Vascular Calcification Is Associated with Fetuin-A and Cortical Bone Porosity in Stone Formers
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. AAC Score
2.3. Serum and Urinary Parameters
2.4. High-Resolution Peripheral Quantitative Computed Tomography (HR-pQCT)
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chewcharat, A.; Curhan, G. Trends in the prevalence of kidney stones in the United States from 2007 to 2016. Urolithiasis 2020, 49, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Thongprayoon, C.; Krambeck, A.E.; Rule, A.D. Determining the true burden of kidney stone disease. Nat. Rev. Nephrol. 2020, 16, 736–746. [Google Scholar] [CrossRef] [PubMed]
- Edvardsson, V.O.; Indridason, O.S.; Haraldsson, G.; Kjartansson, O.; Palsson, R. Temporal trends in the incidence of kidney stone disease. Kidney Int. 2013, 83, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Moe, O.W. Kidney stones: Pathophysiology and medical management. Lancet 2006, 367, 333–344. [Google Scholar] [CrossRef]
- Gambaro, G.; Croppi, E.; Coe, F.; Lingeman, J.; Moe, O.; Worcester, E.; Buchholz, N.; Bushinsky, D.; Curhan, G.C.; Ferraro, P.M.G.; et al. Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: A consensus statement. J. Nephrol. 2016, 29, 715–734. [Google Scholar] [CrossRef]
- Melo, T.L.; Esper, P.L.G.; Zambrano, L.I.; Ormanji, M.S.; Rodrigues, F.G.; Heilberg, I.P. Expression of vitamin D receptor, CYP27B1 and CYP24A1 hydroxylases and 1,25-dihydroxyvitamin D levels in stone formers. Urolithiasis 2020, 48, 19–26. [Google Scholar] [CrossRef]
- Cunha, T.D.; Rodriguez, A.; Heilberg, I.P. Influence of socioeconomic disparities, temperature and humidity in kidney stone composition. Braz. J. Nephrol. 2020, 42, 454–460. [Google Scholar] [CrossRef]
- Rodrigues, F.G.; Lima, T.M.; Zambrano, L.; Heilberg, I.P. Dietary pattern analysis among stone formers: Resemblance to a DASH-style diet. Braz. J. Nephrol. 2020, 42, 338–348. [Google Scholar] [CrossRef]
- Taylor, E.N.; Stampfer, M.J.; Curhan, G.C. Dietary factors and the risk of incident kidney stones in men: New insights after 14 years of follow-up. J. Am. Soc. Nephrol. 2004, 15, 3225–3232. [Google Scholar] [CrossRef] [Green Version]
- Tessaro, C.Z.W.; Ramos, C.I.; Heilberg, I.P. Influence of nutritional status, laboratory parameters and dietary patterns upon urinary acid excretion in calcium stone formers. Braz. J. Nephrol. 2018, 40, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Popov, E.; Almusafer, M.; Belba, A.; Bello, J.O.; Bhatti, K.H.; Boeri, L.; Davidoff, K.; Hameed, B.Z.; Halinski, A.; Heilberg, I.P.; et al. Obesity rates in renal stone formers from various countries. Arch. Ital. Urol. Androl. 2021, 93, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Sakhaee, K.; Maalouf, N.M.; Kumar, R.; Pasch, A.; Moe, O.W. Nephrolithiasis-associated bone disease: Pathogenesis and treatment options. Kidney Int. 2011, 79, 393–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heilberg, I.P.; Weisinger, J.R. Bone disease in idiopathic hypercalciuria. Curr. Opin. Nephrol. Hypertens 2006, 15, 394–402. [Google Scholar] [CrossRef]
