Machine Learning in Biomarker-Driven Precision Oncology: Automated Immunohistochemistry Scoring and Emerging Directions in Genitourinary Cancers
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Stage 1: Exploratory Literature-Mapping to Identify Foundational ML–IHC Themes
2.2. Stage 2: Targeted Narrative Exploration of ML Use for IHC Biomarkers in GU Cancers
3. IHC Scoring Variability and the Need for ML-Assisted Analysis
4. Validated Biomarkers as Models for ML-Based IHC Interpretation
4.1. Hormone-Receptor IHC
4.2. Growth-Receptor IHC
4.3. Mismatch-Repair (MMR) IHC
4.4. Immune-Checkpoint IHC
4.5. Proliferation IHC
4.6. From Automated Scoring to Clinical Translation
5. Emerging Translational Applications of ML-Based IHC Scoring: An Evolving Frontier in GU Oncology
5.1. Prostate Cancer IHC
5.2. Renal Cancer IHC
5.3. Bladder Cancer IHC
5.4. Toward Clinical Translation and Therapeutic Action in GU Precision Oncology
6. Future Directions
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| AR | Androgen Receptor |
| ASCO | American Society of Clinical Oncology |
| AUC | Area Under the Curve |
| BAP1 | BRCA1-Associated Protein 1 |
| B7-H3 | B7 Homolog 3 |
| CAP | College of American Pathologists |
| CK | Cytokeratin |
| CPS | Combined Positive Score |
| CNN | Convolutional Neural Network |
| ctDNA | Circulating Tumour DNA |
| DAB | 3,3′-Diaminobenzidine |
| DFS | Disease-Free Survival |
| dMMR | Deficient Mismatch Repair |
| ER/PR | Estrogen Receptor/Progesterone Receptor |
| FFPE | Formalin-Fixed Paraffin-Embedded |
| GU | Genitourinary |
| HER2 | Human Epidermal Growth Factor Receptor 2 |
| H&E | Hematoxylin and Eosin |
| H-score | Histologic/Histochemical Score |
| ICC | Intraclass Correlation Coefficient |
| ICI | Immune Checkpoint Inhibitor |
| IHC | Immunohistochemistry |
| ISH | In Situ Hybridisation |
| Ki-67 | Nuclear proliferation biomarker |
| LAG-3 | Lymphocyte Activation Gene 3 |
| MIL | Multiple Instance Learning |
| ML | Machine Learning |
| MLH1, PMS2, MSH2, MSH6 | (Mismatch repair proteins) |
| MMR | Mismatch Repair |
| MIBC | Muscle-Invasive Bladder Cancer |
| MSI | Microsatellite Instability |
| NAC | Neoadjuvant Chemotherapy |
| NETs | Neuroendocrine Tumours |
| NSCLC | Non–Small Cell Lung Cancer |
| PD-1 | Programmed Death Receptor 1 |
| PD-L1 | Programmed Death-Ligand 1 |
| PI3K | Phosphatidylinositol 3-Kinase |
| pMMR | Proficient Mismatch Repair |
| PSMA | Prostate-Specific Membrane Antigen |
| PTEN | Phosphatase and Tensin Homolog |
| RCC | Renal Cell Carcinoma |
| TIM-3 | T-cell immunoglobulin and mucin-domain containing-3 |
| TPS | Tumour Proportion Score |
| Trop-2 | Trophoblast cell-surface antigen 2 |
| UPKII | Uroplakin II |
| UTUC | Upper Tract Urothelial Carcinoma |
| VISTA | V-domain Immunoglobulin Suppressor of T-cell Activation |
| WSI | Whole-Slide Imaging |
References
- La Thangue, N.B.; Kerr, D.J. Predictive biomarkers: A paradigm shift towards personalized cancer medicine. Nat. Rev. Clin. Oncol. 2011, 8, 587–596. [Google Scholar] [CrossRef]
- Schmidt, K.T.; Chau, C.H.; Price, D.K.; Figg, W.D. Precision Oncology Medicine: The Clinical Relevance of Patient-Specific Biomarkers Used to Optimize Cancer Treatment. J. Clin. Pharmacol. 2016, 56, 1484–1499. [Google Scholar] [CrossRef]
- Duffy, M.J.; O’DOnovan, N.; McDermott, E.; Crown, J. Validated biomarkers: The key to precision treatment in patients with breast cancer. Breast 2016, 29, 192–201. [Google Scholar] [CrossRef]
- Kohale, M.G.; Dhobale, A.V.; Bankar, N.J.; Noman, O.; Hatgaonkar, K.; Mishra, V. Immunohistochemistry in pathology: A review. J. Cell. Biotechnol. 2023, 9, 131–138. [Google Scholar] [CrossRef]
- Wasinger, G.; Koeller, M.C.; Compérat, E. Pathology in the artificial intelligence era: Practical insights for immunohistochemistry and molecular pathology. Diagn. Histopathol. 2025, 31, 416–423. [Google Scholar] [CrossRef]
- Matos, L.L.; Trufelli, D.C.; De Matos, M.G.L.; da Silva Pinhal, M.A. Immunohistochemistry as an Important Tool in Biomarkers Detection and Clinical Practice. Biomark. Insights 2010, 5, 9–20. [Google Scholar] [CrossRef]
- Kim, S.-W.; Roh, J.; Park, C.-S. Immunohistochemistry for Pathologists: Protocols, Pitfalls, and Tips. J. Pathol. Transl. Med. 2016, 50, 411–418. [Google Scholar] [CrossRef]
- Acs, B.; Rantalainen, M.; Hartman, J. Artificial intelligence as the next step towards precision pathology. J. Intern. Med. 2020, 288, 62–81. [Google Scholar] [CrossRef]
- Mihai, I.M.; Wang, G. Biomarkers for predicting bladder cancer therapy response. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2025, 33, 533–547. [Google Scholar] [CrossRef]
- Pantel, K.; Alix-Panabières, C. Minimal residual disease as a target for liquid biopsy in patients with solid tumours. Nat. Rev. Clin. Oncol. 2024, 22, 65–77. [Google Scholar] [CrossRef]
- Peng, Y.; Mei, W.; Ma, K.; Zeng, C. Circulating Tumor DNA and Minimal Residual Disease (MRD) in Solid Tumors: Current Horizons and Future Perspectives. Front. Oncol. 2021, 11, 763790. [Google Scholar] [CrossRef] [PubMed]
- Chin, R.-I.; Chen, K.; Usmani, A.; Chua, C.; Harris, P.K.; Binkley, M.S.; Azad, T.D.; Dudley, J.C.; Chaudhuri, A.A. Detection of Solid Tumor Molecular Residual Disease (MRD) Using Circulating Tumor DNA (ctDNA). Mol. Diagn. Ther. 2019, 23, 311–331. [Google Scholar] [CrossRef]
- Zhu, L.; Xu, R.; Yang, L.; Shi, W.; Zhang, Y.; Liu, J.; Li, X.; Zhou, J.; Bing, P. Minimal residual disease (MRD) detection in solid tumors using circulating tumor DNA: A systematic review. Front. Genet. 2023, 14, 1172108. [Google Scholar] [CrossRef]
