Nutritional Status and Chemotherapy Completion in Resectable Pancreatic Cancer: A Narrative Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Nutritional Predictors of AC Completion
3.2. Neoadjuvant Chemotherapy (NAC) vs. AC: Nutritional Vulnerability
3.3. Timing of Nutritional Intervention
3.4. Limitations of Current Evidence
4. Discussion
4.1. Clinical Evidence Linking Nutritional Status and Chemotherapy Outcomes with Nutritional Indices and Sarcopenia
4.1.1. GNRI (Geriatric Nutritional Risk Index)
4.1.2. CAR (C-Reactive Protein-to-Albumin Ratio)
4.1.3. PNI (Prognostic Nutritional Index)
4.1.4. Sarcopenia
4.2. Nutritional Interventions and Their Protective Effects
4.3. Mechanistic Insights: Inflammation, Muscle Proteolysis, and Immune Modulation
4.4. Gaps Between Evidence and Clinical Implementation
4.5. Cancer Cachexia as a Therapeutic Target
4.6. Toward Personalized Nutritional Oncology
4.7. Future Research Directions
- Stratification: Baseline GNRI/PNI/CAR combined with microbial diversity and metabolite panels (SCFAs, TMAO).
- Endpoints: Primary—maintenance of RDI ≥ 80% (6 months); secondary—completion of ≥80% of planned cycles, CTCAE-graded toxicities, QoL.
- Testable interventions: Optimization of PERT, ω-3–enriched immunonutrition, and pre/pro/synbiotics—alone and in combination.
- Intratumoral microbiota readouts: 16S/shotgun metagenomics with quantification of drug-modifying genes (e.g., cytidine deaminase) in resection tissue; exploratory circulating microbial DNA/metabolites as non-invasive biomarkers.
- Methodologic rigor: Contamination control, pre-registered protocols, multiplicity-adjusted analyses.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Adjuvant Chemotherapy |
AE(s) | Adverse Event(s) |
BMI | Body Mass Index |
BTC | Biliary Tract Cancer |
BW | Body Weight |
CAR | C-reactive Protein-to-Albumin Ratio |
ESPEN | European Society for Clinical Nutrition and Metabolism |
GLIM | Global Leadership Initiative on Malnutrition |
GNRI | Geriatric Nutritional Risk Index |
GRADE | Grading of Recommendations, Assessment, Development and Evaluations |
HDAC | Histone deacetylase |
IL-6 | interleukin-6 |
JAK | Janus kinase |
NAC | Neoadjuvant Chemotherapy |
NCCN | National Comprehensive Cancer Network |
NF-κB | nuclear factor-κB |
OCEBM | Oxford Centre for Evidence-Based Medicine |
ONS(s) | Oral Nutritional Supplement(s) |
OS | Overall Survival |
PC | Pancreatic Cancer |
PEI | Pancreatic Exocrine Insufficiency |
PERT | Pancreatic Enzyme Replacement Therapy |
PNI | Prognostic Nutritional Index |
POC | Postoperative Complication |
RDI | Relative Dose Intensity |
SCFA | short-chain fatty acid |
SMI | skeletal muscle index |
STAT3 | signal transducer and activator of transcription 3 |
TNF-α | tumor necrosis factor-α |
References
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.J.S.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Ballesteros-Pomar, M.D.; Barazzoni, R.; Compher, C.; Correia, M.I.T.D.; Cruz-Jentoft, A.J.; García de Lorenzo, A.; Higashiguchi, T.; Keller, H.; et al. Guidance for assessment of the inflammation etiologic criterion for the GLIM diagnosis of malnutrition: A modified Delphi approach. Clin. Nutr. 2024, 43, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Tumas, J.; Tumiene, B.; Jurkeviciene, J.; Gruslys, V.; Šileikis, A.; Strupas, K.; Venskutonis, D.; Barauskas, G.; Pundzius, J.; Gulbinas, A.; et al. Nutritional and immune impairments and their effects on outcomes in early pancreatic cancer patients undergoing pancreatoduodenectomy. Clin. Nutr. 2020, 39, 3385–3394. [Google Scholar] [CrossRef]
- Mękal, D.; Sobocki, J.; Badowska-Kozakiewicz, A.; Ciseł, B.; Rucińska, M.; Kokoszka-Bargieł, I.; Cybulski, M.; Guzińska-Ustymowicz, K.; Kraj, L.; Kaźmierczak-Siedlecka, K.; et al. Evaluation of Nutritional Status and the Impact of Nutritional Treatment in Patients with Pancreatic Cancer. Cancers 2023, 15, 3816. [Google Scholar] [CrossRef]