- Lauderdale, D.S.; Thisted, R.A.; Wen, M.; Favus, M.J. Bone mineral density and fracture among prevalent kidney stone cases in the Third National Health and Nutrition Examination Survey. J. Bone Miner. Res. 2001, 16, 1893–1898. [Google Scholar] [CrossRef]
- Heller, H.J.; Zerwekh, J.E.; Gottschalk, F.A.; Pak, C.Y. Reduced bone formation and relatively increased bone resorption in absorptive hypercalciuria. Kidney Int. 2007, 71, 808–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, S.A.; Reis, L.M.d.; Noronha, I.L.; Jorgetti, V.; Heilberg, I.P. RANKL is mediator of bone resorption in idiopathic hypercalciuria. Clin. J. Am. Soc. Nephrol. 2008, 3, 1446–1452. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.B.; Moysés, R.M.; Gomes, S.A.; de Carvalho, A.B.; Jorgetti, V.; Heilberg, I.P. Expression of fibroblast growth factor 23, vitamin D receptor, and sclerostin in bone tissue from hypercalciuric stone formers. Clin. J. Am. Soc. Nephrol. 2014, 9, 1263–1270. [Google Scholar] [CrossRef] [Green Version]
- Asplin, J.R.; Donahue, S.; Kinder, J.; Coe, F.L. Urine calcium excretion predicts bone loss in idiopathic hypercalciuria. Kidney Int. 2006, 70, 1463–1467. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, P.; Lippuner, K.; Casez, J.P.; Hess, B.; Ackermann, D.; Hug, C. Low bone mass in idiopathic renal stone formers: Magnitude and significance. J. Bone Miner. Res. 1994, 9, 1525–1532. [Google Scholar] [CrossRef]
- Tugcu, V.; Ozbek, E.; Aras, B.; Ozbay, B.; Islim, F.; Tasci, A.I. Bone mineral density measurement in patients with recurrent normocalciuric calcium stone disease. Urol. Res. 2007, 35, 29–34. [Google Scholar] [CrossRef]
- Esper, P.L.; Rodrigues, F.G.; Melo, T.L.; Ormanji, M.S.; Campos, C.M.; Alvarenga, J.C.; Caparbo, V.D.; Carvalho, A.B.; Pereira, R.M.; Heilberg, I.P. Bone Density, Microarchitecture, and Estimated Strength in Stone Formers: A Cross-Sectional HR-pQCT Study. Nephrol. Dial. Transplant. 2022. [Google Scholar] [CrossRef] [PubMed]
- Sakhaee, K.; Maalouf, N.M.; Poindexter, J.; Adams-Huet, B.; Moe, O.W. Relationship between Urinary Calcium and Bone Mineral Density in Patients with Calcium Nephrolithiasis. J. Urol. 2017, 197, 1472–1477. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, S.; Zeng, Z.; Wang, J.; Xie, L.; Li, T.; He, Y.; Qin, X.; Zhao, J. Kidney stones and cardiovascular risk: A meta-analysis of cohort studies. Am. J. Kidney Dis. 2014, 64, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.Y.; Lin, C.L.; Chang, Y.J.; Hsu, W.H.; Lin, C.C.; Wang, I.K.; Chang, C.T.; Chang, C.H.; Lin, M.C.; Kao, C.H. Association Between Kidney Stones and Risk of Stroke: A Nationwide Population-Based Cohort Study. Medicine 2016, 95, e2847. [Google Scholar] [CrossRef]
- Ferraro, P.M.; Taylor, E.N.; Eisner, B.H.; Gambaro, G.; Rimm, E.B.; Mukamal, K.J.; Curhan, G.C. History of kidney stones and the risk of coronary heart disease. JAMA 2013, 310, 408–415. [Google Scholar] [CrossRef] [Green Version]