- Hitchen, N.; Shahnam, A.; Tie, J. Circulating Tumor DNA: A Pan-Cancer Biomarker in Solid Tumors with Prognostic and Predictive Value. Annu. Rev. Med. 2025, 76, 207–223. [Google Scholar] [CrossRef]
- Hsieh, W.-C.; Budiarto, B.R.; Wang, Y.-F.; Lin, C.-Y.; Gwo, M.-C.; So, D.K.; Tzeng, Y.-S.; Chen, S.-Y. Spatial multi-omics analyses of the tumor immune microenvironment. J. Biomed. Sci. 2022, 29, 96. [Google Scholar] [CrossRef]
- Dunstan, R.W.; Wharton, K.A., Jr.; Quigley, C.; Lowe, A. The Use of Immunohistochemistry for Biomarker Assessment—Can It Compete with Other Technologies? Toxicol. Pathol. 2011, 39, 988–1002. [Google Scholar] [CrossRef] [PubMed]
- Poalelungi, D.G.; Neagu, A.I.; Fulga, A.; Neagu, M.; Tutunaru, D.; Nechita, A.; Fulga, I. Revolutionizing Pathology with Artificial Intelligence: Innovations in Immunohistochemistry. J. Pers. Med. 2024, 14, 693. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Wang, Y.; Gong, Z.; Li, Y.; Yang, W.; Liu, G.; Li, J.; Hu, X.; Wang, Y.; Tong, Y.; et al. Liquid Biopsy and Tissue Biopsy Comparison with Digital PCR and IHC/FISH for HER2 Amplification Detection in Breast Cancer Patients. J. Cancer 2022, 13, 744–751. [Google Scholar] [CrossRef]
- Kim, Y.-G.; Lee, B.; Ha, C.; Lee, C.; Jung, H.A.; Sun, J.-M.; Lee, S.-H.; Ahn, M.-J.; Choi, Y.-L.; Park, S.; et al. Clinical utility of circulating tumor DNA profiling in detecting targetable fusions in non-small cell lung cancer. Front. Oncol. 2024, 14, 1463341. [Google Scholar] [CrossRef]
- Sheffield, B.S. Immunohistochemistry as a Practical Tool in Molecular Pathology. Arch. Pathol. Lab. Med. 2016, 140, 766–769. [Google Scholar] [CrossRef] [PubMed]
- Magaki, S.; Hojat, S.A.; Wei, B.; So, A.; Yong, W.H. An Introduction to the Performance of Immunohistochemistry. In Methods in Molecular Biology; Clifton, N.J., Ed.; Humana Press: New York, NY, USA, 2018; Volume 1897, pp. 289–298. [Google Scholar] [CrossRef]
- Taylor, C.R.; Shi, S.R.; Barr, N.J.; Wu, N. Techniques of Immunohistochemistry: Principles, Pitfalls and Standardization. In Diagnostic Immunohistochemistry; Churchill Livingstone: London, UK, 2006; pp. 1–42. ISBN 9780443066528. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780443066528500077 (accessed on 21 November 2025).
- Sukswai, N.; Khoury, J.D. Immunohistochemistry Innovations for Diagnosis and Tissue-Based Biomarker Detection. Curr. Hematol. Malig. Rep. 2019, 14, 368–375. [Google Scholar] [CrossRef]
- Aeffner, F.; Zarella, M.D.; Buchbinder, N.; Bui, M.M.; Goodman, M.R.; Hartman, D.J.; Lujan, G.M.; Molani, M.A.; Parwani, A.V.; Lillard, K.; et al. Introduction to Digital Image Analysis in Whole-slide Imaging: A White Paper from the Digital Pathology Association. J. Pathol. Inform. 2019, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Hanna, M.G.; Parwani, A.M.; Sirintrapun, S.J. Whole Slide Imaging: Technology and Applications. Adv. Anat. Pathol. 2020, 27, 251–259. [Google Scholar] [CrossRef]
- Shafi, S.; Kellough, D.A.; Lujan, G.; Satturwar, S.; Parwani, A.V.; Li, Z. Integrating and validating automated digital imaging analysis of estrogen receptor immunohistochemistry in a fully digital workflow for clinical use. J. Pathol. Inform. 2022, 13, 100122. [Google Scholar] [CrossRef]
- Stålhammar, G.; Martinez, N.F.; Lippert, M.; Tobin, N.P.; Mølholm, I.; Kis, L.; Rosin, G.; Rantalainen, M.; Pedersen, L.; Bergh, J.; et al. Digital image analysis outperforms manual biomarker assessment in breast cancer. Mod. Pathol. 2016, 29, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Priego-Torres, B.M.; Lobato-Delgado, B.; Atienza-Cuevas, L.; Sanchez-Morillo, D. Deep learning-based instance segmentation for the precise automated quantification of digital breast cancer immunohistochemistry images. Expert Syst. Appl. 2022, 193, 116471. [Google Scholar] [CrossRef]
- Mulrane, L.; Rexhepaj, E.; Penney, S.; Callanan, J.J.; Gallagher, W.M. Automated image analysis in histopathology: A valuable tool in medical diagnostics. Expert Rev. Mol. Diagn. 2008, 8, 707–725. [Google Scholar] [CrossRef] [PubMed]
- Vandenberghe, M.E.; Scott, M.L.J.; Scorer, P.W.; Söderberg, M.; Balcerzak, D.; Barker, C. Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer. Sci. Rep. 2017, 7, 45938. [Google Scholar] [CrossRef]
- Howat, W.J.; Blows, F.M.; Provenzano, E.; Brook, M.N.; Morris, L.; Gazinska, P.; Johnson, N.; McDuffus, L.-A.; Miller, J.; Sawyer, E.J.; et al. Performance of automated scoring of ER, PR, HER2, CK5/6 and EGFR in breast cancer tissue microarrays in the Breast Cancer Association Consortium. J. Pathol. Clin. Res. 2014, 1, 18–32. [Google Scholar] [CrossRef]
- Lagree, A.; Shiner, A.; Alera, M.A.; Fleshner, L.; Law, E.; Law, B.; Lu, F.-I.; Dodington, D.; Gandhi, S.; Slodkowska, E.A.; et al. Assessment of Digital Pathology Imaging Biomarkers Associated with Breast Cancer Histologic Grade. Curr. Oncol. 2021, 28, 4298–4316. [Google Scholar] [CrossRef]
- Jaroensri, R.; Wulczyn, E.; Hegde, N.; Brown, T.; Flament-Auvigne, I.; Tan, F.; Cai, Y.; Nagpal, K.; Rakha, E.A.; Dabbs, D.J.; et al. Deep learning models for histologic grading of breast cancer and association with disease prognosis. NPJ Breast Cancer 2022, 8, 113. [Google Scholar] [CrossRef]
- Ivanova, M.; Pescia, C.; Trapani, D.; Venetis, K.; Frascarelli, C.; Mane, E.; Cursano, G.; Sajjadi, E.; Scatena, C.; Cerbelli, B.; et al. Early Breast Cancer Risk Assessment: Integrating Histopathology with Artificial Intelligence. Cancers 2024, 16, 1981. [Google Scholar] [CrossRef]
- Ivanov, V.; Khalid, U.; Gurung, J.; Dimov, R.; Chonov, V.; Uchikov, P.; Kostov, G.; Ivanov, S. Use of AI Histopathology in Breast Cancer Diagnosis. Medicina 2025, 61, 1878. [Google Scholar] [CrossRef]