- Menozzi, R.; Valoriani, F.; Ballarin, R.; Fontana, A.; Giacobazzi, P.; Spaggiari, M.; Brunocilla, E.; Gafà, R.; Faccioli, N.; D’Amico, G.; et al. Impact of nutritional status on postoperative outcomes in cancer patients following elective pancreatic surgery. Nutrients 2023, 15, 1958. [Google Scholar] [CrossRef]
- Zhao, P.; Wu, Z.; Wang, Z.; Feng, J.; Chen, J.; Li, Y.; Zhou, Y.; Xu, L.; Liu, Y.; Huang, L.; et al. Prognostic role of the prognostic nutritional index in patients with pancreatic cancer who underwent curative resection without preoperative neoadjuvant treatment: A systematic review and meta-analysis. Front. Surg. 2022, 9, 992641. [Google Scholar] [CrossRef]
- Grinstead, C.; Yoon, S.L. Geriatric Nutritional Risk Index (GNRI) and Survival in Pancreatic Cancer: A Retrospective Study. Nutrients 2025, 17, 509. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, I.; Tanaka, M.; Shirakawa, S.; Shinzeki, M.; Toyama, H.; Asari, S.; Goto, T.; Yamashita, H.; Ishida, J.; Ajiki, T.; et al. Postoperative serum albumin level is a marker of incomplete adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma. Ann. Surg. Oncol. 2015, 22, 2408–2415. [Google Scholar]
- Morita, Y.; Sakaguchi, T.; Kitajima, R.; Furuhashi, S.; Kiuchi, R.; Takeda, M.; Hiraide, T.; Shibasaki, Y.; Kikuchi, H.; Konno, H.; et al. Body weight loss after surgery affects the continuity of adjuvant chemotherapy for pancreatic cancer. BMC Cancer 2019, 19, 416. [Google Scholar] [CrossRef] [PubMed]
- NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®): Pancreatic Adenocarcinoma. Version 2.2025. National Comprehensive Cancer Network. Available online: https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf (accessed on 9 August 2025).
- Muscaritoli, M.; Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN practical guideline: Clinical nutrition in cancer. Clin. Nutr. 2021, 40, 2898–2913. [Google Scholar] [CrossRef]
- Oettle, H.; Post, S.; Neuhaus, P.; Gellert, K.; Langrehr, J.; Ridwelski, K.; Schramm, H.; Fahlke, J.; Zülke, C.; Burkart, C.; et al. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: A randomized controlled trial. JAMA 2007, 297, 267–277. [Google Scholar] [CrossRef]
- Conroy, T.; Hammel, P.; Hebbar, M.; Ben Abdelghani, M.; Wei, A.C.; Raoul, J.-L.; Choné, L.; François, E.; Artru, P.; Biagi, J.J.; et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N. Engl. J. Med. 2018, 379, 2395–2406. [Google Scholar] [CrossRef]
- Neoptolemos, J.P.; Palmer, D.H.; Ghaneh, P.; Psarelli, E.E.; Valle, J.W.; Halloran, C.M.; Faluyi, O.; O’Reilly, D.A.; Cunningham, D.; Wadsley, J.; et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): A multicentre, open-label, randomized, phase 3 trial. Lancet 2017, 389, 1011–1024. [Google Scholar] [CrossRef] [PubMed]
- Uesaka, K.; Boku, N.; Fukutomi, A.; Okamura, Y.; Konishi, M.; Matsumoto, I.; Kaneoka, Y.; Shimizu, Y.; Nakamori, S.; Sakamoto, H.; et al. Adjuvant chemotherapy of S-1 versus gemcitabine for resected pancreatic cancer: A phase III, open-label, randomised, non-inferiority trial (JASPAC 01). Lancet 2016, 388, 248–257. [Google Scholar] [CrossRef]
- Motoi, F.; Kosuge, T.; Ueno, H.; Yamaue, H.; Satoi, S.; Sho, M.; Honda, G.; Matsumoto, I.; Wada, K.; Furuse, J.; et al. Randomized phase II/III trial of neoadjuvant chemotherapy with gemcitabine and S-1 versus upfront surgery for resectable pancreatic cancer (Prep-02/JSAP-05). Jpn. J. Clin. Oncol. 2019, 49, 190–194. [Google Scholar] [CrossRef]
- Sakamoto, A.; Funamizu, N.; Shine, M.; Uraoka, M.; Nagaoka, T.; Honjo, M.; Tamura, K.; Sakamoto, K.; Ogawa, K.; Takada, Y. Geriatric nutritional risk index predicts tolerability of S-1 as adjuvant chemotherapy for pancreatic ductal adenocarcinoma. Pancreas 2023, 52, e196–e202. [Google Scholar]
