Improving Prognostic Prediction in Head and Neck Cancer Through a Combined Systemic Immune-Inflammation Index and Prognostic Nutritional Index Score
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Index Score Calculation
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Optimal Cutoff Values and Group Comparisons
3.3. Survival Outcomes
3.4. Prognostic Factors for DFS and OS
3.5. Prognostic Utility of the coSII–PNI Score
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AUC | area under the curve |
| CI | confidence interval |
| DFS | disease-free survival |
| ERAS | Enhanced Recovery After Surgery |
| HR | hazard ratio |
| HNC | head and neck cancer |
| OS | overall survival |
| PNI | prognostic nutritional index |
| ROC | receiver operating characteristic |
| SII | systemic immune–inflammation index |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers 2020, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Patterson, R.H.; Fischman, V.G.; Wasserman, I.; Siu, J.; Shrime, M.G.; Fagan, J.J.; Koch, W.; Alkire, B.C. Global burden of head and neck cancer: Economic consequences, health, and the role of surgery. Otolaryngol. Head Neck Surg. 2020, 162, 296–303. [Google Scholar] [CrossRef]
- Proctor, M.J.; McMillan, D.C.; Morrison, D.S.; Fletcher, C.D.; Horgan, P.G.; Clarke, S.J. A derived neutrophil to lymphocyte ratio predicts survival in patients with cancer. Br. J. Cancer 2012, 107, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Yang, X.R.; Xu, Y.; Sun, Y.F.; Sun, C.; Guo, W.; Zhang, X.; Wang, W.M.; Qiu, S.J.; Zhou, J.; et al. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin. Cancer Res. 2014, 20, 6212–6222. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, D. The prognostic value of systemic immune-inflammation index (SII) in patients after radical operation for carcinoma of stomach in gastric cancer. J. Gastrointest. Oncol. 2019, 10, 965–978. [Google Scholar] [CrossRef]
- Guo, W.; Cai, S.; Zhang, F.; Shao, F.; Zhang, G.; Zhou, Y.; Zhao, L.; Tan, F.; Gao, S.; He, J. Systemic immune-inflammation index (SII) is useful to predict survival outcomes in patients with surgically resected non-small cell lung cancer. Thorac. Cancer 2019, 10, 761–768. [Google Scholar] [CrossRef]
- Engelstrup, E.; Beck, A.M.; Munk, T.; Bardal, P.; Knudsen, A.W. The association between nutrition impact symptoms, nutritional risk, and risk of reduced overall survival in patients with head and neck cancer. A retrospective study. Clin. Nutr. ESPEN 2023, 57, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.H.; Hsieh, J.C.H.; Yeh, K.Y.; Chen, E.Y.C.; Yang, S.W.; Huang, J.S.; Lai, C.H.; Wu, T.H.; Huang, Y.M.; Chang, Y.S.; et al. Prognostic nutritional index relevance in chemoradiotherapy for advanced oral cavity, oropharyngeal and hypopharyngeal cancer. Asia Pac. J. Clin. Nutr. 2018, 27, 996–1001. [Google Scholar] [CrossRef]
- Ravasco, P.; Monteiro-Grillo, I.; Vidal, P.M.; Camilo, M.E. Nutritional deterioration in cancer: The role of disease and diet. Clin. Oncol. (R. Coll. Radiol.) 2003, 15, 443–450. [Google Scholar] [CrossRef]
