Short Sleep Duration Was Associated with Increased Regional Body Fat in US Adults: The NHANES from 2011 to 2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Definition of Regional Fat Mass
2.3. Definition of Sleep Duration
2.4. Covariate Assessment
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Association of Sleep Duration with Different Regional FMI in Whole Population
3.3. Differences by Gender and BMI Strata
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heymsfield, S.B.; Wadden, T.A. Mechanisms, Pathophysiology, and Management of Obesity. N. Engl. J. Med. 2017, 376, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Chooi, Y.C.; Ding, C.; Magkos, F. The epidemiology of obesity. Metab. Clin. Exp. 2019, 92, 6–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- González-Muniesa, P.; Mártinez-González, M.A.; Hu, F.B.; Després, J.P.; Matsuzawa, Y.; Loos, R.J.F.; Moreno, L.A.; Bray, G.A.; Martinez, J.A. Obesity. Nat. Rev. Dis. Primers 2017, 3, 17034. [Google Scholar] [CrossRef] [PubMed]
- Broussard, J.L.; Ehrmann, D.A.; Van Cauter, E.; Tasali, E.; Brady, M.J. Impaired insulin signaling in human adipocytes after experimental sleep restriction: A randomized, crossover study. Ann. Intern. Med. 2012, 157, 549–557. [Google Scholar] [CrossRef] [Green Version]
- Besedovsky, L.; Lange, T.; Haack, M. The Sleep-Immune Crosstalk in Health and Disease. Physiol. Rev. 2019, 99, 1325–1380. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wheaton, A.G.; Chapman, D.P.; Cunningham, T.J.; Lu, H.; Croft, J.B. Prevalence of Healthy Sleep Duration among Adults—United States, 2014. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wheaton, A.G.; Chapman, D.P.; Croft, J.B. Sleep duration and chronic diseases among U.S. adults age 45 years and older: Evidence from the 2010 Behavioral Risk Factor Surveillance System. Sleep 2013, 36, 1421–1427. [Google Scholar] [CrossRef] [Green Version]
- St-Onge, M.P. Sleep-obesity relation: Underlying mechanisms and consequences for treatment. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2017, 18 (Suppl. S1), 34–39. [Google Scholar] [CrossRef]
- Kim, K.; Shin, D.; Jung, G.U.; Lee, D.; Park, S.M. Association between sleep duration, fat mass, lean mass and obesity in Korean adults: The fourth and fifth Korea National Health and Nutrition Examination Surveys. J. Sleep Res. 2017, 26, 453–460. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, S.J.; Quer, G.; Galarnyk, M.; Steinhubl, S.R.; Topol, E.J.; Owens, R.L. Association of Sleep Duration and Variability With Body Mass Index: Sleep Measurements in a Large US Population of Wearable Sensor Users. JAMA Intern. Med. 2020, 180, 1694–1696. [Google Scholar] [CrossRef] [PubMed]
- Bacaro, V.; Ballesio, A.; Cerolini, S.; Vacca, M.; Poggiogalle, E.; Donini, L.M.; Lucidi, F.; Lombardo, C. Sleep duration and obesity in adulthood: An updated systematic review and meta-analysis. Obes. Res. Clin. Pract. 2020, 14, 301–309. [Google Scholar] [CrossRef]
- Romero-Corral, A.; Lopez-Jimenez, F.; Sierra-Johnson, J.; Somers, V.K. Differentiating between body fat and lean mass-how should we measure obesity? Nat. Clin. Pract. Endocrinol. Metab. 2008, 4, 322–323. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Titova, O.E.; Lindberg, E.; Elmståhl, S.; Lind, L.; Schiöth, H.B.; Benedict, C. Association Between Self-Reported Sleep Duration and Body Composition in Middle-Aged and Older Adults. J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 2019, 15, 431–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tchkonia, T.; Thomou, T.; Zhu, Y.; Karagiannides, I.; Pothoulakis, C.; Jensen, M.D.; Kirkland, J.L. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 2013, 17, 644–656. [Google Scholar] [CrossRef] [Green Version]
- Karpe, F.; Pinnick, K.E. Biology of upper-body and lower-body adipose tissue--link to whole-body phenotypes. Nat. Rev. Endocrinol. 2015, 11, 90–100. [Google Scholar] [CrossRef]
- Johnson, C.L.; Dohrmann, S.M.; Burt, V.L.; Mohadjer, L.K. National Health and Nutrition Examination Survey: Sample Design, 2011–2014; Vital and Health Statistics. Series 2 Data Evaluation and Methods Research; US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, USA, 2014; pp. 1–33.
