Chronic L-Name-Treatment Produces Hypertension by Different Mechanisms in Peripheral Tissues and Brain: Role of Central eNOS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Drugs
2.2. Animals and Treatment
2.3. Total NO Synthase Activity
2.4. Western Blot Analysis
2.5. Statistical Analysis
3. Results
3.1. Cardiovascular Parameters
3.2. Total NOS Activity
3.3. Western Blot Analysis
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Torres-Narváez, J.C.; Pérez-Torres, I.; Castrejón-Tellez, V.; Varela-López, E.; Oidor-Chan, V.H.; Guarner-Lans, V.; Vargas-González, Á.; Memije, R.M.; Flores-Chávez, P.; Cervantes-Yañez, E.Z.; et al. The Role of the Activation of the TRPV1 Receptor and of Nitric Oxide in Changes in Endothelial and Cardiac Function and Biomarker Levels in Hypertensive Rats. Int. J. Environ. Res. Public Health 2019, 16, 3576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonoda, K.; Ohtake, K.; Uchida, H.; Ito, J.; Uchida, M.; Natsume, H.; Tamada, H.; Kobayashi, J. Dietary nitrite supplementation attenuates cardiac remodeling in l -NAME-induced hypertensive rats. Nitric Oxide 2017, 67, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Babál, P.; Pechánová, O.; Bernátová, I.; Stvrtina, S. Chronic inhibition of NO synthesis produces myocardial fibrosis and arterial media hyperplasia. Histol. Histopathol. 1997, 12, 623–629. [Google Scholar] [PubMed]
- Adedara, I.A.; Alake, S.E.; Olajide, L.O.; Adeyemo, M.O.; Ajibade, T.O.; Farombi, E.O. Taurine Ameliorates Thyroid Hypofunction and Renal Injury in L-NAME-Induced Hypertensive Rats. Drug Res. 2018, 69, 83–92. [Google Scholar] [CrossRef]
- Guzmán-Hernández, E.A.; Villalobos-Molina, R.; Sánchez-Mendoza, M.A.; Del Valle-Mondragón, L.; Pastelín-Hernández, G.; Ibarra-Barajasm, M. Early co-expression of cyclooxygenase-2 and renin in the rat kidney cortex contributes to the development of N(G)-nitro-L-arginine methyl ester induced hypertension. Can. J. Physiol. Pharmacol. 2015, 93, 299–308. [Google Scholar] [CrossRef]
- Pechanova, O.; Matuskova, J.; Capikova, D.; Jendekova, L.; Paulis, L.; Simko, F. Effect of spironolactone and captopril on nitric oxide and S-nitrosothiol formation in kidney of L-NAME-treated rats. Kidney Int. 2006, 70, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Aekthammarat, D.; Pannangpetch, P.; Tangsucharit, P. Moringa oleifera leaf extract lowers high blood pressure by alleviating vascular dysfunction and decreasing oxidative stress in L-NAME hypertensive rats. Phytomedicine 2019, 54, 9–16. [Google Scholar] [CrossRef]
- Holecyova, A.; Torok, J.; Bernatova, I.; Pechanova, O. Restriction of nitric oxide rather then elevated blood pressure is responsible for alterations of vascular responses in nitric oxide deficient hypertension. Physiol. Res. 1996, 45, 317–321. [Google Scholar]
- Yadav, V.R.; Teng, B.; Mustafa, S.J. Enhanced A1 adenosine receptor-induced vascular contractions in mesenteric artery and aorta of in L-NAME mouse model of hypertension. Eur. J. Pharmacol. 2019, 842, 111–117. [Google Scholar] [CrossRef]
- Ignarro, L.J. Nitric oxide as a unique signaling molecule in the vascular system: A historical overview. J. Physiol. Pharmacol. 2002, 53, 503–514. [Google Scholar]
- Simko, F.; Baka, T.; Poglitsch, M.; Bednarova, K.R.; Aziriova, S.; Krajcirovicova, K.; Zorad, S.; Adamcova, M.; Paulis, L. Effect of Ivabradine on a Hypertensive Heart and the Renin-Angiotensin-Aldosterone System in L-NAME-Induced Hypertension. Int. J. Mol. Sci. 2018, 19, 3017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villarejo, A.; Prieto, I.; Segarra, A.; Banegas, I.; Wangensteen, R.; Vives, F.; De Gasparo, M.; Ramírez-Sánchez, M. Relationship of Angiotensinase and Vasopressinase Activities Between Hypothalamus, Heart, and Plasma in L-NAME-Treated WKY and SHR. Horm. Metab. Res. 2014, 46, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Giani, J.F.; Janjulia, T.; Kamat, N.; Seth, D.M.; Blackwell, W.-L.B.; Shah, K.H.; Shen, X.Z.; Fuchs, S.; Delpire, E.; Toblli, J.E.; et al. Renal Angiotensin-Converting Enzyme Is Essential for the Hypertension Induced by Nitric Oxide Synthesis Inhibition. J. Am. Soc. Nephrol. 2014, 25, 2752–2763. [Google Scholar] [CrossRef] [Green Version]
