CLOCK 3111TT Genotype Is Associated with Increased Total Cholesterol and Low-Density Lipoprotein Levels in Menopausal Women with a Body Mass Index of at Least 25 kg/m2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standard Protocol Approvals, Registrations, and Patient Consent
2.2. Subjects
2.3. Methods and Elaborating on Methods
2.3.1. Obesity-Related Parameters
2.3.2. Collection of Material
2.3.3. Molecular Genetic Examination
2.3.4. Plasma Lipid Determination
2.3.5. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Polsky, S.; Ellis, S.L. Obesity, insulin resistance, and type 1 diabetes mellitus. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Seravalle, G.; Grassi, G. Obesity and hypertension. Pharmacol. Res. 2017, 122, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Peters, U.; Dixon, A.E.; Forno, E. Obesity and asthma. J. Allergy Clin. Immunol. 2018, 141, 1169–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, A. CE: Obesity-related cancer in women: A clinical review. Am. J. Nurs. 2019, 119, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, J.S. Molecular Architecture of the Circadian Clock in Mammals. In A Time for Metabolism and Hormones; Springer: Cham, Switzerland, 2016; pp. 13–24. [Google Scholar]
- Benedetti, F.; Dallaspezia, S.; Fulgosi, M.C. Actimetric evidence that Clock 3111T/C SNP influence sleep and activity patterns in patients affected by bipolar depression. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007, 144B, 631–635. [Google Scholar] [CrossRef]
- Antypa, N.; Mandelli, L.; Nearchou, F.A.; Vaiopoulos, C.; Stefanis, C.N.; Serretti, A.; Stefanis, N.C. The 3111T/C polymorphism interacts with stressful life events to influence patterns of sleep in females. Chronobiol. Int. 2012, 29, 891–897. [Google Scholar] [CrossRef]
- Ziv-Gal, A.; Flaws, J.A.; Mahoney, M.M.; Miller, S.R.; Zacur, H.A.; Gallicchio, L. Genetic polymorphisms in the aryl hydrocarbon receptor–signaling pathway and sleep disturbances in middle-aged women. Sleep Med. 2013, 14, 883–887. [Google Scholar] [CrossRef] [Green Version]
- Semenova, N.V.; Madaeva, I.M.; Bairova, T.A.; Zhambalova, R.M.; Sholokhov, L.F.; Kolesnikova, L.I. Association of the melatonin circadian rhythms with clock 3111T/C gene polymorphism in Caucasian and Asian menopausal women with insomnia. Chronobiol. Int. 2018, 35, 1066–1076. [Google Scholar] [CrossRef]
- Tortorella, A.; Monteleone, P.; Martiadis, V.; Perris, F.; Maj, M. The 3111T/C polymorphism of the CLOCK gene confers a predisposition to a lifetime lower body weight in patients with anorexia nervosa and bulimia nervosa: A preliminary study. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007, 144B, 992–995. [Google Scholar] [CrossRef]
- Pagliai, G.; Sofi, F.; Dinu, M.; Sticchi, E.; Vannetti, F.; Lova, R.M.; Ordovàs, J.M.; Gori, A.M.; Marcucci, R.; Giusti, B.; et al. CLOCK gene polymorphisms and quality of aging in a cohort of nonagenarians—The MUGELLO Study. Sci. Rep. 2019, 9, 1472. [Google Scholar] [CrossRef] [Green Version]