- de Carvalho, T.M.R.; Miguel Marin, D.M.; da Silva, C.A.; de Souza, A.L.; Talamoni, M.; Lima, C.S.P.; Monte Alegre, S. Evaluation of patients with head and neck cancer performing standard treatment in relation to body composition, resting metabolic rate, and inflammatory cytokines. Head Neck 2015, 37, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Vílchez-López, F.J.; González-Pacheco, M.; Fernández-Jiménez, R.; Zarco-Martín, M.T.; Gonzalo-Marín, M.; Cobo-Molinos, J.; Carmona-Llanos, A.; Muñoz-Garach, A.; García-Luna, P.P.; Herrera-Martínez, A.D.; et al. Predictive factors of the degrees of malnutrition according to GLIM criteria in head and neck cancer patients: Valor group. Cancers 2024, 16, 4255. [Google Scholar] [CrossRef] [PubMed]
- Kono, T.; Sakamoto, K.; Shinden, S.; Ogawa, K. Pre-therapeutic nutritional assessment for predicting severe adverse events in patients with head and neck cancer treated by radiotherapy. Clin. Nutr. 2017, 36, 1681–1685. [Google Scholar] [CrossRef]
- Chen, Q.J.; Qu, H.J.; Li, D.Z.; Li, X.M.; Zhu, J.J.; Xiang, Y.; Li, L.; Ma, Y.T.; Yang, Y.N. Prognostic nutritional index predicts clinical outcome in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Sci. Rep. 2017, 7, 3285. [Google Scholar] [CrossRef] [PubMed]
- Correa-Rodríguez, M.; Pocovi-Gerardino, G.; Callejas-Rubio, J.L.; Fernández, R.R.; Martín-Amada, M.; Cruz-Caparros, M.G.; Ortego-Centeno, N.; Rueda-Medina, B. The prognostic nutritional index and nutritional risk index are associated with disease activity in patients with systemic lupus erythematosus. Nutrients 2019, 11, 638. [Google Scholar] [CrossRef]
- Wang, Y.T.; Kuo, L.T.; Weng, H.H.; Hsu, C.M.; Tsai, M.S.; Chang, G.H.; Lee, Y.C.; Huang, E.I.; Tsai, Y.T. Systemic immune-inflammation index as a predictor for head and neck cancer prognosis: A meta-analysis. Front. Oncol. 2022, 12, 899518. [Google Scholar] [CrossRef]
- Wang, E.Y.; Chen, M.K.; Hsieh, M.Y.; Kor, C.T.; Liu, Y.T. Relationship between preoperative nutritional status and clinical outcomes in patients with head and neck cancer. Nutrients 2022, 14, 5331. [Google Scholar] [CrossRef]
- Luan, C.W.; Tsai, Y.T.; Yang, H.Y.; Chen, K.Y.; Chen, P.H.; Chou, H.H. Pretreatment prognostic nutritional index as a prognostic marker in head and neck cancer: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 17117. [Google Scholar] [CrossRef]
- Uri, I.; Horváth, A.; Tamás, L.; Polony, G.; Dános, K. Prognostic nutritional index (PNI) correlates with survival in head and neck cancer patients more precisely than other nutritional markers—Real world data. Eur. Arch. Otorhinolaryngol. 2024, 281, 6599–6611. [Google Scholar] [CrossRef]
- Zhang, H.; Shang, X.; Ren, P.; Gong, L.; Ahmed, A.; Ma, Z.; Ma, R.; Wu, X.; Xiao, X.; Jiang, H.; et al. The predictive value of a preoperative systemic immune-inflammation index and prognostic nutritional index in patients with esophageal squamous cell carcinoma. J. Cell Physiol. 2019, 234, 1794–1802. [Google Scholar] [CrossRef]
- He, H.; Guo, W.; Song, P.; Liu, L.; Zhang, G.; Wang, Y.; Qiu, B.; Tan, F.; Xue, Q.; Gao, S. Preoperative systemic immune-inflammation index and prognostic nutritional index predict prognosis of patients with pulmonary neuroendocrine tumors after surgical resection. Ann. Transl. Med. 2020, 8, 630. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Ann. Intern. Med. 2007, 147, 573–577. [Google Scholar] [CrossRef]