- Ivanova, M.; Porta, F.M.; D’eRcole, M.; Pescia, C.; Sajjadi, E.; Cursano, G.; De Camilli, E.; Pala, O.; Mazzarol, G.; Venetis, K.; et al. Standardized pathology report for HER2 testing in compliance with 2023 ASCO/CAP updates and 2023 ESMO consensus statements on HER2-low breast cancer. Virchows Arch. 2023, 484, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Phillips, T.; Simmons, P.; Inzunza, H.D.; Cogswell, J.; Novotny, J., Jr.; Taylor, C.; Zhang, X. Development of an Automated PD-L1 Immunohistochemistry (IHC) Assay for Non-Small Cell Lung Cancer. Appl. Immunohistochem. Mol. Morphol. 2015, 23, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Naso, J.R.; Povshedna, T.; Wang, G.; Banyi, N.; MacAulay, C.; Ionescu, D.N.; Zhou, C. Automated PD-L1 Scoring for Non-Small Cell Lung Carcinoma Using Open-Source Software. Pathol. Oncol. Res. 2021, 27, 609717. [Google Scholar] [CrossRef]
- Baxi, V.; Lee, G.; Duan, C.; Pandya, D.; Cohen, D.N.; Edwards, R.; Chang, H.; Li, J.; Elliott, H.; Pokkalla, H.; et al. Association of artificial intelligence-powered and manual quantification of programmed death-ligand 1 (PD-L1) expression with outcomes in patients treated with nivolumab ± ipilimumab. Mod. Pathol. 2022, 35, 1529–1539. [Google Scholar] [CrossRef]
- Taylor, C.R.; Jadhav, A.P.; Gholap, A.; Kamble, G.; Huang, J.; Gown, A.; Doshi, I.; Rimm, D.L. A Multi-Institutional Study to Evaluate Automated Whole Slide Scoring of Immunohistochemistry for Assessment of Programmed Death-Ligand 1 (PD-L1) Expression in Non–Small Cell Lung Cancer. Appl. Immunohistochem. Mol. Morphol. 2019, 27, 263–269. [Google Scholar] [CrossRef]
- Widmaier, M.; Wiestler, T.; Walker, J.; Barker, C.; Scott, M.L.; Sekhavati, F.; Budco, A.; Schneider, K.; Segerer, F.J.; Steele, K.; et al. Comparison of continuous measures across diagnostic PD-L1 assays in non-small cell lung cancer using automated image analysis. Mod. Pathol. 2019, 33, 380–390. [Google Scholar] [CrossRef]
- Cheng, G.; Zhang, F.; Xing, Y.; Hu, X.; Zhang, H.; Chen, S.; Li, M.; Peng, C.; Ding, G.; Zhang, D.; et al. Artificial Intelligence-Assisted Score Analysis for Predicting the Expression of the Immunotherapy Biomarker PD-L1 in Lung Cancer. Front. Immunol. 2022, 13, 893198. [Google Scholar] [CrossRef] [PubMed]
- Moxley-Wyles, B.; Colling, R.; Verrill, C. Artificial intelligence in pathology: An overview. Diagn. Histopathol. 2020, 26, 513–520. [Google Scholar] [CrossRef]
- Khoraminia, F.; Fuster, S.; Kanwal, N.; Olislagers, M.; Engan, K.; van Leenders, G.J.L.H.; Stubbs, A.P.; Akram, F.; Zuiverloon, T.C.M. Artificial Intelligence in Digital Pathology for Bladder Cancer: Hype or Hope? A Systematic Review. Cancers 2023, 15, 4518. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Yang, R.; Ni, X.; Yang, S.; Xiong, L.; Yan, D.; Xia, L.; Yuan, J.; Wang, J.; Jiao, P.; et al. Accurate Diagnosis and Survival Prediction of Bladder Cancer Using Deep Learning on Histological Slides. Cancers 2022, 14, 5807. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.; Yeon, S.Y.; You, S. Machine learning approaches for spatial omics data analysis in digital pathology: Tools and applications in genitourinary oncology. Front. Oncol. 2024, 14, 1465098. [Google Scholar] [CrossRef]
- Vlachostergios, P.J.; Faltas, B.M. The molecular limitations of biomarker research in bladder cancer. World J. Urol. 2018, 37, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Lobo, J.; Zein-Sabatto, B.; Lal, P.; Netto, G.J. Digital and Computational Pathology Applications in Bladder Cancer: Novel Tools Addressing Clinically Pressing Needs. Mod. Pathol. 2024, 38, 100631. [Google Scholar] [CrossRef] [PubMed]
- Attanasio, G.; Failla, M.; Poidomani, S.; Buzzanca, T.; Salzano, S.; Zizzo, M.; Palicelli, A.; Zanelli, M.; Koufopoulos, N.; Russo, G.I.; et al. Histological and immuno-histochemical approaches to molecular subtyping in muscle-invasive bladder cancer. Front. Oncol. 2025, 15, 1546160. [Google Scholar] [CrossRef]
- Meyerholz, D.K.; Beck, A.P. Principles and approaches for reproducible scoring of tissue stains in research. Mod. Pathol. 2018, 98, 844–855. [Google Scholar] [CrossRef]
- Nielsen, T.O.; Leung, S.C.Y.; Rimm, D.L.; Dodson, A.; Acs, B.; Badve, S.; Denkert, C.; Ellis, M.J.; Fineberg, S.; Flowers, M.; et al. Assessment of Ki67 in Breast Cancer: Updated Recommendations from the International Ki67 in Breast Cancer Working Group. JNCI J. Natl. Cancer Inst. 2020, 113, 808–819. [Google Scholar] [CrossRef]
- Polley, M.-Y.C.; Leung, S.C.Y.; McShane, L.M.; Gao, D.; Hugh, J.C.; Mastropasqua, M.G.; Viale, G.; Zabaglo, L.A.; Penault-Llorca, F.; Bartlett, J.M.; et al. An International Ki67 Reproducibility Study. JNCI J. Natl. Cancer Inst. 2013, 105, 1897–1906. [Google Scholar] [CrossRef] [PubMed]
- Hommerding, O.; Bernhardt, M.; Kreft, T.; Scherping, A.; Abbas, M.; Baretton, G.; Bräsen, J.H.; Breyer, J.; Darr, C.; Dressler, F.F.; et al. High interobserver variability of PTEN immunohistochemistry defining PTEN status in low- to intermediate-risk prostate cancer: Results of the first German ring trial. Virchows Arch. 2024, 487, 87–96. [Google Scholar] [CrossRef]
- Wen, Z.; Luo, D.; Wang, S.; Rong, R.; Evers, B.M.; Jia, L.; Fang, Y.; Daoud, E.V.; Yang, S.; Gu, Z.; et al. Deep Learning–Based H-Score Quantification of Immunohistochemistry-Stained Images. Mod. Pathol. 2023, 37, 100398. [Google Scholar] [CrossRef] [PubMed]
- Allison, K.H. Prognostic and predictive parameters in breast pathology: A pathologist’s primer. Mod. Pathol. 2021, 34, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.A. Immunohistochemical markers as predictive tools for breast cancer. J. Clin. Pathol. 2007, 61, 689–696. [Google Scholar] [CrossRef]