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health 2015, 1, 40–43. [Google Scholar] [CrossRef]
- Watson, N.F.; Badr, M.S.; Belenky, G.; Bliwise, D.L.; Buxton, O.M.; Buysse, D.; Dinges, D.F.; Gangwisch, J.; Grandner, M.A.; Kushida, C.; et al. Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society on the Recommended Amount of Sleep for a Healthy Adult: Methodology and Discussion. Sleep 2015, 38, 1161–1183. [Google Scholar] [CrossRef]
- Menke, A.; Casagrande, S.; Geiss, L.; Cowie, C.C. Prevalence of and Trends in Diabetes Among Adults in the United States, 1988–2012. JAMA 2015, 314, 1021–1029. [Google Scholar] [CrossRef] [Green Version]
- Grandner, M.A. Sleep, Health, and Society. Sleep Med. Clin. 2017, 12, 1–22. [Google Scholar] [CrossRef]
- Rahe, C.; Czira, M.E.; Teismann, H.; Berger, K. Associations between poor sleep quality and different measures of obesity. Sleep Med. 2015, 16, 1225–1228. [Google Scholar] [CrossRef] [PubMed]
- Sweatt, S.K.; Gower, B.A.; Chieh, A.Y.; Liu, Y.; Li, L. Sleep quality is differentially related to adiposity in adults. Psychoneuroendocrinology 2018, 98, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Zimberg, I.Z.; Dâmaso, A.; Del Re, M.; Carneiro, A.M.; de Sá Souza, H.; de Lira, F.S.; Tufik, S.; de Mello, M.T. Short sleep duration and obesity: Mechanisms and future perspectives. Cell Biochem. Funct. 2012, 30, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Depner, C.M.; Stothard, E.R.; Wright, K.P., Jr. Metabolic consequences of sleep and circadian disorders. Curr. Diabetes Rep. 2014, 14, 507. [Google Scholar] [CrossRef]
- Shan, Z.; Ma, H.; Xie, M.; Yan, P.; Guo, Y.; Bao, W.; Rong, Y.; Jackson, C.L.; Hu, F.B.; Liu, L. Sleep duration and risk of type 2 diabetes: A meta-analysis of prospective studies. Diabetes Care 2015, 38, 529–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.; Sun, Y.; Zhang, H.; Chen, C.; Wang, Y.; Zhang, J.; Xia, F.; Benedict, C.; Tan, X.; Lu, Y. Total and regional fat-to-muscle mass ratio measured by bioelectrical impedance and risk of incident type 2 diabetes. J. Cachexia Sarcopenia Muscle 2021, 12, 2154–2162. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Cheng, S.; Pan, C.; Zhang, H.; Zhang, J.; Zhang, Z.; Yao, Y.; Cheng, B.; Liu, L.; et al. The causal relationships between sleep-related phenotypes and body composition: A Mendelian randomized study. J. Clin. Endocrinol. Metab. 2022, dgac234. [Google Scholar] [CrossRef]
- Lovejoy, J.C.; Sainsbury, A. Sex differences in obesity and the regulation of energy homeostasis. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2009, 10, 154–167. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, X.; Liang, Y.; Xue, H.; Gong, Y.; Xiong, J.; He, F.; Yang, Y.; Cheng, G. Associations between nocturnal sleep duration, midday nap duration and body composition among adults in Southwest China. PLoS ONE 2019, 14, e0223665. [Google Scholar]