- Funamizu, N.; Sakamoto, A.; Mori, S.; Iwata, M.; Shine, M.; Ito, C.; Uraoka, M.; Ueno, Y.; Tamura, K.; Kamei, Y.; et al. Postoperative geriatric nutritional risk index as a determinant of tolerance to S-1 adjuvant chemotherapy after curative surgery for pancreatic ductal adenocarcinoma: A cohort study with external validation. Cancers 2025, 17, 1448. [Google Scholar] [CrossRef] [PubMed]
- Funamizu, N.; Sakamoto, A.; Hikida, T.; Ito, C.; Shine, M.; Nishi, Y.; Uraoka, M.; Nagaoka, T.; Honjo, M.; Tamura, K.; et al. C-reactive protein-to-albumin ratio to predict tolerability of S-1 as an adjuvant chemotherapy in pancreatic cancer. Cancers 2024, 16, 922. [Google Scholar]
- Funamizu, N.; Mori, S.; Sakamoto, A.; Iwata, M.; Shine, M.; Ito, C.; Uraoka, M.; Ueno, Y.; Tamura, K.; Umeda, Y.; et al. C-reactive protein-to-albumin ratio as a predictive indicator for evaluating tolerability in S-1 adjuvant chemotherapy after curative surgery for pancreatic cancer: An external validation cohort study. Cancers 2024, 16, 3372. [Google Scholar]
- Yamada, D.; Takeda, Y.; Takahashi, H.; Sasaki, K.; Iwagami, Y.; Tomimaru, Y.; Noda, T.; Kobayashi, S.; Asaoka, T.; Shimizu, J.; et al. Preoperative nutritional status is a useful predictor of the feasibility of postoperative treatment in octogenarian-plus pancreatic ductal adenocarcinoma patients. Eur. J. Surg. Oncol. 2024, 50, 108650. [Google Scholar]
- Funamizu, N.; Sakamoto, A.; Utsunomiya, T.; Uraoka, M.; Nagaoka, T.; Iwata, M.; Ito, C.; Tamura, K.; Sakamoto, K.; Ogawa, K.; et al. Geriatric nutritional risk index as a potential prognostic marker for patients with resectable pancreatic cancer: A single-center, retrospective cohort study. Sci. Rep. 2022, 12, 13644. [Google Scholar] [CrossRef]
- Trestini, I.; Carbognin, L.; Sperduti, I.; Bonaiuto, C.; Auriemma, A.; Melisi, D.; Salvatore, L.; Bria, E.; Tortora, G. Prognostic impact of early nutritional support in patients affected by locally advanced and metastatic pancreatic ductal adenocarcinoma undergoing chemotherapy. Eur. J. Clin. Nutr. 2018, 72, 772–779. [Google Scholar] [CrossRef]
- Roberts, K.J.; Bannister, C.A.; Schrem, H. Enzyme replacement improves survival among patients with pancreatic cancer: Results of a population based study. Pancreatology 2019, 19, 114–121. [Google Scholar] [CrossRef]
- Bruno, M.; Haverkort, E.; Tijssen, G.; Tytgat, G.; van Leeuwen, D.J. Placebo controlled trial of enteric coated pancreatin microsphere treatment in patients with unresectable cancer of the pancreatic head region. Gut 1998, 42, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.V.; Scoggins, C.R.; Philips, P.; Egger, M.E.; Martin, R.C.G., II. Optimization of exocrine pancreatic insufficiency in pancreatic adenocarcinoma patients. Nutrients 2024, 16, 3499. [Google Scholar] [CrossRef]
- Tsukagoshi, M.; Harimoto, N.; Araki, K.; Kubo, N.; Watanabe, A.; Igarashi, T.; Ishii, N.; Yamanaka, T.; Hagiwara, K.; Hoshino, K.; et al. Impact of Preoperative Nutritional Support and Rehabilitation Therapy in Patients Undergoing Pancreaticoduodenectomy. Int. J. Clin. Oncol. 2021, 26, 1698–1706. [Google Scholar] [CrossRef] [PubMed]
- Nakaoka, K.; Ohno, E.; Kuramitsu, K.; Kuzuya, T.; Funasaka, K.; Tochio, T.; Fujii, T.; Takahashi, H.; Kondo, N.; Miyahara, R.; et al. Efficacy of 1-Kestose Supplementation in Patients with Pancreatic Ductal Adenocarcinoma: A Randomized Controlled Pilot Study. Nutrients 2024, 16, 2889. [Google Scholar] [CrossRef]