- Onodera, T.; Goseki, N.; Kosaki, G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi 1984, 85, 1001–1005. (In Japanese) [Google Scholar]
- Yan, X.; Zhu, J.; Wang, J.; Lu, Y.; Ye, X.; Sun, X.; Jiang, H.; Li, Z.; He, C.; Zhai, W.; et al. Development and validation of a novel prognostic prediction system based on GLIM-defined malnutrition for colorectal cancer patients post-radical surgery. Front. Nutr. 2024, 11, 1425317. [Google Scholar] [CrossRef]
- Zheng, P.; Wang, B.; Luo, Y.; Duan, R.; Feng, T. Research progress on predictive models for malnutrition in cancer patients. Front. Nutr. 2024, 11, 1438941. [Google Scholar] [CrossRef]
- Zhong, J.-H.; Huang, D.-H.; Chen, Z.-Y. Prognostic role of systemic immune-inflammation index in solid tumors: A systematic review and meta-analysis. Oncotarget 2017, 8, 75381–75388. [Google Scholar] [CrossRef]
- Yang, R.; Chang, Q.; Meng, X.; Gao, N.; Wang, W. Prognostic value of systemic immune-inflammation index in cancer: A meta-analysis. J. Cancer 2018, 9, 3295–3302. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Zhai, E.T.; Yuan, Y.J.; Wu, K.M.; Xu, J.B.; Peng, J.J.; Chen, C.Q.; He, Y.L.; Cai, S.R. Systemic immune-inflammation index for predicting prognosis of colorectal cancer. World J. Gastroenterol. 2017, 23, 6261–6272. [Google Scholar] [CrossRef]
- Lolli, C.; Caffo, O.; Scarpi, E.; Aieta, M.; Conteduca, V.; Maines, F.; Bianchi, E.; Massari, F.; Veccia, A.; Chiuri, V.E.; et al. Systemic immune-inflammation index predicts the clinical outcome in patients with mCRPC treated with abiraterone. Front. Pharmacol. 2016, 7, 376. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Zhang, N.; Wang, Y.; Jiang, S.; Lu, M.; Huang, Y.; Ma, J.; Hu, C.; Hou, T. High systemic immune-inflammation index predicts poor prognosis in advanced lung adenocarcinoma patients treated with EGFR-TKIs. Medicine 2019, 98, e16875. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Shao, Y.; Zhu, D.; Zheng, X.; Zhou, Q.; Zhou, W.; Ni, X.; Wu, C.; Jiang, J. Systemic immune-inflammation index predicts prognosis of patients with esophageal squamous cell carcinoma: A propensity score-matched analysis. Sci. Rep. 2016, 6, 39482. [Google Scholar] [CrossRef] [PubMed]
- Buzby, G.P.; Mullen, J.L.; Matthews, D.C.; Hobbs, C.L.; Rosato, E.F. Prognostic nutritional index in gastrointestinal surgery. Am. J. Surg. 1980, 139, 160–167. [Google Scholar] [CrossRef]
- Okadome, K.; Baba, Y.; Yagi, T.; Kiyozumi, Y.; Ishimoto, T.; Iwatsuki, M.; Miyamoto, Y.; Yoshida, N.; Watanabe, M.; Baba, H. Prognostic nutritional index, Tumor-infiltrating Lymphocytes, and Prognosis in Patients with Esophageal Cancer. Ann. Surg. 2020, 271, 693–700. [Google Scholar] [CrossRef]