- Wu, S.; Yue, M.; Zhang, J.; Li, X.; Li, Z.; Zhang, H.; Wang, X.; Han, X.; Cai, L.; Shang, J.; et al. The Role of Artificial Intelligence in Accurate Interpre-tation of HER2 Immunohistochemical Scores 0 and 1+ in Breast Cancer. Mod. Pathol. 2023, 36, 100054. [Google Scholar] [CrossRef]
- Tozbikian, G.; Bui, M.M.; Hicks, D.G.; Jaffer, S.; Khoury, T.; Wen, H.Y.; Krishnamurthy, S.; Wei, S. Best practices for achieving consensus in HER2-low expression in breast cancer: Current perspectives from practising pathologists. Histopathology 2024, 85, 489–502. [Google Scholar] [CrossRef]
- Rüschoff, J.; Schildhaus, H.-U.; Rüschoff, J.H.; Jöhrens, K.; Edmonston, T.B.; Dietmaier, W.; Bläker, H.; Baretton, G.; Horst, D.; Dietel, M.; et al. Testing for deficient mismatch repair and microsatellite instability. Die Pathol. 2023, 44, 61–70. [Google Scholar] [CrossRef]
- Blessin, N.C.; Yang, C.; Mandelkow, T.; Raedler, J.B.; Li, W.; Bady, E.; Simon, R.; Vettorazzi, E.; Lennartz, M.; Bernreuther, C.; et al. Automated Ki-67 labeling index assessment in prostate cancer using artificial intelligence and multiplex fluorescence immunohistochemistry. J. Pathol. 2023, 260, 5–16. [Google Scholar] [CrossRef]
- Abukhiran, I.; Neyaz, A.; Kop, M.; Baroudi, I.; Christensen, D.; Baki, M.-N.A.; Surakji, H.; Shaker, N.; Bedell, M.L.; Jasser, J.; et al. Optimal Approaches to Grading Enteropancreatic Neuroendocrine Tumors Using Ki-67 Proliferation Index: Hotspot and Whole-Slide Digital Quantitative Analysis. Mod. Pathol. 2025, 38, 100780. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, S.; Vijayasenan, D.; Sumam, D.S.; Sreeram, S.; Suresh, P.K. An Integrated Deep Learning Approach towards Automatic Evaluation of Ki-67 Labeling Index. In Proceedings of the TENCON 2019—2019 IEEE Region 10 Conference (TENCON), Kochi, India, 17–20 October 2019; pp. 2310–2314. [Google Scholar]
- Jiao, F.; Shang, Z.; Lu, H.; Chen, P.; Chen, S.; Xiao, J.; Zhang, F.; Zhang, D.; Lv, C.; Han, Y. A weakly supervised deep learning framework for automated PD-L1 expression analysis in lung cancer. Front. Immunol. 2025, 16, 1540087. [Google Scholar] [CrossRef]
- Rodrigues, A.; Nogueira, C.; Marinho, L.C.; Velozo, G.; Sousa, J.; Silva, P.G.; Tavora, F. Computer-assisted tumor grading, validation of PD-L1 scoring, and quantification of CD8-positive immune cell density in urothelial carcinoma, a visual guide for pathologists using QuPath. Surg. Exp. Pathol. 2022, 5, 12. [Google Scholar] [CrossRef]
- Jain, E.; Patel, A.; Parwani, A.V.; Shafi, S.; Brar, Z.; Sharma, S.; Mohanty, S.K. Whole Slide Imaging Technology and Its Applications: Current and Emerging Perspectives. Int. J. Surg. Pathol. 2023, 32, 433–448. [Google Scholar] [CrossRef]
- Kumar, N.; Gupta, R.; Gupta, S. Whole Slide Imaging (WSI) in Pathology: Current Perspectives and Future Directions. J. Digit. Imaging 2020, 33, 1034–1040. [Google Scholar] [CrossRef]
- Corti, C.; Cobanaj, M.; Dee, E.C.; Criscitiello, C.; Tolaney, S.M.; Celi, L.A.; Curigliano, G. Artificial intelligence in cancer research and precision medicine: Applications, limitations and priorities to drive transformation in the delivery of equitable and unbiased care. Cancer Treat. Rev. 2022, 112, 102498. [Google Scholar] [CrossRef]
- Bodén, A.C.S.; Molin, J.; Garvin, S.; West, R.A.; Lundström, C.; Treanor, D. The human-in-the-loop: An evaluation of pathologists’ interaction with artificial intelligence in clinical practice. Histopathology 2021, 79, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Shaktah, L.A.; Carrero, Z.I.; Hewitt, K.J.; Gustav, M.; Cecchini, M.; Foersch, S.; Berezowska, S.; Kather, J.N. Application of artificial intel-ligence and digital tools in cancer pathology. Lancet Digit. Health 2025, 7, 100933. [Google Scholar] [CrossRef]
- Cheng, C.H.; Shi, S.-S. Artificial intelligence in cancer: Applications, challenges, and future perspectives. Mol. Cancer 2025, 24, 274. [Google Scholar] [CrossRef] [PubMed]
- Hanna, M.G.; Pantanowitz, L.; Dash, R.; Harrison, J.H.; Deebajah, M.; Pantanowitz, J.; Rashidi, H.H. Future of Artificial Intelligence—Machine Learning Trends in Pathology and Medicine. Mod. Pathol. 2025, 38, 100705. [Google Scholar] [CrossRef]
- Zarella, M.D.; McClintock, D.S.; Batra, H.; Gullapalli, R.R.; Valante, M.; Tan, V.O.; Dayal, S.; Oh, K.S.; Lara, H.; Garcia, C.A.; et al. Artificial intelligence and digital pathology: Clinical promise and deployment considerations. J. Med. Imaging 2023, 10, 051802. [Google Scholar] [CrossRef] [PubMed]
- Nowak, M.; Jabbar, F.; Rodewald, A.-K.; Gneo, L.; Tomasevic, T.; Harkin, A.; Iveson, T.; Saunders, M.; Kerr, R.; Oein, K.; et al. Single-cell AI-based detection and prognostic and predictive value of DNA mismatch repair deficiency in colorectal cancer. Cell Rep. Med. 2024, 5, 101727. [Google Scholar] [CrossRef] [PubMed]
- Echle, A.; Grabsch, H.I.; Quirke, P.; van den Brandt, P.A.; West, N.P.; Hutchins, G.G.A.; Heij, L.R.; Tan, X.; Richman, S.D.; Krause, J.; et al. Clinical-grade Detection of Microsatellite Instability in Colorectal Tumors by Deep Learning. Gastroenterology 2020, 159, 1406–1416.e11. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.X.; Bose, R.; Ellis, M.J. Prognostic and Predictive Biomarkers of Endocrine Responsiveness for Estrogen Receptor Positive Breast Cancer. In Novel Biomarkers in the Continuum of Breast Cancer; Stearns, V., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 125–154. [Google Scholar] [CrossRef]