- Lizcano, F.; Guzmán, G. Estrogen Deficiency and the Origin of Obesity during Menopause. BioMed Res. Int. 2014, 2014, 757461. [Google Scholar] [CrossRef]
- Lévy, P.; Bonsignore, M.R.; Eckel, J. Sleep, sleep-disordered breathing and metabolic consequences. Eur. Respir. J. 2009, 34, 243–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, L.J.; Davidson, Z.E.; Bonham, M.; O’Driscoll, D.M.; Hamilton, G.S.; Truby, H. Weight loss from lifestyle interventions and severity of sleep apnoea: A systematic review and meta-analysis. Sleep Med. 2014, 15, 1173–1183. [Google Scholar] [CrossRef] [PubMed]
- Ogilvie, R.P.; Patel, S.R. The epidemiology of sleep and obesity. Sleep Health 2017, 3, 383–388. [Google Scholar] [CrossRef]
- Epstein, L.J.; Kristo, D.; Strollo, P.J., Jr.; Friedman, N.; Malhotra, A.; Patil, S.P.; Ramar, K.; Rogers, R.; Schwab, R.J.; Weaver, E.M.; et al. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 2009, 5, 263–276. [Google Scholar]
- Chin, K.; Oga, T.; Takahashi, K.; Takegami, M.; Nakayama-Ashida, Y.; Wakamura, T.; Sumi, K.; Nakamura, T.; Horita, S.; Oka, Y.; et al. Associations between obstructive sleep apnea, metabolic syndrome, and sleep duration, as measured with an actigraph, in an urban male working population in Japan. Sleep 2010, 33, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Åkerstedt, T.; Ghilotti, F.; Grotta, A.; Zhao, H.; Adami, H.O.; Trolle-Lagerros, Y.; Bellocco, R. Sleep duration and mortality—Does weekend sleep matter? J. Sleep Res. 2019, 28, e12712. [Google Scholar] [CrossRef] [PubMed]
Sleep Duration (h/day) | P Value | |||
---|---|---|---|---|
<7 (n = 3126) | 7–9 (n = 5771) | >9 (n = 516) | ||
Age (years) | 39.00 ± 11.9 | 37.31 ± 12.2 | 32.46 ± 12.7 | <0.001 |
Sex, n (%) | <0.001 | |||
Men | 1703 (54.48%) | 2916 (50.53%) | 232 (44.96%) | |
Women | 1423 (45.52%) | 2855 (49.47%) | 284 (55.04%) | |
Race, n (%) | <0.001 | |||
Mexican American | 425 (13.60%) | 961 (16.65%) | 96 (18.60%) | |
Other Hispanic | 331 (10.59%) | 588 (10.19%) | 55 (10.66%) | |
Non-Hispanic White | 1029 (32.92%) | 2117 (36.68%) | 167 (32.36%) | |
Non-Hispanic Black | 839 (26.84%) | 924 (16.01%) | 107 (20.74%) | |
Other Race | 502 (16.06%) | 1181 (20.46%) | 91 (17.64%) | |
Education, n (%) | <0.001 | |||
Under high school | 570 (18.23%) | 1035 (17.93%) | 135 (26.16%) | |
High school or equivalent | 751 (24.02%) | 1369 (23.72%) | 188 (36.43%) | |
At least College | 1805 (57.74%) | 3367 (58.34%) | 193 (37.40%) | |
Marital status, n (%) | <0.001 | |||