- Monteleone, P.; Tortorella, A.; Docimo, L.; Maldonato, M.N.; Canestrelli, B.; De Luca, L.; Maj, M. Investigation of 3111T/C polymorphism of the CLOCK gene in obese individuals with or without binge eating disorder: Association with higher body mass index. Neurosci. Lett. 2008, 11, 30–33. [Google Scholar] [CrossRef]
- Garcia-Rios, A.; Gomez-Delgado, F.G.; Garaulet, M.; Alcala-Diaz, J.F.; Delgado-Lista, F.J.; Marin, C.; Rangel-Zuñiga, O.A.; Rodriguez-Cantalejo, F.; Gomez-Luna, P.; Ordovas, J.M.; et al. Beneficial effect of CLOCK gene polymorphism rs1801260 in combination with low-fat diet on insulin metabolism in the patients with metabolic syndrome. Chronobiol. Int. 2014, 31, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Delgado, F.; Garcia-Rios, A.; Alcala-Diaz, J.F.; Rangel Zuñiga, O.; Delgado-Lista, J.; Yubero-Serrano, E.M.; Lopez-Moreno, J.; Tinahones, F.J.; Ordovas, J.M.; Garaulet, M.; et al. Chronic consumption of a low-fat diet improves cardiometabolic risk factors according to the CLOCK gene in patients with coronary heart disease. Mol. Nutr. Food Res. 2015, 59, 2556–2564. [Google Scholar] [CrossRef] [PubMed]
- Loria-Kohen, V.; Espinosa-Salinas, I.; Marcos-Pasero, H.; Lourenço-Nogueira, T.; Herranz, J.; Molina, S.; Reglero, G.; De Molina, A.R. Polymorphism in the CLOCK gene may influence the effect of fat intake reduction on weight loss. Nutrition 2016, 32, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Galbete, C.; Contreras, R.; Martínez, J.A.; Martínez-González, M.A.; Guillén-Grima, F.; Marti, A. Physical Activity and Sex Modulate Obesity Risk Linked to 3111T/C Gene Variant of the CLOCK Gene in an Elderly Population: The SUN Project. Chronobiol. Int. 2012, 29, 1397–1404. [Google Scholar] [CrossRef]
- Meng, Y.; Lohse, B.; Cunningham-Sabo, L. Sex modifies the association between the CLOCK variant rs1801260 and BMI in school-age children. PLoS ONE 2020, 15, e0236991. [Google Scholar] [CrossRef]
- Gonçalves, J.T.; Silveira, M.F.; Campos, M.C.; Costa, L.H. Overweight and obesity and factors associated with menopause. Cien Saude Colet. 2016, 21, 1145–1156. [Google Scholar] [CrossRef] [Green Version]
- Lumsden, M.A.; Sassarini, J. The evolution of the human menopause. Climacteric 2019, 22, 111–116. [Google Scholar] [CrossRef]
- Lizcano, F.; Guzmán, G. Estrogen Deficiency and the Origin of Obesity during Menopause. Biomed. Res. Int. 2014, 2014, 757461. [Google Scholar] [CrossRef]
- World Medical Association (WMA). World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Tsuzaki, K.; Kotani, K.; Sano, Y.; Fujiwara, S.; Takahashi, K.; Sakane, N. The association of the Clock 3111 T/C SNP with lipids and lipoproteins including small dense low-density lipoprotein: Results from the Mima study. BMC Med. Genet. 2010, 11, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmisano, B.T.; Zhu, L.; Stafford, J.M. Estrogens in the regulation of liver lipid metabolism. Adv. Exp. Med. Biol. 2017, 1043, 227–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, L.; Shao, W.; Ip, W.; Song, Z.; Badakhshi, Y.; Jin, T. The developmental Wnt signaling pathway effector β-catenin/TCF mediates hepatic functions of the sex hormone estradiol in regulating lipid metabolism. PLoS Biol. 2019, 17, e3000444. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Li, W.; Ao, H.; Zhang, Y.; Zhou, R.; Li, K. Effects of melatonin on the synthesis of estradiol and gene expression in pig granulosa cells. J. Pineal. Res. 2019, 66, e12546. [Google Scholar] [CrossRef]