- Maejima, K.; Taniai, N.; Yoshida, H. The prognostic nutritional index as a predictor of gastric cancer progression and recurrence. J. Nippon. Med. Sch. 2022, 89, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Ding, P.; Guo, H.; Sun, C.; Yang, P.; Kim, N.H.; Tian, Y.; Liu, Y.; Liu, P.; Li, Y.; Zhao, Q. Combined systemic immune-inflammatory index (SII) and prognostic nutritional index (PNI) predicts chemotherapy response and prognosis in locally advanced gastric cancer patients receiving neoadjuvant chemotherapy with PD-1 antibody sintilimab and XELOX: A prospective study. BMC Gastroenterol. 2022, 22, 121. [Google Scholar] [CrossRef]
- Chen, J.; Jin, L.; Luo, R.; Zhang, X.; Chen, Y.; Han, Z.; Liu, T. Predictive value of preoperative systemic immune-inflammation index and prognostic nutrition index in patients with epithelial ovarian cancer. J. Ovarian Res. 2025, 18, 45. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tang, M.; Gu, Q.-H.; Zhou, L.-N.; Chen, M.-B. The prognostic value of combined systemic immune-inflammatory index (SII) and prognostic nutritional index (PNI) in solid tumor. Cancer Manag. Res. 2025, 17, 1351–1359. [Google Scholar] [CrossRef]
- Xu, J.; Lin, Y.; Yang, J.; Xing, Y.; Xing, X. Pretreatment systemic immune-inflammation index and lymphocyte-to-monocyte ratio as prognostic factors in oral cavity cancer: A meta-analysis. Medicine 2024, 103, e40182. [Google Scholar] [CrossRef]
- Ye, M.; Zhang, L. Correlation of prognostic nutritional index and systemic immune-inflammation index with the recurrence and prognosis in oral squamous cell carcinoma with the stage of III/IV. Int. J. Gen. Med. 2024, 17, 2289–2297. [Google Scholar] [CrossRef]
- Kubota, K.; Ito, R.; Narita, N.; Tanaka, Y.; Furudate, K.; Akiyama, N.; Chih, C.H.; Komatsu, S.; Kobayashi, W. Utility of prognostic nutritional index and systemic immune-inflammation index in oral cancer treatment. BMC Cancer 2022, 22, 368. [Google Scholar] [CrossRef]
- Atasever Akkas, E.A.; Erdis, E.; Yucel, B. Prognostic value of the systemic immune-inflammation index, systemic inflammation response index, and prognostic nutritional index in head and neck cancer. Eur. Arch. Otorhinolaryngol. 2023, 280, 3821–3830. [Google Scholar] [CrossRef]
- Wang, W.Y.; Chen, Y.; Chen, Q.; Sun, H.W.; Niu, N.X.; Li, H.H.; Cao, Y.D.; Bai, Y.X.; Li, X. Nomogram-derived immune-inflammation-nutrition score could act as a novel prognostic indicator for patients with head and neck squamous cell carcinoma. Front. Immunol. 2024, 15, 1500525. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, H.I.; Kim, Y.N.; Hong, J.H.; Alshomimi, S.; An, J.Y.; Cheong, J.H.; Hyung, W.J.; Noh, S.H.; Kim, C.B. Clinical significance of the prognostic nutritional index for predicting short- and long-term surgical outcomes after gastrectomy: A retrospective analysis of 7781 gastric cancer patients. Medicine 2016, 95, e3539. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Hu, B.; Li, Q.; Cao, W. Prognostic value and clinicopathological significance of pre-and post-treatment systemic immune-inflammation index in colorectal cancer patients: A meta-analysis. World J. Surg. Oncol. 2025, 23, 11. [Google Scholar] [CrossRef] [PubMed]
- Houghton, A.M.; Rzymkiewicz, D.M.; Ji, H.; Gregory, A.D.; Egea, E.E.; Metz, H.E.; Stolz, D.B.; Land, S.R.; Marconcini, L.A.; Kliment, C.R.; et al. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat. Med. 2010, 16, 219–223. [Google Scholar] [CrossRef]