- Cheungpasitporn, W.; Thongprayoon, C.; Mao, M.A.; O’Corragain, O.A.; Edmonds, P.J.; Erickson, S.B. The Risk of Coronary Heart Disease in Patients with Kidney Stones: A Systematic Review and Meta-analysis. N. Am. J. Med. Sci. 2014, 6, 580–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsi, R.S.; Spieker, A.J.; Stoller, M.L.; Jacobs, D.R.; Reiner, A.P.; McClelland, R.L.; Kahn, A.J.; Chi, T.; Szklo, M.; Sorensen, M.D. Coronary Artery Calcium Score and Association with Recurrent Nephrolithiasis: The Multi-Ethnic Study of Atherosclerosis. J. Urol. 2016, 195, 971–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasui, T.; Itoh, Y.; Bing, G.; Okada, A.; Tozawa, K.; Kohri, K. Aortic calcification in urolithiasis patients. Scand. J. Urol. Nephrol. 2007, 41, 419–421. [Google Scholar] [CrossRef] [PubMed]
- Fabris, A.; Ferraro, P.M.; Comellato, G.; Caletti, C.; Fantin, F.; Zaza, G.; Zamboni, M.; Lupo, A.; Gambaro, G. The relationship between calcium kidney stones, arterial stiffness and bone density: Unraveling the stone-bone-vessel liaison. J. Nephrol. 2015, 28, 549–555. [Google Scholar] [CrossRef]
- Kiel, D.P.; Kauppila, L.I.; Cupples, L.A.; Hannan, M.T.; O’Donnell, C.J.; Wilson, P.W. Bone loss and the progression of abdominal aortic calcification over a 25 year period: The Framingham Heart Study. Calcif. Tissue Int. 2001, 68, 271–276. [Google Scholar] [CrossRef]
- Deligiorgi, M.v.; Panayiotidis, M.I.; Siasos, G.; Trafalis, D.T. Osteoporosis Entwined with Cardiovascular Disease: The Implication of Osteoprotegerin and Example of Statins. Curr. Med. Chem. 2020, 28, 1443–1467. [Google Scholar] [CrossRef] [PubMed]
- Schulz, E.; Arfai, K.; Liu, X.; Sayre, J.; Gilsanz, V. Aortic calcification and the risk of osteoporosis and fractures. J. Clin. Endocrinol. Metab. 2004, 89, 4246–4253. [Google Scholar] [CrossRef]
- Reiner, A.P.; Kahn, A.; Eisner, B.H.; Pletcher, M.J.; Sadetsky, N.; Williams, O.D.; Polak, J.F.; Jacobs, D.R.; Stoller, M.L. Kidney stones and subclinical atherosclerosis in young adults: The CARDIA study. J. Urol. 2011, 185, 920–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shavit, L.; Girfoglio, D.; Vijay, V.; Goldsmith, D.; Ferraro, P.M.; Moochhala, S.H.; Unwin, R. Vascular calcification and bone mineral density in recurrent kidney stone formers. Clin. J. Am. Soc. Nephrol. 2015, 10, 278–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraro, P.M.; Marano, R.; Primiano, A.; Gervasoni, J.; Bargagli, M.; Rovere, G.; Bassi, P.F.; Gambaro, G. Stone composition and vascular calcifications in patients with nephrolithiasis. J. Nephrol. 2019, 32, 589–594. [Google Scholar] [CrossRef]
- Schoenfeld, D.; Zhu, D.; Mohn, L.; di Vito, J.; Agalliu, I.; Stern, J.M. The relationship between vascular calcifications and urolithiasis in a large, multiethnic patient population. Urolithiasis 2021, 49, 533–541. [Google Scholar] [CrossRef]
- Jahnen-Dechent, W.; Heiss, A.; Schäfer, C.; Ketteler, M. Fetuin-A regulation of calcified matrix metabolism. Circ. Res. 2011, 108, 1494–1509. [Google Scholar] [CrossRef]
- Heiss, A.; DuChesne, A.; Denecke, B.; Grotzinger, J.; Yamamoto, K.; Renné, T.; Jahnen-Dechent, W. Structural basis of calcification inhibition by alpha 2-HS glycoprotein/fetuin-A. Formation of colloidal calciprotein particles. J. Biol. Chem. 2003, 278, 13333–13341. [Google Scholar] [CrossRef] [Green Version]
- Viegas, C.S.; Santos, L.; Macedo, A.L.; Matos, A.A.; Silva, A.P.; Neves, P.L.; Staes, A.; Gevaert, K.; Morais, R.; Vermeer, C.; et al. Chronic Kidney Disease Circulating Calciprotein Particles and Extracellular Vesicles Promote Vascular Calcification. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 575–587. [Google Scholar] [CrossRef] [Green Version]