- Tan, D.X.; Xu, B.; Zhou, X.; Reiter, R.J. Pineal calcification, melatonin production, aging, associated health consequences and rejuvenation of the pineal gland. Molecules 2018, 23, 301. [Google Scholar] [CrossRef] [Green Version]
- Semenova, N.; Madaeva, I.; Bairova, T.; Kolesnikov, S.; Kolesnikova, L. Lipid peroxidation depends on the clock 3111T/C gene polymorphism in menopausal women with insomnia. Chronobiol. Int. 2019, 36, 1399–1408. [Google Scholar] [CrossRef]
- Martins, I.J. Increased risk for obesity and diabetes with neurodegeneration in developing countries. J. Mol. Genet. Med. 2013, S1, 001. [Google Scholar] [CrossRef] [Green Version]
- Martins, I.J. Single gene inactivation with implications to diabetes and multiple organ dysfunction syndrome. J. Clin. Epigenet. 2017, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.T.; Chen, H.; Zaky, A.; Pollock, C.; Saad, S. SIRT1 overexpression attenuates offspring metabolic and liver disorders as a result of maternal high-fat feeding. J. Physiol. 2019, 597, 467–480. [Google Scholar] [CrossRef] [Green Version]
- De Farias, T.D.S.M.; Cruz, M.M.; De Sa, R.C.D.C.; Severi, I.; Perugini, J.; Senzacqua, M.; Cerutti, S.M.; Giordano, A.; Cinti, S.; Alonso-Vale, M.I.C. Melatonin supplementation decreases hypertrophic obesity and inflammation induced by high-fat diet in mice. Front. Endocrinol. 2019, 10, 750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozburn, A.R.; Purohit, K.; Parekh, P.K.; Kaplan, G.N.; Falcon, E.; Mukherjee, S.; Cates, H.M.; McClung, C.A. Functional implications of the CLOCK 3111T/C single-nucleotide polymorphism. Front. Psychiatry 2016, 7, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garaulet, M.; Lee, Y.C.; Shen, J.; Parnell, L.D.; Arnett, D.K.; Tsai, M.Y.; Lai, C.-Q.; Ordovas, J.M. Genetic variants in human CLOCK associate with total energy intake and cytokine sleep factors in overweight subjects (GOLDN population). Eur. J. Hum. Genet. 2010, 18, 364–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garaulet, M.; Tardido, A.E.; Lee, Y.C.; Smith, C.E.; Parnell, L.D.; Ordovás, J.M. SIRT1 and CLOCK 3111T> C combined genotype is associated with evening preference and weight loss resistance in a behavioral therapy treatment for obesity. Int. J. Obes. 2012, 36, 1436–1441. [Google Scholar] [CrossRef] [Green Version]
- Yanai, H.; Yoshida, H. Beneficial effects of adiponectin on glucose and lipid metabolism and atherosclerotic progression: Mechanisms and perspectives. Int. J. Mol. Sci. 2019, 20, 1190. [Google Scholar] [CrossRef] [Green Version]
- Lv, Y.; Liang, T.; Wang, G.; Li, Z. Ghrelin, a gastrointestinal hormone, regulates energy balance and lipid metabolism. Biosci. Rep. 2018, 38. [Google Scholar] [CrossRef]
Characteristics | BMI < 25, n = 42 | BMI ≥ 25, n = 151 |
---|---|---|
Age, year | 52 ± 4.74 | 53 ± 5.15 |
Height, m | 1.62 ± 0.06 | 1.61 ± 0.07 |
Weight, kg | 59.9 ± 6.54 | 81.1 ± 13.21 |
BMI, kg/m2 | 23.1 ± 1.51 | 31.2 ± 4.95 * |