Married or living with partner | 1752 (56.05%) | 3333 (57.75%) | 200 (38.76) | |
Widowed | 49 (1.57%) | 58 (1.01%) | 2 (0.39%) | |
Divorced or separated | 434 (13.88%) | 573 (9.93%) | 50 (9.69%) | |
Never married | 891 (28.50%) | 1807 (31.31%) | 264 (51.16%) | |
Current smoking, n (%) | 776 (24.82%) | 1065 (18.45%) | 148 (28.68%) | <0.001 |
Alcohol consumption, n (%) | 2442 (78.12%) | 4392 (76.10%) | 359 (69.57%) | <0.001 |
Sedentary activity (min/day) | 376.4 ± 211 | 379.1 ± 199.7 | 347.1 ± 197.8 | 0.003 |
Total physical activity (min/day) | 141.2 ± 220.8 | 110 ± 195.4 | 106.9 ± 182 | <0.001 |
Current working, n (%) | 2368 (75.75%) | 4225 (73.21%) | 244 (47.29%) | <0.001 |
Diabetes, n (%) | 329 (10.52%) | 437 (7.57%) | 43 (8.33%) | <0.001 |
Hyperlipidemia, n (%) | 774 (24.83%) | 1249 (21.67%) | 92 (17.86%) | <0.001 |
Hypoglycemic therapy, n (%) | 223 (7.45%) | 281 (4.87%) | 26 (5.04%) | <0.001 |
Lipid-lowering therapy, n (%) | 282 (9.02%) | 376 (6.52%) | 34 (6.59%) | <0.001 |
Waist circumference (cm) | 98.1 ± 16.8 | 95.2 ± 15.7 | 93.5 ± 16.9 | <0.001 |
BMI (kg/m2) | 29.2 ± 6.9 | 28.1 ± 6.4 | 27.6 ± 6.6 | <0.001 |
Total cholesterol (mg/dL) | 189.3 ± 40.7 | 188.9 ± 40.2 | 181.3 ± 38.1 | <0.001 |
High-density lipoprotein (md/dL) | 51.4 ± 15.3 | 52.4 ± 15.1 | 53.0 ± 15.4 | 0.006 |
Duration | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
(h/day) | β (95% CI) | p Value | β (95% CI) | p Value | β (95% CI) | p Value |
Total FMI (kg/m2) | ||||||
<7 | 0.384 (0.217, 0.550) | <0.001 | 0.381 (0.214, 0.547) | <0.001 | 0.275 (0.121, 0.430) | <0.001 |
7–9 | reference | reference | reference | |||
>9 | −0.022 (−0.365, 0.320) | 0.898 | 0.006 (−0.339, 0.350) | 0.974 | 0.057 (−0.263, 0.376) | 0.729 |
Trunk FMI (kg/m2) | ||||||
<7 | 0.204 (0.114, 0.296) | <0.001 | 0.204 (0.113, 0.294) | <0.001 | 0.134 (0.051, 0.216) | 0.001 |
7–9 | reference | reference | reference | |||
>9 | 0.003 (−0.184, 0.190) | 0.973 | 0.012 (−0.176, 0.200) | 0.898 | 0.038 (−0.132, 0.208) | 0.661 |
Arms FMI (kg/m2) | ||||||
<7 | 0.054 (0.030, 0.078) | <0.001 | 0.054 (0.030, 0.077) | <0.001 | 0.038 (0.016, 0.060) | <0.001 |
7–9 | reference | reference | reference | |||
>9 | 0.002 (−0.047, 0.050) | 0.940 | −0.001 (−0.050, 0.048) | 0.975 | 0.004 (−0.041, 0.049) | 0.862 |
Legs FMI (kg/m2) | ||||||
<7 | 0.122 (0.063, 0.181) | <0.001 | 0.120 (0.061, 0.178) | <0.001 | 0.101 (0.044, 0.158) | <0.001 |
7–9 | reference | reference | reference | |||
>9 | −0.028 (−0.149, 0.093) | 0.650 | −0.006 (−0.127, 0.115) | 0.922 | 0.013 (−0.104, 0.131) | 0.824 |
Duration | Men | Women | ||
---|---|---|---|---|
(h/day) | β (95% CI) | P Value | β (95% CI) | P Value |
Total FMI (kg/m2) | ||||