- Aghagolzadeh, P.; Bachtler, M.; Bijarnia, R.; Jackson, C.; Smith, E.R.; Odermatt, A.; Radpour, R.; Pasch, A. Calcification of vascular smooth muscle cells is induced by secondary calciprotein particles and enhanced by tumor necrosis factor-α. Atherosclerosis 2016, 251, 404–414. [Google Scholar] [CrossRef] [Green Version]
- Mehrsai, A.; Guitynavard, F.; Nikoobakht, M.R.; Gooran, S.; Ahmadi, A. The relationship between serum and urinary Fetuin-A levels and kidney stone formation among kidney stone patients. Cent. Eur. J. Urol. 2017, 70, 394–399. [Google Scholar] [CrossRef]
- Wu, Y.X.; Li, C.Y.; Deng, Y.L. Patients with nephrolithiasis had lower fetuin-A protein level in urine and renal tissue. Urolithiasis 2014, 42, 29–37. [Google Scholar] [CrossRef]
- Delgado, C.; Baweja, M.; Crews, D.C.; Eneanya, N.D.; Gadegbeku, C.A.; Inker, L.A.; Mendu, M.L.; Miller, W.G.; Moxey-Mims, M.M.; Roberts, G.V.; et al. A Unifying Approach for GFR Estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. Am. J. Kidney Dis. 2022, 79, 268–288 e1. [Google Scholar] [CrossRef]
- Leckstroem, D.C.; Bhuvanakrishna, T.; McGrath, A.; Goldsmith, D.J. Prevalence and predictors of abdominal aortic calcification in healthy living kidney donors. Int. Urol. Nephrol. 2014, 46, 63–70. [Google Scholar] [CrossRef]
- Pak, C.Y.; Sakhaee, K.; Moe, O.W.; Poindexter, J.; Adams-Huet, B. Defining hypercalciuria in nephrolithiasis. Kidney Int. 2011, 80, 777–782. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.R.; Cai, M.M.; McMahon, L.P.; Pedagogos, E.; Toussaint, N.D.; Brumby, C.; Holt, S.G. Serum fetuin-A concentration and fetuin-A-containing calciprotein particles in patients with chronic inflammatory disease and renal failure. Nephrology 2013, 18, 215–221. [Google Scholar] [CrossRef]
- Makaryus, A.N.; Sison, C.; Kohansieh, M.; Makaryus, J.N. Implications of Gender Difference in Coronary Calcification as Assessed by CT Coronary Angiography. Clin. Med. Insights Cardiol. 2014, 8, CMC-S18764. [Google Scholar] [CrossRef]
- Tsai, J.P.; Jan, Y.T.; Yun, C.H.; Sung, K.T.; Liu, C.C.; Kuo, J.Y.; Hung, C.L.; Wu, T.H.; Lin, J.L.; Hou, C.J. Associations of cigarette smoking and burden of thoracic aortic calcification in asymptomatic individuals: A dose-response relationship. PLoS ONE 2002, 15, e0227680. [Google Scholar] [CrossRef]
- Chang, Y.; Kim, B.K.; Yun, K.E.; Cho, J.; Zhang, Y.; Rampal, S.; Zhao, D.; Jung, H.S.; Choi, Y.; Ahn, J. Metabolically-healthy obesity and coronary artery calcification. J. Am. Coll. Cardiol. 2014, 63, 2679–2686. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.J.; Cheng, C.W.; Tsai, Y.S.; Huang, H.S. Crosstalk between renal and vascular calcium signaling: The link between nephrolithiasis and vascular calcification. Int. J. Mol. Sci. 2021, 22, 3590. [Google Scholar] [CrossRef]
- Krishna, S.M.; Seto, S.W.; Jose, R.J.; Li, J.; Morton, S.K.; Biros, E.; Wang, Y.; Nsengiyumva, V.; Lindeman, J.H.; Loots, G.G.; et al. Wnt Signaling Pathway Inhibitor Sclerostin Inhibits Angiotensin II–Induced Aortic Aneurysm and Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 553–566. [Google Scholar] [CrossRef] [Green Version]