- Leong, A.S.Y. Pitfalls in Diagnostic Immunohistology. Adv. Anat. Pathol. 2004, 11, 86. [Google Scholar] [CrossRef] [PubMed]
- Yassen, N.N.; Elsharkawy, S.L.; Abbas, N.F.; Shabana, M.E. Immunohistochemical expression of GATA3, CK5/6 and CK20 in molecular subtypes of bladder carcinoma: Correlation with clinicopathological features. Bull. Natl. Res. Cent. 2024, 48, 83. [Google Scholar] [CrossRef]
- Weyerer, V.; Stoehr, R.; Bertz, S.; Lange, F.; Geppert, C.I.; Wach, S.; Taubert, H.; Sikic, D.; Wullich, B.; Hartmann, A.; et al. Prognostic impact of molecular muscle-invasive bladder cancer subtyping approaches and correlations with variant histology in a population-based mono-institutional cystectomy cohort. World J. Urol. 2021, 39, 4011–4019. [Google Scholar] [CrossRef]
- Guo, C.C.; Bondaruk, J.; Yao, H.; Wang, Z.; Zhang, L.; Lee, S.; Lee, J.-G.; Cogdell, D.; Zhang, M.; Yang, G.; et al. Assessment of Luminal and Basal Phenotypes in Bladder Cancer. Sci. Rep. 2020, 10, 9743. [Google Scholar] [CrossRef] [PubMed]
- Cano Barbadilla, T.; Álvarez Pérez, M.; Prieto Cuadra, J.D.; Dawid de Vera, M.T.; Alberca-del Arco, F.; García Muñoz, I.; Santos-Pérez de la Blanca, R.; Herrera-Imbroda, B.; Matas-Rico, E.; Hierro Martín, M.I. The Role of Immunohistochemistry as a Surrogate Marker in Molecular Subtyping and Classifi-cation of Bladder Cancer. Diagnostics 2024, 14, 2501. [Google Scholar] [CrossRef]
- Fraggetta, F.; L’imperio, V.; Ameisen, D.; Carvalho, R.; Leh, S.; Kiehl, T.-R.; Serbanescu, M.; Racoceanu, D.; Della Mea, V.; Polonia, A.; et al. Best Practice Recommendations for the Implementation of a Digital Pathology Workflow in the Anatomic Pathology Laboratory by the European Society of Digital and Integrative Pathology (ESDIP). Diagnostics 2021, 11, 2167. [Google Scholar] [CrossRef]
- Fan, W.-X.; Su, F.; Zhang, Y.; Zhang, X.-L.; Du, Y.-Y.; Gao, Y.-J.; Li, W.-L.; Hu, W.-Q.; Zhao, J. Oncological characteristics, treatments and prognostic outcomes in MMR-deficient colorectal cancer. Biomark. Res. 2024, 12, 89. [Google Scholar] [CrossRef]
- Loughrey, M.B.; McGrath, J.; Coleman, H.G.; Bankhead, P.; Maxwell, P.; McGready, C.; Bingham, V.; Humphries, M.P.; Craig, S.G.; McQuaid, S.; et al. Identifying mismatch repair-deficient colon cancer: Near-perfect concordance between immunohistochemistry and microsatellite instability testing in a large, population-based series. Histopathology 2020, 78, 401–413. [Google Scholar] [CrossRef]
- Meng, X.; Huang, Z.; Teng, F.; Xing, L.; Yu, J. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade im-munotherapy. Cancer Treat. Rev. 2015, 41, 868–876. [Google Scholar] [CrossRef]
- Cheng, J.; Han, Y.; Yuan, Y.; Huang, S.; Xiao, B.; Kong, Y.; Xue, W.; Yuan, R.; Liu, H.; Lan, P.; et al. Automated multi-regional IHC scoring enhances prognostication in colorectal cancer. J. Pathol. Clin. Res. 2025, 11, e70047. [Google Scholar] [CrossRef] [PubMed]
- Sinicrope, F.; Nelson, G.; Ardestani, B.S.; Park, G.; Lim, Y.; Yan, D.; Shanmugam, K.; Alberts, S.; Shi, Q.; Ock, C.-Y.; et al. 569P Artificial intelligence for detection of mismatch repair deficiency in colon carcinomas (alliance). Ann. Oncol. 2023, 34, S420. [Google Scholar] [CrossRef]
- Li, H.; Qin, J.; Li, Z.; Ouyang, R.; Chen, Z.; Huang, S.; Qin, S.; Huang, Q. Systematic review and meta-analysis of deep learning for MSI-H in colorectal cancer whole slide images. npj Digit. Med. 2025, 8, 456. [Google Scholar] [CrossRef]
- Yang, Y.; Jain, R.K.; Glenn, S.T.; Xu, B.; Singh, P.K.; Wei, L.; Hu, Q.; Long, M.; Hutson, N.; Wang, J.; et al. Complete response to anti-PD-L1 antibody in a metastatic bladder cancer associated with novel MSH4 mutation and microsatellite instability. J. Immunother. Cancer 2020, 8, e000128. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, X.; Xie, J.; Cheng, X.; Chen, J.; Shen, M.; Ding, W.; Wang, S.; Zhang, Z.; Wang, C.; et al. Clinicopathological and molecular analysis of microsatellite instability in prostate cancer: A multi-institutional study in China. Front. Oncol. 2023, 13, 1277233. [Google Scholar] [CrossRef]
- Gabriel, P.; Cancel-Tassin, G.; Audenet, F.; Masson-Lecomte, A.; Allory, Y.; Roumiguié, M.; Pradère, B.; Loriot, Y.; Léon, P.; Traxer, O.; et al. A collaborative review of the microsatellite instability/deficient mismatch repair phenotype in patients with upper tract urothelial carcinoma. BJU Int. 2024, 134, 723–735. [Google Scholar] [CrossRef]
- Lopez-Beltran, A.; Cimadamore, A.; Blanca, A.; Massari, F.; Vau, N.; Scarpelli, M.; Cheng, L.; Montironi, R. Immune Checkpoint Inhibitors for the Treatment of Bladder Cancer. Cancers 2021, 13, 131. [Google Scholar] [CrossRef]
- Boiarsky, D.; Gulhan, D.C.; Savignano, H.; Lakshminarayanan, G.; McClure, H.M.; Silver, R.; Hirsch, M.S.; Sholl, L.M.; Choudhury, A.D.; Ananda, G.; et al. A Panel-Based Mutational Signature of Mismatch Repair Deficiency is Associated with Durable Response to Pembrolizumab in Metastatic Castration-Resistant Prostate Cancer. Clin. Genitourin. Cancer 2024, 22, 558–568.e3. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, K.; Nakanishi, Y.; Okubo, N.; Matsumoto, S.; Umino, Y.; Kataoka, M.; Yajima, S.; Yoshida, T.; Miyazaki, S.; Kuwata, T.; et al. Prevalence and characteristics of patients with upper urinary tract urothelial carcinoma having potential Lynch syndrome identified by immunohistochemical universal screening and Amsterdam criteria II. BMC Cancer 2023, 23, 940. [Google Scholar] [CrossRef]
- Guan, B.; Wang, J.; Li, X.; Lin, L.; Fang, D.; Kong, W.; Tian, C.; Li, J.; Yang, K.; Han, G.; et al. Identification of Germline Mutations in Upper Tract Urothelial Carcinoma with Suspected Lynch Syndrome. Front. Oncol. 2022, 12, 774202. [Google Scholar] [CrossRef]