- Siwicki, M.; Pittet, M.J. Versatile neutrophil functions in cancer. Semin. Immunol. 2021, 57, 101538. [Google Scholar] [CrossRef]
- Shau, H.Y.; Golub, S.H. Inhibition of lymphokine-activated killer- and natural killer-mediated cytotoxicities by neutrophils. J. Immunol. 1989, 143, 1066–1072. [Google Scholar] [CrossRef]
- Gong, Y.; Koh, D.R. Neutrophils promote inflammatory angiogenesis via release of preformed VEGF in an in vivo corneal model. Cell Tissue Res. 2010, 339, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Pintucci, G.; Froum, S.; Pinnell, J.; Mignatti, P.; Rafii, S.; Green, D. Trophic effects of platelets on cultured endothelial cells are mediated by platelet-associated fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor (VEGF). Thromb. Haemost. 2002, 88, 834–842. [Google Scholar] [CrossRef]
- Verheul, H.M.; Jorna, A.S.; Hoekman, K.; Broxterman, H.J.; Gebbink, M.F.; Pinedo, H.M. Vascular endothelial growth factor–stimulated endothelial cells promote adhesion and activation of platelets. Blood 2000, 96, 4216–4221. [Google Scholar] [CrossRef]
- Whiteside, T.L. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem. Soc. Trans. 2013, 41, 245–251. [Google Scholar] [CrossRef]
- Feng, X.Y.; Wen, X.Z.; Tan, X.J.; Hou, J.H.; Ding, Y.; Wang, K.F.; Dong, J.; Zhou, Z.W.; Chen, Y.B.; Zhang, X.S. Ectopic expression of B and T lymphocyte attenuator in gastric cancer: A potential independent prognostic factor in patients with gastric cancer. Mol. Med. Rep. 2015, 11, 658–664. [Google Scholar] [CrossRef]
- Migita, K.; Matsumoto, S.; Wakatsuki, K.; Kunishige, T.; Nakade, H.; Miyao, S.; Sho, M. Effect of oral nutritional supplementation on the prognostic nutritional index in gastric cancer patients. Nutr. Cancer 2021, 73, 2420–2427. [Google Scholar] [CrossRef] [PubMed]
- Kitayama, J.; Yasuda, K.; Kawai, K.; Sunami, E.; Nagawa, H. Circulating lymphocyte number has a positive association with tumor response in neoadjuvant chemoradiotherapy for advanced rectal cancer. Radiat. Oncol. 2010, 5, 47. [Google Scholar] [CrossRef]
- Mithany, R.H.; Daniel, N.; Shahid, M.H.; Aslam, S.; Abdelmaseeh, M.; Gerges, F.; Gill, M.U.; Abdallah, S.B.; Hannan, A.; Saeed, M.T.; et al. Revolutionizing surgical care: The power of enhanced recovery after surgery (ERAS). Cureus 2023, 15, e48795. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Jin, S.; Peng, M.; Wang, J. A retrospective study on the efficacy of the ERAS protocol in patients who underwent laparoscopic left and right colectomy surgeries. Front. Surg. 2024, 11, 1395271. [Google Scholar] [CrossRef] [PubMed]
- Shinozaki, T.; Imai, T.; Kobayashi, K.; Yoshimoto, S.; Zenda, S.; Yamaguchi, T.; Eguchi, K.; Okano, T.; Mashiko, T.; Kurosaki, M.; et al. Preoperative steroid for enhancing patients’ recovery after head and neck cancer surgery with free tissue transfer reconstruction: Protocol for a phase III, placebo-controlled, randomised, double-blind study (J-SUPPORT 2022, PreSte-HN Study). BMJ Open 2023, 13, e069303. [Google Scholar] [CrossRef]
- Mascarella, M.A.; Mannard, E.; Silva, S.D.; Zeitouni, A. Neutrophil-to-lymphocyte ratio in head and neck cancer prognosis: A systematic review and meta-analysis. Head Neck 2018, 40, 1091–1100. [Google Scholar] [CrossRef]