- Yamada, S.; Giachelli, C.M. Vascular Calcification in CKD-MBD: Roles for Phosphate, FGF23, and Klotho. Bone 2017, 100, 87–93. [Google Scholar] [CrossRef]
- Hou, Y.C.; Lu, C.L.; Zheng, C.M.; Liu, W.C.; Yen, T.H.; Chen, R.M.; Lin, Y.F.; Chao, C.T.; Lu, K.C. The Role of Vitamin D in Modulating Mesenchymal Stem Cells and Endothelial Progenitor Cells for Vascular Calcification. Int. J. Mol. Sci. 2020, 21, 2466. [Google Scholar] [CrossRef] [Green Version]
- Tintut, Y.; Hsu, J.J.; Demer, L.L. Lipoproteins in Cardiovascular Calcification: Potential Targets and Challenges. Front. Cardiovasc. Med. 2018, 5, 172. [Google Scholar] [CrossRef] [Green Version]
- Jahnen-Dechent, W.; Smith, E.R. Nature’s remedy to phosphate woes: Calciprotein particles regulate systemic mineral metabolism. Kidney Int. 2020, 97, 648–651. [Google Scholar] [CrossRef]
- Henao Agudelo, J.S.; Baia, L.C.; Ormanji, M.S.; Santos, A.R.; Machado, J.R.; Saraiva Câmara, N.O.; Navis, G.J.; De Borst, M.H.; Heilberg, I.P. Fish Oil Supplementation Reduces Inflammation but Does Not Restore Renal Function and Klotho Expression in an Adenine-Induced CKD Model. Nutrients 2018, 10, 1283. [Google Scholar] [CrossRef] [Green Version]
- de Borst, M.H.; Vervloet, M.G.; Wee, P.M.t.; Navis, G. Cross talk between the renin-angiotensin-aldosterone system and vitamin D-FGF-23-klotho in chronic kidney disease. J. Am. Soc. Nephrol. 2011, 22, 1603–1609. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.C.; Shiizaki, K.; Kuro-O, M.; Moe, O.W. Fibroblast growth factor 23 and klotho: Physiology and pathophysiology of an endocrine network of mineral metabolism. Annu. Rev. Physiol. 2013, 75, 503–533. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.C.; Shi, M.; Zhang, J.; Quiñones, H.; Griffith, C.; Kuro-o, M.; Moe, O.W. Klotho deficiency causes vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol. 2011, 22, 124–136. [Google Scholar] [CrossRef]
- Prié, D.; Ravery, V.; Boccon-Gibod, L.; Friedlander, G.R. Frequency of renal phosphate leak among patients with calcium nephrolithiasis. Kidney Int. 2001, 60, 272–276. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, K.I.; Miura, Y.; Hayashi, H.; Sakata, A.; Matsumura, Y.; Kojima, M.; Tsuchiya, K.; Nitta, K.; Shiizaki, K.; Kurosu, H. Calciprotein particles regulate fibroblast growth factor-23 expression in osteoblasts. Kidney Int. 2020, 97, 702–712. [Google Scholar] [CrossRef]
- Hsi, R.S.; Ramaswamy, K.; Ho, S.P.; Stoller, M.L. The origins of urinary stone disease: Upstream mineral formations initiate downstream Randall’s plaque. BJU Int. 2017, 119, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, A.R.; Olauson, H.; Witasp, A.; Haarhaus, M.; Brandenburg, V.; Wernerson, A.; Lindholm, B.; Söderberg, M.; Wennberg, L.; Nordfors, L.; et al. Increased circulating sclerostin levels in end-stage renal disease predict biopsy-verified vascular medial calcification and coronary artery calcification. Kidney Int. 2015, 88, 1356–1364. [Google Scholar] [CrossRef] [Green Version]