- Ju, J.Y.; Mills, A.M.; Mahadevan, M.S.; Fan, J.; Culp, S.H.; Thomas, M.H.; Cathro, H.P. Universal Lynch Syndrome Screening Should be Performed in All Upper Tract Urothelial Carcinomas. Am. J. Surg. Pathol. 2018, 42, 1549–1555. [Google Scholar] [CrossRef]
- Vranic, S.; Gatalica, Z. PD-L1 testing by immunohistochemistry in immuno-oncology. Biomol. Biomed. 2023, 23, 15–25. [Google Scholar] [CrossRef]
- Haragan, A.; Gosney, J.R. Immunohistochemistry for prediction of response to immunotherapy. Diagn. Histopathol. 2020, 26, 506–512. [Google Scholar] [CrossRef]
- Rüschoff, J.; Kumar, G.; Badve, S.; Jasani, B.; Krause, E.; Rioux-Leclercq, N.; Rojo, F.; Martini, M.; Cheng, L.; Tretiakova, M.; et al. Scoring PD-L1 Expression in Urothelial Carcinoma: An International Multi-Institutional Study on Comparison of Manual and Artificial Intelligence Measurement Model (AIM-PD-L1) Pathology Assessments. Virchows Arch. 2024, 484, 597–608. [Google Scholar] [CrossRef]
- Klöppel, G.; La Rosa, S. Ki67 labeling index: Assessment and prognostic role in gastroenteropancreatic neuroendocrine neoplasms. Virchows Arch. 2017, 472, 341–349. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, M.; Chen, X. Prognostic and clinicopathological value of Ki-67 in patients with oesophageal squamous cell carcinoma: A systematic review and meta-analysis. BMJ Open 2024, 14, e083637. [Google Scholar] [CrossRef] [PubMed]
- Erdian, D.N.; Ham, M.F.; Khoirunnisa, D.; Harahap, A.S. High Ki-67 labeling index correlates with aggressive clinicopathological features in papillary thyroid carcinoma: A retrospective study. Thyroid. Res. 2025, 18, 54. [Google Scholar] [CrossRef] [PubMed]
- Maia, R.; DOS Santos, G.A.; Reis, S.; Viana, N.I.; Pimenta, R.; Guimarães, V.R.; Recuero, S.; Romão, P.; Leite, K.R.M.; Srougi, M.; et al. Can we use Ki67 expression to predict prostate cancer aggressiveness? Rev. Colégio Bras. Cir. 2022, 49, e20223200. [Google Scholar] [CrossRef]
- Höller, A.; Nguyen-Sträuli, B.D.; Frauchiger-Heuer, H.; Ring, A. Diagnostic and Prognostic Biomarkers of Luminal Breast Cancer: Where are We Now? Breast Cancer Targets Ther. 2023, 15, 525–540. [Google Scholar] [CrossRef]
- Dębska-Szmich, S.; Potemski, P. Adjuvant systemic treatment in luminal breast cancer—What else apart from hormone therapy? Oncol. Clin. Pract. 2025. [Google Scholar] [CrossRef]
- Cavalcanti, M.S.; Gönen, M.; Klimstra, D.S. The ENETS/WHO Grading System for Neuroendocrine Neoplasms of the Gastroenteropancreatic System: A Review of the Current State, Limitations and Proposals for Modifications. Int. J. Endocr. Oncol. 2016, 3, 203–219. [Google Scholar] [CrossRef]
- Li, W.; Ye, S.; Jin, Z.; Chen, L.; Chao, Y.; Wei, G.; Huang, Q.; Tu, H.; Wang, Q. Artificial Intelligence in digital pathology of breast cancer, new era of practice? Int. J. Surg. 2025, 111, 8270–8283. [Google Scholar] [CrossRef]
- Merae Alshahrani, M. A glance at the emerging diagnostic biomarkers in the most prevalent genitouri-nary cancers. Saudi J. Biol. Sci. 2022, 29, 2072–2084. [Google Scholar] [CrossRef]
- Sanguedolce, F.; Cormio, A.; Zanelli, M.; Zizzo, M.; Palicelli, A.; Falagario, U.G.; Milanese, G.; Galosi, A.B.; Mazzucchelli, R.; Cormio, L.; et al. Diagnostic, Prognostic, and Predictive Tissue Biomarkers in Urothelial Carcinoma In Situ: A Narrative Review. Diagnostics 2025, 15, 2163. [Google Scholar] [CrossRef]
- Sanguedolce, F.; Zanelli, M.; Palicelli, A.; Ascani, S.; Zizzo, M.; Cocco, G.; Björnebo, L.; Lantz, A.; Falagario, U.G.; Cormio, L.; et al. Are We Ready to Implement Molecular Subtyping of Bladder Cancer in Clinical Practice? Part 1: General Issues and Marker Expression. Int. J. Mol. Sci. 2022, 23, 7819. [Google Scholar] [CrossRef]
- Aggarwal, A.; Bharadwaj, S.; Corredor, G.; Pathak, T.; Badve, S.; Madabhushi, A. Artificial intelligence in digital pathology—time for a reality check. Nat. Rev. Clin. Oncol. 2025, 22, 283–291. [Google Scholar] [CrossRef]
- Baweja, B.; Vats, P.; Kausik, S.; Singh, J.; Nema, R.; Yadav, P. Challenges and Limitations of Computational Methods in Oncology. In Advances in Cancer Detection, Prediction, and Prognosis Using Artificial Intelligence and Machine Learning; Nema, R., Kumar, A., Saini, D.K., Eds.; Springer Nature: Singapore, 2025; pp. 307–324. Available online: https://doi.org/10.1007/978-981-96-9346-7_13 (accessed on 23 November 2025). [CrossRef]
- Distante, A.; Marandino, L.; Bertolo, R.; Ingels, A.; Pavan, N.; Pecoraro, A.; Marchioni, M.; Carbonara, U.; Erdem, S.; Amparore, D.; et al. Artificial Intelligence in Renal Cell Carcinoma Histopathology: Current Applications and Future Perspectives. Diagnostics 2023, 13, 2294. [Google Scholar] [CrossRef]
- Cimadamore, A.; Gasparrini, S.; Santoni, M.; Cheng, L.; Lopez-Beltran, A.; Battelli, N.; Massari, F.; Giunchi, F.; Fiorentino, M.; Scarpelli, M.; et al. Biomarkers of aggressiveness in genitourinary tumors with emphasis on kidney, bladder, and prostate cancer. Expert Rev. Mol. Diagn. 2018, 18, 645–655. [Google Scholar] [CrossRef]
- Fernandes-Pontes, F.; Lobo, J.; Jeronimo, C.; Henrique, R. Identification of novel biomarkers in renal cell carcinoma. Expert Rev. Mol. Diagn. 2025, 25, 465–477. [Google Scholar] [CrossRef]
- Martin, A.S.; Molloy, M.; Ugolkov, A.; von Roemeling, R.W.; Noelle, R.J.; Lewis, L.D.; Johnson, M.; Radvanyi, L.; Martell, R.E. VISTA expression and patient selection for immune-based anticancer therapy. Front. Immunol. 2023, 14, 1086102. [Google Scholar] [CrossRef]