- Takenaka, Y.; Oya, R.; Kitamiura, T.; Ashida, N.; Shimizu, K.; Takemura, K.; Yamamoto, Y.; Uno, A. Platelet count and platelet–lymphocyte ratio as prognostic markers for head and neck squamous cell carcinoma: Meta-analysis. Head Neck 2018, 40, 2714–2723. [Google Scholar] [CrossRef]
- Luan, C.-W.; Yang, H.-Y.; Tsai, Y.-T.; Hsieh, M.-C.; Chou, H.-H.; Chen, K.-S. Prognostic value of C-reactive protein-to-albumin ratio in head and neck cancer: A meta-analysis. Diagnostics 2021, 11, 403. [Google Scholar] [CrossRef]




| Characteristic | Value |
|---|---|
| Age, years | |
| Median (range) | 69 (39–89) |
| Sex, n (%) | |
| Male | 141 (84.9) |
| Female | 25 (15.1) |
| Clinical stage, n (%) | |
| I | 31 (18.7) |
| II | 28 (16.9) |
| III | 44 (26.5) |
| IVa | 62 (37.4) |
| IVb | 1 (0.6) |
| Primary tumor site, n (%) | |
| Oral cavity | 61 (36.8) |
| Oropharynx | 34 (20.5) |
| Hypopharynx | 43 (26.0) |
| Larynx | 28 (16.9) |
| Reconstructive surgery, n (%) | |
| Yes | 113 (68.1) |
| No | 53 (31.9) |
| Lymphocyte count,/mm3 | |
| Median (range) | 1700 (500–4300) |
| Neutrophil count,/mm3 | |
| Median (range) | 4300 (1500–11,900) |
| Platelet count,/mm3 × 103 | |
| Median (range) | 243 (105–566) |
| Serum albumin concentration, g/dL | |
| Median (range) | 4.1 (2.0–5.1) |
| SII | |
| Cutoff value (range) | 743 (172–2822) |
| PNI | |
| Cutoff value (range) | 49 (31–68) |
| Variable | SII, n (%) | PNI, n (%) | ||||
|---|---|---|---|---|---|---|
| <743 | ≥743 | p Value | <49 | ≥49 | p Value | |
| Age (years) | ||||||
| <69 | 53 (67.1) | 26 (32.9) | 0.339 | 27 (34.1) | 52 (65.8) | 0.041 * |
| ≥69 | 52 (59.8) | 35 (40.2) | 44 (50.6) | 43 (49.4) | ||
| Sex | ||||||
| Male | 89 (63.1) | 52 (36.9) | 1.000 | 67 (47.5) | 74 (52.5) | 0.004 * |
| Female | 16 (64.0) | 9 (36.0) | 4 (16.0) | 21 (84.0) | ||
| Clinical stage | ||||||
| I–II | 46 (78.0) | 13 (22.0) | 0.004 * | 12 (20.3) | 47 (79.7) | <0.001 * |
| III–IV | 59 (55.1) | 48 (44.9) | 59 (55.1) | 48 (44.9) | ||
| Primary tumor site | ||||||
| Oral cavity | 45 (73.8) | 16 (26.2) | 0.045 * | 21 (34.4) | 40 (65.6) | 0.106 |
| Other than the oral cavity | 60 (57.1) | 45 (42.9) | 50 (47.6) | 55 (52.3) | ||
| Oropharynx | 23 (67.6) | 11 (32.4) | 0.690 | 7 (20.6) | 27 (79.4) | 0.003 * |
| Other than the oropharynx | 82 (62.1) | 50 (37.9) | 64 (48.5) | 68 (51.5) | ||
| Hypopharynx | 20 (46.5) | 23 (53.5) | 0.010 * | 25 (58.1) | 18 (41.9) | 0.021 * |
| Other than the hypopharynx | 85 (69.1) | 38 (30.9) | 46 (37.4) | 77 (62.6) | ||
| Larynx | 17 (60.7) | 11 (39.3) | 0.831 | 18 (64.3) | 10 (35.7) | 0.020 * |
| Other than the larynx | 88 (63.8) | 50 (36.2) | 53 (38.4) | 85 (63.4) | ||
| Reconstructive surgery | ||||||
| Yes | 68 (60.2) | 45 (39.8) | 0.300 | 48 (42.5) | 65 (57.5) | 1.000 |
| No | 37 (69.8) | 16 (30.2) | 23 (43.4) | 30 (56.6) | ||
| Variable | Univariate Analysis | Multivariate Analysis | ||
|---|---|---|---|---|
| Hazard Ratio (95% CI) | p Value | Hazard Ratio (95% CI) | p Value | |
| Age | 1.03 (1.00–1.06) | 0.082 | ||
| Sex | ||||
| Female | Reference | - | ||