- Ho, T.Y.; Chen, N.C.; Hsu, C.Y.; Huang, C.W.; Lee, P.T.; Chou, K.J.; Fang, H.C.; Chen, C.L. Evaluation of the association of Wnt signaling with coronary artery calcification in patients on dialysis with severe secondary hyperparathyroidism. BMC Nephrol. 2019, 20, 345. [Google Scholar] [CrossRef] [Green Version]
- Evenepoel, P.; Goffin, E.; Meijers, B.; Kanaan, N.; Bammens, B.; Coche, E.; Claes, K.; Jadoul, M. Sclerostin Serum Levels and Vascular Calcification Progression in Prevalent Renal Transplant Recipients. J. Clin. Endocrinol. Metab. 2015, 100, 4669–4676. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.Y.; Chang, Z.F.; Chau, Y.P.; Chen, A.; Yang, W.C.; Yang, A.H.; Lee, O.K. Circulating Wnt/β-catenin signalling inhibitors and uraemic vascular calcifications. Nephrol. Dial. Transplant. 2015, 30, 1356–1363. [Google Scholar] [CrossRef]
- Ganesan, C.; Thomas, I.C.; Romero, R.; Song, S.; Conti, S.; Elliott, C.; Chertow, G.M.; Tamura, M.K.; Leppert, J.T.; Pao, A.C. Osteoporosis, Fractures, and Bone Mineral Density Screening in Veterans With Kidney Stone Disease. J. Bone Miner. Res. 2021, 36, 872–878. [Google Scholar] [CrossRef]
- De Schutter, T.M.; Neven, E.; Persy, V.P.; Behets, G.J.; Postnov, A.A.; De Clerck, N.M.; D’Haese, P.C. Vascular calcification is associated with cortical bone loss in chronic renal failure rats with and without ovariectomy: The calcification paradox. Am. J. Nephrol. 2011, 34, 356–366. [Google Scholar] [CrossRef]
- Reynolds, J.L.; Skepper, J.N.; McNair, R.; Kasama, T.; Gupta, K.; Weissberg, P.L.; Jahnen-Dechent, W.; Shanahan, C.M. Multifunctional Roles for Serum Protein Fetuin-A in Inhibition of Human Vascular Smooth Muscle Cell Calcification. J. Am. Soc. Nephrol. 2005, 16, 2920–2930. [Google Scholar] [CrossRef] [Green Version]
- Stejskal, D.; Karpisek, M.; Vrtal, R.; Student, V.; Solichova, P.; Fiala, R.; Stejskal, P. Urine fetuin-A values in relation to the presence of urolithiasis. BJU Int. 2008, 101, 1151–1154. [Google Scholar] [CrossRef]
- Scialla, J.J.; Kao, W.L.; Crainiceanu, C.; Sozio, S.M.; Oberai, P.C.; Shafi, T.; Coresh, J.; Powe, N.R.; Plantinga, L.C.; Jaar, B.G.; et al. Biomarkers of Vascular Calcification and Mortality in Patients with ESRD. Clin. J. Am. Soc. Nephrol. 2014, 9, 745–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenvinkel, P.; Wang, K.; Qureshi, A.R.; Axelsson, J.; Pecoits-Filho, R.; Gao, P.; Barany, P.; Lindholm, B.; Jogestrand, T.; Heimberger, O.; et al. Low fetuin-A levels are associated with cardiovascular death: Impact of variations in the gene encoding fetuin. Kidney Int. 2005, 67, 2383–2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasch, A.; Farese, S.; Gräber, S.; Wald, J.; Richtering, W.; Floege, J.; Jahnen-Dechent, W. Nanoparticle-based test measures overall propensity for calcification in serum. J. Am. Soc. Nephrol. 2012, 23, 1744–1752. [Google Scholar] [CrossRef] [PubMed]
SF (n = 62) | NSF (n = 80) | p Value | |
---|---|---|---|
Sex (Male), n (%) | 29 (42.7) | 29 (36.3) | 0.14 |
Caucasian, n (%) | 34 (54.8) | 49 (61.3) | 0.22 |
Afro-Brazilian, n (%) | 27 (43.5) | 31 (38.8) | |
Asian, n (%) | 1 (1.6) | 0 (0) | |
Age, years | 38.0 (28.0–45.3) | 40.0 (37.0–45.8) | 0.10 |
BMI, kg/m2 | 26.6 ± 4.5 | 26.8 ± 3.7 | 0.81 |
Normal weight, n (%) | 21 (33.9) | 19 (23.8) | 0.50 |
Overweight, n (%) | 27 (43.5) | 35 (43.8) | |