- Li, W.; Liu, Z.; Jin, K.; Shao, F.; Zeng, H.; Wang, Y.; Zhu, Y.; Xu, L.; Wang, Z.; Chang, Y.; et al. Immune inactivation by VISTA predicts clinical outcome and therapeutic benefit in muscle-invasive bladder cancer. BMC Cancer 2023, 23, 661. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, H.; Shang, G. Research progress of B7-H3 in malignant tumors. Front. Immunol. 2025, 16, 1586759. [Google Scholar] [CrossRef]
- Yajima, S.; Masuda, H. Immune Checkpoint Inhibitors and Antibody-Drug Conjugates in Urothelial Carcinoma: Current Landscape and Future Directions. Cancers 2025, 17, 1594. [Google Scholar] [CrossRef]
- Dernbach, G.; Eich, M.-L.; Dragomir, M.P.; Anders, P.; Jurczok, N.; Stief, C.; Jurmeister, P.; Schlomm, T.; Klauschen, F.; Horst, D.; et al. Spatial Expression of HER2, NECTIN4, and TROP-2 in Muscle-Invasive Bladder Cancer and Metastases: Implications for Pathological and Clinical Management. Mod. Pathol. 2025, 38, 100753. [Google Scholar] [CrossRef]
- Kobayashi, G.; Sekino, Y.; Hayashi, T.; Nakahara, H.; Yukihiro, K.; Kobatake, K.; Kitano, H.; Goto, K.; Niitsu, H.; Hinoi, T.; et al. Nectin-4 expression in upper and lower tract urothelial carcinoma: Correlation with early-stage disease and prognostic relevance. Virchows Arch. 2025, 487, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Bjartell, A.; Krzyzanowska, A.; Liu, V.Y.; Tierney, M.; Royce, T.J.; Sjöström, M.; Palominos-Rivera, M.M.; Chen, E.; Kraft, A.; Esteva, A.; et al. Validation of a Digital Pathology–Based Multimodal Artificial Intelligence Biomarker in a Prospective, Real-World Prostate Cancer Cohort Treated with Prostatectomy. Clin. Cancer Res. 2025, 31, 1546–1553. [Google Scholar] [CrossRef]
- Yoshida, T.; Nakamoto, T.; Atsumi, N.; Ohe, C.; Sano, T.; Yasukochi, Y.; Tsuta, K.; Kinoshita, H. Impact of LAG-3/FGL1 pathway on immune evasive contexture and clinical outcomes in advanced urothelial carcinoma. J. Immunother. Cancer 2024, 12, e009358–14. [Google Scholar] [CrossRef]
- Cai, L.; Li, Y.; Tan, J.; Xu, L.; Li, Y. Targeting LAG-3, TIM-3, and TIGIT for cancer immunotherapy. J. Hematol. Oncol. 2023, 16, 101. [Google Scholar] [CrossRef]
- Meng, L.; Khorasanchi, A.; Jain, R. Advancing Bladder Cancer Management: The Role of Neoadjuvant and Adjuvant Therapies and Biomarkers in Muscle Invasive Bladder Cancer. Curr. Treat. Options Oncol. 2025, 26, 929–942. [Google Scholar] [CrossRef]
- Efstathiou, J.A.; Mouw, K.W.; Gibb, E.A.; Liu, Y.; Wu, C.-L.; Drumm, M.R.; da Costa, J.B.; du Plessis, M.; Wang, N.Q.; Davicioni, E.; et al. Impact of Immune and Stromal Infiltration on Outcomes Following Bladder-Sparing Trimodality Therapy for Muscle-Invasive Bladder Cancer. Eur. Urol. 2019, 76, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Colling, R.; Pitman, H.; Oien, K.; Rajpoot, N.; Macklin, P.; CM-Path AI in Histopathology Working Group; Snead, D.; Sackville, T.; Verrill, C. Artificial intelligence in digital pathology: A roadmap to routine use in clinical practice. J. Pathol. 2019, 249, 143–150. [Google Scholar] [CrossRef]
- van der Laak, J.; Litjens, G.; Ciompi, F. Deep learning in histopathology: The path to the clinic. Nat. Med. 2021, 27, 775–784. [Google Scholar] [CrossRef]
- Marliot, F.; Lafontaine, L.; Galon, J. Immunoscore assay for the immune classification of solid tumors: Technical aspects, improvements and clinical perspectives. Methods Enzymol. 2020, 636, 109–128. [Google Scholar]
- El Sissy, C.; Kirilovsky, A.; Zeitoun, G.; Marliot, F.; Haicheur, N.; Lagorce-Pagès, C.; Galon, J.; Pagès, F. Therapeutic Implica-tions of the Immunoscore in Patients with Colorectal Cancer. Cancers 2021, 13, 1281. [Google Scholar] [CrossRef]
- Marliot, F.; Chen, X.; Kirilovsky, A.; Sbarrato, T.; El Sissy, C.; Batista, L.; Van den Eynde, M.; Haicheur-Adjouri, N.; Anitei, M.G.; Musina, A.M.; et al. Analytical validation of the Im-munoscore and its associated prognostic value in patients with colon cancer. J. Immunother. Cancer 2020, 8, e000272. [Google Scholar] [CrossRef]
- Powles, T.; Assaf, Z.J.; Degaonkar, V.; Grivas, P.; Hussain, M.; Oudard, S.; Gschwend, J.E.; Albers, P.; Castellano, D.; Nishiyama, H.; et al. Updated Overall Survival by Circulating Tumor DNA Status from the Phase 3 IMvigor010 Trial: Adjuvant Atezolizumab Versus Observation in Muscle-invasive Urothelial Carcinoma. Eur. Urol. 2023, 85, 114–122. [Google Scholar] [CrossRef]
- Powles, T.; Kann, A.G.; Castellano, D.; Gross-Goupil, M.; Nishiyama, H.; Bracarda, S.; Jensen, J.B.; Makaroff, L.; Jiang, S.; Ku, J.H.; et al. ctDNA-Guided Adjuvant Atezolizumab in Muscle-Invasive Bladder Cancer. N. Engl. J. Med. 2025, 393, 2395–2408. [Google Scholar] [CrossRef]
| Scoring System | Context | Output | ML Relevance | Validation | Considerations | References |
|---|---|---|---|---|---|---|
| Allred | ER/PR | 0–8 | Well-suited for nuclear segmentation | Clinically validated and standardised | Well-established thresholds, but scoring can differ between observers | [31,55,56] |
| HER2 (ordinal) score | HER2 | 0/1+/2+/3+ | Membrane modelling (CNN) | Clinically validated and standardised | Confirmatory ISH required for equivocal 2+ cases, but actionable HER2-low status | [27,30,31,34,57,58] |
| H-Score | Cytoplasmic/membranous IHC markers | 0–300 | Continuous intensity–proportion modelling | Exploratory; (research grade only) | No standardised thresholds for clinical use yet | [50,54,59] |
| Ki-67 Index | Proliferation (Breast, Colorectal, Neuroendocrine, Prostate, etc.) | % positive nuclei | Nuclear detection + % quantification suitable for ML automation | Clinically validated but with limitations in reproducibility | AI/ML can help standardise with variability in thresholding and counting | [51,52,60,61,62] |