| Male | 2.21 (0.68–7.19) | 0.186 | ||
| Clinical stage | ||||
| I–II | Reference | - | Reference | |
| III–IV | 12.84 (2.39–41.77) | <0.001 * | 8.02 (1.81–35.58) | 0.006 * |
| Primary tumor site | ||||
| Oropharynx | Reference | - | Reference | |
| Oral cavity | 3.31 (0.72–15.11) | 0.122 | 3.21 (0.70–14.72) | 0.134 |
| Hypopharynx | 8.27 (1.87–107.14) | 0.005 * | 3.23 (0.72–14.38) | 0.125 |
| Larynx | 8.12 (1.80–36.68) | 0.006 * | 3.99 (0.87–18.41) | 0.076 |
| Reconstructive surgery | ||||
| No | Reference | - | ||
| Yes | 1.13 (0.56–2.30) | 0.715 | ||
| SII | ||||
| <743 | Reference | - | Reference | - |
| ≥743 | 3.07 (1.61–5.86) | 0.001 * | 2.33 (1.19–4.58) | 0.014 * |
| PNI | ||||
| ≥49 | Reference | - | Reference | - |
| <49 | 3.41 (1.75–6.67) | <0.001 * | 1.97 (0.99–3.89) | 0.052 |
| Variable | Univariate Analysis | Multivariate Analysis | ||
|---|---|---|---|---|
| Hazard Ratio (95% CI) | p Value | Hazard Ratio (95% CI) | p Value | |
| Age | 1.03 (1.00–1.07) | 0.040 * | 1.02 (0.98–1.05) | 0.405 |
| Sex | ||||
| Female | Reference | - | ||
| Male | 2.08 (0.64–7.62) | 0.223 | ||
| Clinical stage | ||||
| I–II | Reference | - | Reference | |
| III–IV | 11.25 (2.71–46.70) | 0.001 * | 6.34 (1.43–28.13) | 0.015 * |
| Primary tumor site | ||||
| Oropharynx | Reference | - | Reference | |
| Oral cavity | 2.99 (0.65–13.68) | 0.157 | 2.47 (0.54–11.38) | 0.247 |
| Hypopharynx | 7.56 (1.74–32.88) | 0.007 * | 2.90 (0.64–13.16) | 0.167 |
| Larynx | 8.31 (1.84–37.58) | 0.006 * | 3.43 (0.72–16.40) | 0.122 |
| Reconstructive surgery | ||||
| No | Reference | - | ||
| Yes | 0.88 (0.44–1.77) | 0.715 | ||
| SII | ||||
| <743 | Reference | - | Reference | - |
| ≥743 | 3.01 (1.57–5.73) | 0.001 * | 2.29 (1.18–4.44) | 0.014 * |
| PNI | ||||
| ≥49 | Reference | - | Reference | - |
| <49 | 3.26 (1.67–6.35) | 0.001 * | 1.85 (0.93–3.69) | 0.081 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Miura, T.; Kessoku, H.; Nagaoka, M.; Morishita, Y.; Kobayashi, T.; Kojima, H. Improving Prognostic Prediction in Head and Neck Cancer Through a Combined Systemic Immune-Inflammation Index and Prognostic Nutritional Index Score. Curr. Oncol. 2026, 33, 30. https://doi.org/10.3390/curroncol33010030
Miura T, Kessoku H, Nagaoka M, Morishita Y, Kobayashi T, Kojima H. Improving Prognostic Prediction in Head and Neck Cancer Through a Combined Systemic Immune-Inflammation Index and Prognostic Nutritional Index Score. Current Oncology. 2026; 33(1):30. https://doi.org/10.3390/curroncol33010030
Chicago/Turabian StyleMiura, Takuya, Hisashi Kessoku, Masato Nagaoka, Yohei Morishita, Toshiki Kobayashi, and Hiromi Kojima. 2026. "Improving Prognostic Prediction in Head and Neck Cancer Through a Combined Systemic Immune-Inflammation Index and Prognostic Nutritional Index Score" Current Oncology 33, no. 1: 30. https://doi.org/10.3390/curroncol33010030
APA StyleMiura, T., Kessoku, H., Nagaoka, M., Morishita, Y., Kobayashi, T., & Kojima, H. (2026). Improving Prognostic Prediction in Head and Neck Cancer Through a Combined Systemic Immune-Inflammation Index and Prognostic Nutritional Index Score. Current Oncology, 33(1), 30. https://doi.org/10.3390/curroncol33010030