Obese, n (%) | 14 (22.6) | 17 (21.3) | |
Total cholesterol, mg/dL | 190.3 ± 34.3 | 187.9 ± 36.3 | 0.37 |
LDL cholesterol, mg/dL | 111.2 ± 27.0 | 110.4 ± 76.2 | 0.47 |
HDL cholesterol, mg/dL | 51.6 ± 13.5 | 52.3 ± 15.9 | 0.40 |
Triglycerides, mg/dL | 112.0 (77.0–163.0) | 84.0 (66.3–127.3) | <0.05 |
Glucose, mg/dL | 90.9 ± 10.3 | 93.0 ± 11.0 | 0.16 |
eGFR, mL/min/1.73 m2 | 125.1 ± 27.1 | 118.8 ± 20.6 | 0.10 |
AAC Score, % | 5.8 ± 0.8 | 5.6 ± 0.7 | 0.27 |
Total n = 62 | G1 AAC < 5.8% n = 33 | G2 AAC ≥ 5.8% n = 29 | p Value | |
---|---|---|---|---|
AAC Score, % | 5.8 ± 0.8 | 5.2 ± 0.4 | 6.5 ± 0.6 | <0.001 |
Age, years | 38.0 (28.0–45.3) | 38.0 (27.5–44.5) | 38.0 (31.0–47.5) | 0.49 |
Male, n (%) | 33 (53.2) | 12 (36.4) | 17 (58.6) | 0.07 |
BMI, kg/m2 | 26.3 ± 4.5 | 25.5 ± 4.0 | 28.0 ± 4.6 | 0.03 |
eGFR, mL/min/1.73 m2 | 99.3 ± 13.4 | 103.2 ± 12.9 | 94.9 ± 12.7 | 0.01 |
Hypertension, n (%) | 9 (14.5) | 6 (18.2) | 3 (10.3) | 0.30 |
Metabolic syndrome, n (%) | 16 (25.8) | 7 (21.2) | 9 (31.0) | 0.32 |
Smoking, n (%) | 6 (9.7) | 4 (12.1) | 2 (6.9) | 0.40 |
Duration of disease, years | 7.0 (2.0–14.0) | 5.5 (1.0–12.5) | 10.5 (5.0–17.3) | 0.06 |
Serum parameters | ||||
Creatinine, mg/dL | 0.89 (0.75–1.09) | 0.77 (0.64–0.90) | 0.90 (0.79–1.06) | <0.01 |
Ionized calcium, mmol/L | 1.30 ± 0.04 | 1.30 ± 0.04 | 1.31 ± 0.03 | 0.35 |
Phosphate, mg/dL | 3.3 ± 0.4 | 3.3 ± 0.4 | 3.2 ± 0.5 | 0.35 |
Magnesium, mg/dL | 2.0 ± 0.2 | 2.1 ± 0.2 | 2.1 ± 0.2 | 0.86 |
Glucose, mg/dL | 90.9 ± 10.3 | 91.8 ± 10.2 | 89.8 ± 10.5 | 0.46 |
Total cholesterol, mg/dL | 190.3 ± 34.3 | 188.6 ± 36.8 | 192.2 ± 31.8 | 0.70 |
LDL cholesterol, mg/dL | 111.2 ± 27.0 | 107.2 ± 19.2 | 115.7 ± 24.1 | 0.25 |
HDL cholesterol, mg/dL | 50.0 (41.0–58.0) | 54.0 (50.0–61.3) | 49.0 (36.0–55.0) | 0.03 |
Triglycerides, mg/dL | 95.0 (71.0–151.0) | 110.5 (67.8–161.3) | 126.0 (80.0–177.0) | 0.10 |
Uric Acid, mg/dL | 5.1 ± 1.2 | 4.4 ± 1.1 | 5.8 ± 1.5 | <0.01 |
PTH, pg/mL | 51.0 (40.0–58.0) | 49.0 (41.5–64.5) | 53.0 (38.0–73.0) | 0.61 |
25(OH)-vitamin D, ng/mL | 25.0 (21.0–30.0) | 26.0 (21.0–31.5) | 22.5 (19.3–30.3) | 0.21 |
1-25(OH)-vitamin D, pg/mL | 23.8 (17.8–35.9) | 22.2 (15.0–33.3) | 23.8 (17.3–35.9) | 0.33 |
Sclerostin, pmol/L | 24.1 (18.9–30.5) | 21.7 (18.3––26.7) | 23.5 (18.4–30.6) | 0.28 |
CTX, ng/mL | 0.38 ± 0.17 | 0.41 ± 0.19 | 0.48 ± 0.18 | 0.94 |
P1NP, ng/mL | 57.8 ± 20.2 | 62.1 ± 22.8 | 68.0 ± 22.8 | 0.46 |
BAP, U/L | 13.8 ± 3.7 | 13.1 ± 3.6 | 14.8 ± 3.7 | 0.08 |
Klotho, pg/mL | 725 (542–941) | 854 (584–1355) | 575 (393–893) | 0.01 |
FGF-23, pg/mL | 33.6 (25.6–39.8) | 29.2 (20.4–38.5) | 36.0 (25.4–45.0) | 0.06 |
Total Fetuin-A, ug/mL | 666.1 ± 102.4 | 695.8 ± 88.4 | 633.2 ±108.2 | 0.02 |
Serum Fet-A RR (%) | 8.6 (4.4–18.1) | 8.5 (4.–19.9) | 8.4 (4.5–17.2) | 0.82 |
Urinary parameters | ||||
Calcium, mg/24 h | 230.5 (147–301) | 256 (143–300) | 221 (140–289) | 0.92 |
Phosphate, mg/24 h | 859.1 ± 273.8 | 796.0 ± 245.9 | 928.9 ± 290.2 | 0.06 |
FeP, % | 14.0 (11.3–17.9) | 11.8 (9.9–16.7) | 13.9 (11.5–18.2) | 0.04 |
HR-pQCT parameters | ||||
Tibial Tb.N, 1/mm | 1.74 (1.59–2.09) | 1.68 (1.55–1.94) | 1.70 (1.56–2.22) | 0.23 |
Tibial Tb.Sp, mm | 0.50 (0.40–0.55) | 0.52 (0.44–0.57) | 0.50 (0.37–0.56) | 0.17 |