Perimenopause, n (%) | 20 (47.62) | 61 (40.4) |
Postmenopause, n (%) | 22 (52.38) | 90 (59.6) |
Group | Genotypes, n (%) | Alleles | Compliance with the Hardy–Weinberg Law | ||||||
---|---|---|---|---|---|---|---|---|---|
Expected Genotype Frequency (%) | p-Value | ||||||||
3111T/T | 3111T/C | 3111C/C | 3111T | 3111C | 3111T/T | 3111T/C | 3111C/C | ||
BMI < 25 kg/m2 | 22 (52.4) | 16 (38.1) | 4 (9.5) | 0.71 | 0.29 | 51.05 | 40.8 | 8.15 | >0.05 |
BMI ≥ 25 kg/m2 | 76 (50.3) | 56 (37.1) | 19(12.6) | 0.69 | 0.31 | 47.4 | 42.89 | 9.7 | >0.05 |
χ2 = 0.294; df = 2; p = 0.864 | χ2 = 0.202; df = 1; p = 0.654 |
Overweight Risk Factor | OR (95% CI) | p-Level |
---|---|---|
TT-genotype | 0.92 (0.47–1.83) | >0.05 |
TC-, CC-genotypes | 1.09 (0.55–2.15) | >0.05 |
Parameters | BMI < 25 kg/m2 | BMI ≥ 25 kg/m2 | p-Value | ||
---|---|---|---|---|---|
3111T/T | 3111T/C + 3111C/C | 3111T/T | 3111T/C + 3111C/C | ||
n = 22 | n = 20 | n = 76 | n = 75 | ||
BMI (kg/m2) | 23.2 ± 1.66 | 23 ± 1.35 | 31.1 ± 4.46 | 31.2 ± 5.44 | p a,c = 0.009 p b,d = 0.001 |
TC, (mmol/L) | 4.25 [3.70–5.37] | 4.39 [3.99–4.53] | 5.29 [4.72–6.02] | 5.18 [4.09–5.91] | p a,c = 0.013 p c,d = 0.029 p b,d = 0.033 |
TG, (mmol/L) | 0.67 [0.54–0.99] | 0.94 [0.77–1.12] | 0.98 [0.74–1.23] | 1.01 [0.68–1.39] | p a,c = 0.010 p b,d = 0.025 |
HDL-C, (mmol/L) | 1.34 [1.23–1.58] | 1.19 [1.05–1.36] | 1.15 [0.92–1.34] | 1.24 [1.02–1.40] | p a,c = 0.018 |
LDL-C, (mmol/L) | 2.60 [2.14–3.27] | 2.69 [2.33–2.92] | 3.87 [3.10–4.29] | 3.51 [2.43–4.06] | p a,c = 0.003 p c,d = 0.012 p b,d = 0.007 |
VLDL-C, (mmol/L) | 0.30 [0.24–0.45] | 0.43 [0.35–0.58] | 0.45 [0.34–0.56] | 0.46 [0.31–0.64] | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenova, N.; Madaeva, I.; Kolesnikov, S.; Rychkova, L.; Bairova, T.; Darenskaya, M.; Kolesnikova, L. CLOCK 3111TT Genotype Is Associated with Increased Total Cholesterol and Low-Density Lipoprotein Levels in Menopausal Women with a Body Mass Index of at Least 25 kg/m2. Pathophysiology 2021, 28, 1-9. https://doi.org/10.3390/pathophysiology28010001
Semenova N, Madaeva I, Kolesnikov S, Rychkova L, Bairova T, Darenskaya M, Kolesnikova L. CLOCK 3111TT Genotype Is Associated with Increased Total Cholesterol and Low-Density Lipoprotein Levels in Menopausal Women with a Body Mass Index of at Least 25 kg/m2. Pathophysiology. 2021; 28(1):1-9. https://doi.org/10.3390/pathophysiology28010001
Chicago/Turabian StyleSemenova, Natalya, Irina Madaeva, Sergey Kolesnikov, Lyubov Rychkova, Tatjana Bairova, Marina Darenskaya, and Lyubov Kolesnikova. 2021. "CLOCK 3111TT Genotype Is Associated with Increased Total Cholesterol and Low-Density Lipoprotein Levels in Menopausal Women with a Body Mass Index of at Least 25 kg/m2" Pathophysiology 28, no. 1: 1-9. https://doi.org/10.3390/pathophysiology28010001
APA StyleSemenova, N., Madaeva, I., Kolesnikov, S., Rychkova, L., Bairova, T., Darenskaya, M., & Kolesnikova, L. (2021). CLOCK 3111TT Genotype Is Associated with Increased Total Cholesterol and Low-Density Lipoprotein Levels in Menopausal Women with a Body Mass Index of at Least 25 kg/m2. Pathophysiology, 28(1), 1-9. https://doi.org/10.3390/pathophysiology28010001