs | |||||
White blood count | 8.5 (6.9, 16.1) | 15.3 (11.1, 20.5) | 0.056 | ||
Neutrophils | 7.3 (5.6, 12.6) | 12.2 (8.6, 15.7) | 0.062 | ||
Lymphocytes | 0.7 (0.6, 1.0) | 1.3 (0.5, 1.8) | 0.093 | ||
Platelets | 206 (134, 294) | 202 (164, 260) | 0.872 | ||
Hemoglobin | 122 (102, 135) | 124 (102, 138) | 0.818 | ||
Creatinine | 82 (58, 187) | 75 (54, 113) | 0.448 | ||
Chest X-ray,n(%) | |||||
Bilateral pneumonia | 13 (92.9) | 2 (14.3) | <0.001 | ||
Unilateral pneumonia | 1 (7.1) | 8 (57.1) | 0.013 | ||
Interstitial infiltrates | 0 (0) | 1 (7.1) | 1.000 | ||
Normal | 0 (0) | 3 (21.4) | 0.222 | ||
PaO2:FiO2 ratio | 107 (66, 162) | 172 (138, 312) | 0.015 | ||
Lactate | 1.5 (1.0, 2.0) | 1.2 (0.9, 1.6) | 0.233 | ||
Sepsis diagnosis | |||||
Suspected | 0 (0) | 10 (71.4) | <0.001 | ||
Confirmed | 14 (100) | 4 (28.6) | <0.001 | ||
Study interventions | |||||
Antibiotics | 14 (100) | 14 (100) | 1.000 | ||
Anti-virals | 3 (21.4) | 2 (14.3) | 1.000 | ||
Steroids | 3 (21.4) | 5 (35.7) | 0.678 | ||
Vasoactive medications | 11 (78.6) | 8 (57.1) | 0.420 | ||
Renal replacement | 2 (14.3) | 1 (7.1) | 1.000 | ||
High-flow nasal cannula | 8 (57.1) | 1 (7.1) | 0.013 | ||
Non-invasive MV | 6 (42.9) | 8 (57.1) | 0.450 | ||
Invasive MV ventilation | 10 (71.4) | 11 (78.6) | 1.000 | ||
Survived | 7 (50.0) | 12 (85.7) | 0.103 |
Anti-SARS-CoV-2 IgM | Anti-SARS-CoV-2 IgA | * Anti-SARS-CoV-2 IgG | * Anti-SARS-CoV-2 Total Ig | |
---|---|---|---|---|
Catalogue # | CAN-IGM-19 | CAN-IGA-19 | CAN-IGG-19 | CAN-IGT-19 |
Total CV% | 11.6–14.4 | 10.6–16.6 | 8.5–13.5 | 7.9–15.3 |
Sensitivity [PPA, % (n)] | 93.5 (31) | 85.7 (91) | 93.1 (116) | 94.7 (114) |
Specificity [NPA, % (n)] | 98.8 (781) | 99.0 (789) | 98.2 (677) | 99.2 (783) |
Overall Agreement [OPA, % (n)] | 98.6 (812) | 97.6 (880) | 97.5 (793) | 98.7 (897) |
Limit of Detection | 1:64 | 1:128 | 1:128 | 1:256 |
ROC AUC (p < 0.0001) | 0.987 | 0.993 | 0.992 | 0.988 |
ROC 95% Confidence Intervals | 0.965, 1.009 | 0.988, 0.998 | 0.982, 1.002 | 0.973, 1.004 |
ROC Standard Error | 0.0114 | 0.0026 | 0.0052 | 0.0078 |
Variable | COVID-19+ Critically Ill | COVID-19+ Mildly Ill | p-Value |
---|---|---|---|
n | 14 | 14 | 1.000 |
Age in years | 61.0 (54.0, 67.0) | 60.0 (55.8, 65.0) | 0.711 |
Sex | 8F:6M | 8F:6M | 1.000 |
Anti-SARS-CoV-2 Ig | |||
IgM | 2.8 (1.5, 5.3) | 2.8 (1.2, 3.3) * | 0.787 |
IgA | 4.0 (1.5, 5.8) | 2.0 (1.3, 6.5) | 0.582 |
IgG | 8.1 (2.1, 14.5) | 6.3 (2.5, 14.0) | 0.873 |
Total Ig | 6.6 (3.7, 10.0) | 6.8 (3.9, 9.6) | 0.697 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraser, D.D.; Cepinskas, G.; Slessarev, M.; Martin, C.M.; Daley, M.; Patel, M.A.; Miller, M.R.; Patterson, E.K.; O’Gorman, D.B.; Gill, S.E.; et al. Critically Ill COVID-19 Patients Exhibit Anti-SARS-CoV-2 Serological Responses. Pathophysiology 2021, 28, 212-223. https://doi.org/10.3390/pathophysiology28020014
Fraser DD, Cepinskas G, Slessarev M, Martin CM, Daley M, Patel MA, Miller MR, Patterson EK, O’Gorman DB, Gill SE, et al. Critically Ill COVID-19 Patients Exhibit Anti-SARS-CoV-2 Serological Responses. Pathophysiology. 2021; 28(2):212-223. https://doi.org/10.3390/pathophysiology28020014
Chicago/Turabian StyleFraser, Douglas D., Gediminas Cepinskas, Marat Slessarev, Claudio M. Martin, Mark Daley, Maitray A. Patel, Michael R. Miller, Eric K. Patterson, David B. O’Gorman, Sean E. Gill, and et al. 2021. "Critically Ill COVID-19 Patients Exhibit Anti-SARS-CoV-2 Serological Responses" Pathophysiology 28, no. 2: 212-223. https://doi.org/10.3390/pathophysiology28020014
APA StyleFraser, D. D., Cepinskas, G., Slessarev, M., Martin, C. M., Daley, M., Patel, M. A., Miller, M. R., Patterson, E. K., O’Gorman, D. B., Gill, S. E., Higgins, I., John, J. P. P., Melo, C., Nini, L., Wang, X., Zeidler, J., & Cruz-Aguado, J. A. (2021). Critically Ill COVID-19 Patients Exhibit Anti-SARS-CoV-2 Serological Responses. Pathophysiology, 28(2), 212-223. https://doi.org/10.3390/pathophysiology28020014