Tibial Ct.Po, % | 0.032 (0.022–0.042) | 0.028 (0.021–0.036) | 0.035 (0.028–0.041) | <0.05 |
Radius Tb.N, 1/mm | 2.03 (1.82–2.21) | 2.03 (1.82–2.21) | 1.98 (1.81–2.21) | 0.67 |
Radius Tb.Sp, mm | 0.42 (0.34–0.47) | 0.43 (0.39–0.48) | 0.43 (0.36–0.48) | 0.35 |
Radius Ct.Po, % | 0.014 (0.009–0.022) | 0.011 (0.007–0.019) | 0.015 (0.010–0.022) | 0.20 |
Potential Determinants | Univariable | Multivariable * | ||
---|---|---|---|---|
B | p | B | p | |
Age, years | 0.17 | 0.16 | - | - |
Sex, F | −0.21 | 0.10 | - | - |
BMI, kg/m2 | 0.32 | 0.01 | 0.31 | <0.01 |
Metabolic syndrome, yes | 0.22 | 0.09 | - | - |
Hypertension, yes | 0.16 | 0.22 | - | - |
Smoking, yes | 0.29 | 0.02 | 0.13 | 0.30 |
Serum sclerostin, pmol/L | 0.30 | 0.02 | 0.09 | 0.50 |
Tibial Tb.N, 1/mm | 0.14 | 0.27 | - | - |
Tibial Tb.Sp, mm | −0.15 | 0.26 | - | - |
Tibial Ct.Po, % | 0.30 | 0.02 | 0.26 | 0.03 |
Tibial Ct.Th, mm | 0.18 | 0.17 | - | - |
Radius Tb.N, 1/mm | 0.07 | 0.59 | - | - |
Radius Tb.Sp, mm | −0.11 | 0.40 | - | - |
Radius Ct.Po, % | 0.21 | 0.10 | - | - |
Radius Ct.Th, mm | −0.02 | 0.86 | - | - |
Urinary calcium, mg/24 h | 0.09 | 0.49 | - | - |
Urinary phosphate, mg/24 h | 0.36 | <0.01 | 0.08 | 0.60 |
FeP, % | 0.27 | 0.04 | −0.03 | 0.87 |
eGFR, mL/min/1.73 m2 | −0.31 | 0.01 | −0.25 | 0.24 |
Serum ionized calcium, mmol/L | 0.10 | 0.40 | - | - |
Serum phosphate, mg/24 h | 0.14 | 0.27 | - | - |
Serum 25OH-vitamin D, ng/mL | −0.24 | <0.05 | –0.03 | 0.80 |
Serum 1-25OH-vitamin D, pg/mL | 0.07 | 0.55 | - | - |
Serum PTH, pg/mL | −0.04 | 0.78 | - | - |
Serum BAP, U/L | 0.18 | 0.15 | - | - |
Serum klotho, pg/mL | −0.26 | 0.07 | - | - |
Serum FGF23, pg/mL | 0.16 | 0.20 | - | - |
Serum Fetuin-A, ug/mL | −0.35 | <0.01 | −0.29 | 0.02 |
Serum Fetuin-A RR, % | 0.15 | 0.26 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, F.G.; Neves, R.F.C.A.; Ormanji, M.S.; Esper, P.L.G.; Gaspar, M.; Pereira, R.M.R.; Requião-Moura, L.R.; de Borst, M.H.; Heilberg, I.P. Vascular Calcification Is Associated with Fetuin-A and Cortical Bone Porosity in Stone Formers. J. Pers. Med. 2022, 12, 1120. https://doi.org/10.3390/jpm12071120
Rodrigues FG, Neves RFCA, Ormanji MS, Esper PLG, Gaspar M, Pereira RMR, Requião-Moura LR, de Borst MH, Heilberg IP. Vascular Calcification Is Associated with Fetuin-A and Cortical Bone Porosity in Stone Formers. Journal of Personalized Medicine. 2022; 12(7):1120. https://doi.org/10.3390/jpm12071120
Chicago/Turabian StyleRodrigues, Fernanda Guedes, Rodrigo Fernandes Carvalho Azambuja Neves, Milene Subtil Ormanji, Priscila Ligeiro Gonçalves Esper, Melissa Gaspar, Rosa Maria Rodrigues Pereira, Lucio R. Requião-Moura, Martin H. de Borst, and Ita Pfeferman Heilberg. 2022. "Vascular Calcification Is Associated with Fetuin-A and Cortical Bone Porosity in Stone Formers" Journal of Personalized Medicine 12, no. 7: 1120. https://doi.org/10.3390/jpm12071120
APA StyleRodrigues, F. G., Neves, R. F. C. A., Ormanji, M. S., Esper, P. L. G., Gaspar, M., Pereira, R. M. R., Requião-Moura, L. R., de Borst, M. H., & Heilberg, I. P. (2022). Vascular Calcification Is Associated with Fetuin-A and Cortical Bone Porosity in Stone Formers. Journal of Personalized Medicine, 12(7), 1120. https://doi.org/10.3390/jpm12071120