- Cavalcante, G.L.; Ferreira, F.N.; Da Silva, M.T.B.; Soriano, R.N.; Filho, A.L.M.M.; Arcanjo, D.D.R.; Sabino, J.P.J. Acetylcholinesterase inhibition prevents alterations in cardiovascular autonomic control and gastric motility in L-NAME-induced hypertensive rats. Life Sci. 2020, 256, 117915. [Google Scholar] [CrossRef] [PubMed]
- Chaswal, M.; Das, S.; Prasad, J.; Katyal, A.; Fahim, M. Chemical Sympathectomy Restores Baroreceptor-Heart Rate Reflex and Heart Rate Variability in Rats with Chronic Nitric Oxide Deficiency. Physiol. Res. 2015, 64, 459–466. [Google Scholar] [CrossRef]
- Colonna, V.D.G.; Fioretti, S.; Rigamonti, A.; Bonomo, S.; Manfredi, B.; Muller, E.E.; Berti, F.; Rossoni, G. Angiotensin II type 1 receptor antagonism improves endothelial vasodilator function in L-NAME-induced hypertensive rats by a kinin-dependent mechanism. J. Hypertens. 2006, 24, 95–102. [Google Scholar] [CrossRef]
- Kanthlal, S.K.; Joseph, J.; Paul, B. Antioxidant and vasorelaxant effects of aqueous extract of large cardamom in L-NAME induced hypertensive rats. Clin. Exp. Hypertens. 2020, 42, 581–589. [Google Scholar] [CrossRef]
- Rincón, J.; Correia, D.; Arcaya, J.; Finol, E.; Fernández, A.; Pérez, M.; Yaguas, K.; Talavera, E.; Chávez, M.; Summer, R.; et al. Role of Angiotensin II type 1 receptor on renal NAD(P)H oxidase, oxidative stress and inflammation in nitric oxide inhibition induced-hypertension. Life Sci. 2015, 124, 81–90. [Google Scholar] [CrossRef]
- Pechanova, O.; Varga, Z.V.; Cebova, M.; Giricz, Z.; Pacher, P.; Ferdinandy, P. Cardiac NO signalling in the metabolic syndrome. Br. J. Pharmacol. 2014, 172, 1415–1433. [Google Scholar] [CrossRef] [Green Version]
- Leo, M.D.; Kandasamy, K.; Subramani, J.; Tandan, S.K.; Kumar, D. Involvement of inducible nitric oxide synthase and dimethyl arginine dimethylaminohydrolase in Nω-Nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Cardiovasc. Pathol. 2015, 24, 49–55. [Google Scholar] [CrossRef]
- Sollinger, D.; Eißler, R.; Lorenz, S.; Strand, S.; Chmielewski, S.; Aoqui, C.; Schmaderer, C.; Bluyssen, H.; Zicha, J.; Witzke, O.; et al. Damage-associated molecular pattern activated Toll-like receptor 4 signalling modulates blood pressure in l-NAME-induced hypertension. Cardiovasc. Res. 2014, 101, 464–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosutova, M.; Pechanova, O.; Barta, A.; Franova, S.; Cebova, M. Different adaptive NO-dependent Mechanisms in Normal and Hypertensive Conditions. Molecules 2019, 24, 1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silambarasan, T.; Manivannan, J.; Priya, M.K.; Suganya, N.; Chatterjee, S.; Raja, B. Sinapic Acid Prevents Hypertension and Cardiovascular Remodeling in Pharmacological Model of Nitric Oxide Inhibited Rats. PLoS ONE 2014, 9, e115682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berkban, T.; Boonprom, P.; Bunbupha, S.; Welbat, J.U.; Kukongviriyapan, U.; Kukongviriyapan, V.; Pakdeechote, P.; Prachaney, P. Ellagic Acid Prevents L-NAME-Induced Hypertension via Restoration of eNOS and p47phox Expression in Rats. Nutrition 2015, 7, 5265–5280. [Google Scholar] [CrossRef] [PubMed]
- Grumbach, I.M.; Chen, W.; Mertens, S.; Harrison, D. A negative feedback mechanism involving nitric oxide and nuclear factor kappa-B modulates endothelial nitric oxide synthase transcription. J. Mol. Cell. Cardiol. 2005, 39, 595–603. [Google Scholar] [CrossRef]
- Bruno, A.S.; Lopes, P.D.D.; De Oliveira, K.C.M.; De Oliveira, A.K.; Cau, S.B.A. Vascular Inflammation in Hypertension: Targeting Lipid Mediators Unbalance and Nitrosative Stress. Curr. Hypertens. Rev. 2019, 16, 1. [Google Scholar] [CrossRef]