<7 | 0.268 (0.091, 0.446) | 0.003 | 0.262 (0.006, 0.518) | 0.045 |
7–9 | reference | reference | ||
>9 | −0.014 (−0.412, 0.384) | 0.945 | 0.082 (−0.407, 0.572) | 0.742 |
Trunk FMI (kg/m2) | ||||
<7 | 0.126 (0.029, 0.223) | 0.011 | 0.125 (−0.010, 0.259) | 0.070 |
7–9 | reference | reference | ||
>9 | −0.022 (−0.240, 0.195) | 0.841 | 0.068 (−0.189, 0.325) | 0.603 |
Arms FMI (kg/m2) | ||||
<7 | 0.031 (0.008, 0.055) | 0.009 | 0.042 (0.005, 0.080) | 0.027 |
7–9 | reference | reference | ||
>9 | −0.004 (−0.057, 0.049) | 0.878 | 0.012 (−0.059, 0.084) | 0.734 |
Legs FMI (kg/m2) | ||||
<7 | 0.108 (0.047, 0.171) | <0.001 | 0.093 (−0.004, 0.190) | 0.061 |
7–9 | reference | reference | ||
>9 | 0.016 (−0.124, 0.155) | 0.826 | −0.003 (−0.188, 0.183) | 0.979 |
Duration | BMI ≥ 30 | BMI < 30 | ||
---|---|---|---|---|
(h/day) | β (95% CI) | P Value | β (95% CI) | P Value |
Total FMI (kg/m2) | ||||
<7 | 0.263 (0.026, 0.500) | 0.030 | 0.060 (−0.039, 0.160) | 0.234 |
7–9 | reference | reference | ||
>9 | −0.176 (−0.697, 0.345) | 0.507 | 0.098 (−0.101, 0.297) | 0.336 |
Trunk FMI (kg/m2) | ||||
<7 | 0.114 (−0.012, 0.240) | 0.077 | 0.026 (−0.028, 0.080) | 0.350 |
7–9 | reference | reference | ||
>9 | −0.144 (−0.422, 0.134) | 0.309 | 0.080 (−0.029, 0.188) | 0.151 |
Arms FMI (kg/m2) | ||||
<7 | 0.047 (0.009, 0.084) | 0.014 | 0.004 (−0.010, 0.017) | 0.605 |
7–9 | reference | reference | ||
>9 | −0.033 (−0.115, 0.049) | 0.429 | 0.014 (−0.013, 0.041) | 0.299 |
Legs FMI (kg/m2) | ||||
<7 | 0.099 (0.003, 0.196) | 0.044 | 0.031 (−0.009, 0.071) | 0.131 |
7–9 | reference | reference | ||
>9 | 0.005 (−0.208, 0.218) | 0.966 | 0.001 (−0.079, 0.082) | 0.972 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Zhao, S.; Yu, S.; Tang, J.; Zhang, H.; Xu, B.; Xu, Y.; Zhang, Y. Short Sleep Duration Was Associated with Increased Regional Body Fat in US Adults: The NHANES from 2011 to 2018. Nutrients 2022, 14, 2840. https://doi.org/10.3390/nu14142840
Xu C, Zhao S, Yu S, Tang J, Zhang H, Xu B, Xu Y, Zhang Y. Short Sleep Duration Was Associated with Increased Regional Body Fat in US Adults: The NHANES from 2011 to 2018. Nutrients. 2022; 14(14):2840. https://doi.org/10.3390/nu14142840
Chicago/Turabian StyleXu, Chong, Song Zhao, Shikai Yu, Jiamin Tang, Han Zhang, Bei Xu, Yawei Xu, and Yi Zhang. 2022. "Short Sleep Duration Was Associated with Increased Regional Body Fat in US Adults: The NHANES from 2011 to 2018" Nutrients 14, no. 14: 2840. https://doi.org/10.3390/nu14142840
APA StyleXu, C., Zhao, S., Yu, S., Tang, J., Zhang, H., Xu, B., Xu, Y., & Zhang, Y. (2022). Short Sleep Duration Was Associated with Increased Regional Body Fat in US Adults: The NHANES from 2011 to 2018. Nutrients, 14(14), 2840. https://doi.org/10.3390/nu14142840