| TPS | PD-L1 | % tumour cells | Tumour-cell classification | Clinically validated, but thresholds depend on assay | Used in drug approval (tumour- & assay-dependent) | [37,39,40,41] |
| CPS | PD-L1 | Combined tumour + immune | Multi-cell classification | Clinically validated but with limitations on reproducibility | Complex and variable; ML can help standardise | [39,42,63] |
| IC Score | PD-L1 | % immune area | Region-based segmentation | Exploratory | Challenging for both manual and ML scoring | [41,42,64] |
| Validated Biomarker | Cancer Type | IHC Staining Pattern | Scoring System | ML Workflow | Clinical Role | ML Integration in Clinical Routine | References |
|---|---|---|---|---|---|---|---|
| ER/PR | Breast | Nuclear | Allred | Nuclear segmentation; intensity classification | Diagnostic; Predictive | validated; integrated | [31,55,56] |
| HER2 | Breast; Gastric | Membranous | Ordinal | CNN; instance segmentation; membrane detection; | Diagnostic; Predictive (response to HER2-targeted + ADC therapy) | validated; integrated | [27,30,31,34,57,58] |
| MMR proteins | Colorectal; Endometrial; Prostate (emerging) | Nuclear | Binary (+/−) | CNN nuclear classification; MSI prediction | Diagnostic; Predictive (ICI response) | validated; near integration | [59,73,74] |
| PD-L1 | Lung; GU; others | Cytoplasmic/membranous | TPS; CPS; IC score | Cell-type classification; weakly supervised DL | Predictive (ICI response) | validated; assay-dependent integration | [37,39,41,42,63] |
| Ki-67 | Breast; NETs; GU | Nuclear | % positive nuclei | DL nuclear segmentation; automated index | Prognostic | validated; limited exploratory integration | [51,52,60,61,62] |
| Biomarker | Cancer | Staining Pattern | Current Role | Emerging Role | Translational Status | ML Involvement | References |
|---|---|---|---|---|---|---|---|
| AR | Prostate | Nuclear | Predictive marker for endocrine response | Resistance profiling; treatment-stratification | Retrospective/exploratory | Nuclear segmentation and positivity quantification | [110,111] |
| PTEN | Prostate | Cytoplasmic loss | Prognostic for tumour aggressiveness | Potential therapeutic-decision biomarker | Retrospective/exploratory | Binary loss classification suitable for DL workflows | [53] |
| PSMA | Prostate | Membranous | Diagnostic/Theranostic | Exploratory prognostic, and predictive of response to ADC or radioligand therapy | Early clinical evaluation | Membrane intensity modelling for automated scoring | [48,112] |
| MMR proteins | Prostate | Nuclear | Validated predictive marker of ICI response in colorectal cancers | Emerging similar role in some prostate cancer patients | Validated (non-GU); exploratory in GU | Predictive MMR status from H&E; nuclear binary detection of loss vs. retention for IHC | [73,74,86,87] |
| BAP1 | Renal (RCC) | Nuclear loss | Prognostic indicator in RCC | Risk stratification and hereditary context under study | Retrospective/exploratory | Reliable, automated classification of loss vs. retention | [113,114] |
| VISTA | Bladder, RCC | Immune- associated | Immune context assessment | Candidate predictive biomarker for ICI response | Pre-clinical/hypothesis-generating | Immune-cell compartment segmentation for ML | [115,116] |
| B7-H3 (CD276) | GU tumours | Membranous | Immune evasion marker | ADC development and therapeutic targeting | Pre-clinical/hypothesis-generating | Membrane-based quantification suited to DL models | [117] |
| CK5/6, CK14 | Bladder | Cytoplasmic/ membranous | Basal subtyping | Exploratory prognostic associations in MIBC | Retrospective/exploratory | ML-based subtype recognition demonstrated | [46,64] |
| CK20, GATA3 | Bladder | CK20 cytoplasmic; GATA3 nuclear | Luminal subtyping | Investigated for recurrence/progression risk | Retrospective/exploratory | Stable staining supports training datasets | [80,108] |
| UPK II | Bladder | Membranous | Diagnostic; lineage confirmation | Exploratory prognostic associations in MIBC | Retrospective/exploratory | Membrane scoring compatible with DL pipelines | [49] |
| Nectin-4 | Bladder | Membranous | Target of enfortumab vedotin | Exploratory prognostic and predictive for ADC | Early clinical evaluation | ML_automated H-scoring | [118,119,120] |
| Trop-2 | Bladder | Membranous | Target of sacituzumab govitecan | Exploratory IHC-based risk stratification for ADC response | Pre-clinical/hypothesis-generating | Target expression quantification for ML prediction models | [91,118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yap, M.; Mihai, I.-M.; Wang, G. Machine Learning in Biomarker-Driven Precision Oncology: Automated Immunohistochemistry Scoring and Emerging Directions in Genitourinary Cancers. Curr. Oncol. 2026, 33, 31. https://doi.org/10.3390/curroncol33010031
Yap M, Mihai I-M, Wang G. Machine Learning in Biomarker-Driven Precision Oncology: Automated Immunohistochemistry Scoring and Emerging Directions in Genitourinary Cancers. Current Oncology. 2026; 33(1):31. https://doi.org/10.3390/curroncol33010031
Chicago/Turabian StyleYap, Matthew, Ioana-Maria Mihai, and Gang Wang. 2026. "Machine Learning in Biomarker-Driven Precision Oncology: Automated Immunohistochemistry Scoring and Emerging Directions in Genitourinary Cancers" Current Oncology 33, no. 1: 31. https://doi.org/10.3390/curroncol33010031
APA StyleYap, M., Mihai, I.-M., & Wang, G. (2026). Machine Learning in Biomarker-Driven Precision Oncology: Automated Immunohistochemistry Scoring and Emerging Directions in Genitourinary Cancers. Current Oncology, 33(1), 31. https://doi.org/10.3390/curroncol33010031