- Sun, Y.; Carretero, O.A.; Xu, J.; Rhaleb, N.-E.; Yang, J.J.; Pagano, P.J.; Yang, X.-P. Deletion of Inducible Nitric Oxide Synthase Provides Cardioprotection in Mice With 2-Kidney, 1-Clip Hypertension. Hypertension 2009, 53, 49–56. [Google Scholar] [CrossRef]
- Kitamoto, S.; Egashira, K.; Kataoka, C.; Koyanagi, M.; Katoh, M.; Shimokawa, H.; Morishita, R.; Kaneda, Y.; Sueishi, K.; Takeshita, A. Increased activity of nuclear factor-kappaB participates in cardiovascular remodeling induced by chronic inhibition of nitric oxide synthesis in rats. Circulation 2000, 102, 806–812. [Google Scholar] [CrossRef] [Green Version]
- Pechanova, O.; Jendeková, L.; Kojšová, S.; Jagla, F. Possible role of nitric oxide in the locomotor activity of hypertensive rats. Behav. Brain Res. 2006, 174, 160–166. [Google Scholar] [CrossRef]
- Nava, E.; Noll, G.; Lüscher, T.F. Increased Activity of Constitutive Nitric Oxide Synthase in Cardiac Endothelium in Spontaneous Hypertension. Circulation 1995, 91, 2310–2313. [Google Scholar] [CrossRef]
- Llorens, S.; Fernández, A.P.; Nava, E. Cardiovascular and renal alterations on the nitric oxide pathway in spontaneous hypertension and ageing. Clin. Hemorheol. Microcirc. 2007, 37, 149–156. [Google Scholar] [PubMed]
- Majzúnová, M.; Pakanová, Z.; Kvasnička, P.; Bališ, P.; Čačányiová, S.; Dovinová, I. Age-dependent redox status in the brain stem of NO-deficient hypertensive rats. J. Biomed. Sci. 2017, 24, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kagiyama, S.; Tsuchihashi, T.; Abe, I.; Fujishima, M. Enhanced Depressor Response to Nitric Oxide in the Rostral Ventrolateral Medulla of Spontaneously Hypertensive Rats. Hypertension 1998, 31, 1030–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva, A.A.; do Carmo, J.M.; Dubinion, J.H.; Bassi, M.; Mokhtarpouriani, K.; Hamza, S.M.; Hall, J.E. Chronic central nervous system MC3/4R blockade attenuates hypertension induced by nitric oxide synthase inhibition but not by angiotensin II infusion. Hypertension 2015, 65, 171–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lander, H.M.; Sehajpal, P.; Levine, D.M.; Novogrodsky, A. Activation of human peripheral blood mononuclear cells by nitric oxide-generating compounds. J. Immunol. 1993, 150, 1509–1516. [Google Scholar]
- Zhen, J.; Lu, H.; Wang, X.Q.; Vaziri, N.D.; Zhou, X.J. Upregulation of Endothelial and Inducible Nitric Oxide Synthase Expression by Reactive Oxygen Species. Am. J. Hypertens. 2008, 21, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Simpson, C.S.; Morris, B.J. Activation of nuclear factor kappaB by nitric oxide in rat striatal neurones: Differential inhibition of the p50 and p65 subunits by dexamethasone. J. Neurochem. 1999, 73, 353–361. [Google Scholar] [CrossRef]
Control 4 | L-NAME 4 | Control 7 | L-NAME 7 | |
---|---|---|---|---|
BW (g) | 330 ± 10 | 337 ± 15 | 341 ± 7 | 349 ± 10 |
LVW (mg) | 439 ± 21 | 509 ± 23 * | 465 ± 29 | 536 ± 20 * |
LVW/BW (mg/g) | 1.33 ± 0.04 | 1.51 ± 0.05 * | 1.36 ± 0.07 | 1.54 ± 0.06 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pechanova, O.; Vrankova, S.; Cebova, M. Chronic L-Name-Treatment Produces Hypertension by Different Mechanisms in Peripheral Tissues and Brain: Role of Central eNOS. Pathophysiology 2020, 27, 46-54. https://doi.org/10.3390/pathophysiology27010007
Pechanova O, Vrankova S, Cebova M. Chronic L-Name-Treatment Produces Hypertension by Different Mechanisms in Peripheral Tissues and Brain: Role of Central eNOS. Pathophysiology. 2020; 27(1):46-54. https://doi.org/10.3390/pathophysiology27010007
Chicago/Turabian StylePechanova, Olga, Stanislava Vrankova, and Martina Cebova. 2020. "Chronic L-Name-Treatment Produces Hypertension by Different Mechanisms in Peripheral Tissues and Brain: Role of Central eNOS" Pathophysiology 27, no. 1: 46-54. https://doi.org/10.3390/pathophysiology27010007
APA StylePechanova, O., Vrankova, S., & Cebova, M. (2020). Chronic L-Name-Treatment Produces Hypertension by Different Mechanisms in Peripheral Tissues and Brain: Role of Central eNOS. Pathophysiology, 27(1), 46-54. https://doi.org/10.3390/pathophysiology27010007