- Mizuno, Y.; Yokoyama, Y.; Nakajima, H.; Inoue, T.; Tanaka, S.; Nagaya, M.; Inokawa, Y.; Ando, M.; Nishida, Y.; Ebata, T.; et al. The Impact of Goal-Directed Prehabilitation Therapy on Functional Capacity in Patients Undergoing Hepatobiliary and Pancreatic Surgery: A Randomized Clinical Trial. Surgery 2024, 176, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Gianotti, L.; Besselink, M.G.; Sandini, M.; Hackert, T.; Conlon, K.; Gerritsen, A.; Griffin, O.; Fingerhut, A.; Probst, P.; Abu Hilal, M.; et al. Nutritional support and therapy in pancreatic surgery: A position paper of the International Study Group on Pancreatic Surgery (ISGPS). Surgery 2018, 164, 1035–1048. [Google Scholar] [CrossRef] [PubMed]
- Agca, S.; Kir, S. The Role of Interleukin-6 Family Cytokines in Cancer Cachexia. FEBS J. 2024, 291, 4009–4023. [Google Scholar] [CrossRef]
- Setiawan, T.; Sari, I.N.; Wijaya, Y.T.; Julianto, N.M.; Muhammad, J.A.; Lee, H.; Chae, J.H.; Kwon, H.Y. Cancer cachexia: Molecular mechanisms and treatment strategies. J. Hematol. Oncol. 2023, 16, 54. [Google Scholar] [CrossRef]
- Peng, K.; Xiao, S.; Xia, S.; Li, C.; Yu, H.; Yu, Q. Butyrate inhibits the HDAC8/NF-κB pathway to enhance Slc26a3 expression and improve the intestinal epithelial barrier to relieve colitis. J. Agric. Food Chem. 2024, 72, 24400–24416. [Google Scholar] [CrossRef] [PubMed]
- OCEBM Working Group. The Oxford 2011 Levels of Evidence. Oxford Centre for Evidence-Based Medicine. 2011. Available online: https://www.cebm.ox.ac.uk/resources/levels-of-evidence (accessed on 8 August 2025).
- Guyatt, G.H.; Oxman, A.D.; Vist, G.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J.; GRADE Working Group. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic. In Reviews of Interventions, Version 6.5 (Updated August 2024); Cochrane: London, UK, 2024; Available online: https://training.cochrane.org/handbook (accessed on 8 August 2025).
- Bouillanne, O.; Morineau, G.; Dupont, C.; Coulombel, I.; Vincent, J.-P.; Nicolis, I.; Benazeth, S.; Cynober, L.; Aussel, C. Geriatric nutritional risk index: A new index for evaluating at-risk elderly medical patients. Am. J. Clin. Nutr. 2005, 82, 777–783. [Google Scholar] [CrossRef]
- Higashi, T.; Murase, K.; Yokoi, R.; Kuno, M.; Fukada, M.; Tajima, J.Y.; Kiyama, S.; Tanaka, Y.; Okumura, N.; Matsuhashi, N. Association of pre-operative geriatric nutritional risk index with complete adjuvant chemotherapy and prognosis post-pancreatectomy. Anticancer. Res. 2024, 44, 427–434. [Google Scholar] [CrossRef]
- Sun, K.; Chen, S.; Xu, J.; Li, G.; He, Y. The prognostic significance of the prognostic nutritional index in cancer: A systematic review and meta-analysis. J. Cancer Res. Clin. Oncol. 2014, 140, 1537–1549. [Google Scholar] [CrossRef]
- Geng, Y.; Qi, Q.; Sun, M.; Chen, H.; Wang, P.; Chen, Z. Prognostic nutritional index predicts survival and correlates with systemic inflammatory response in advanced pancreatic cancer. Eur. J. Surg. Oncol. 2015, 41, 1508–1514. [Google Scholar] [CrossRef]
- Maehira, H.; Mori, H.; Nitta, N.; Maekawa, T.; Nishina, Y.; Ishikawa, H.; Takebayashi, K.; Kaida, S.; Miyake, T.; Tani, M. Clinical impact of the prognostic nutritional index and skeletal muscle index for the incompletion of adjuvant chemotherapy for pancreatic cancer. Asian J. Surg. 2025, 48, 1002–1009. [Google Scholar] [CrossRef]
- Kawahara, S.; Aoyama, T.; Murakawa, M.; Kanemoto, R.; Takahashi, D.; Kamioka, Y.; Hashimoto, I.; Maezawa, Y.; Kobayashi, S.; Ueno, M.; et al. Prognostic nutritional index is an independent risk factor for continuing S-1 adjuvant chemotherapy in patients with pancreatic cancer who received neoadjuvant chemotherapy and surgical resection. BMC Cancer 2024, 24, 1469. [Google Scholar] [CrossRef]
- Hajibandeh, S.; Hajibandeh, S.; Romman, S.; Parente, A.; Laing, R.W.; Satyadas, T.; Subar, D.; Aroori, S.; Bhatt, A.; Durkin, D.; et al. Preoperative C-reactive protein-to-albumin ratio and its ability to predict outcomes of pancreatic cancer resection: A systematic review. Biomedicines 2023, 11, 1983. [Google Scholar] [CrossRef]
- Hang, J.; Xue, P.; Yang, H.; Li, S.; Chen, D.; Zhu, L.; Huang, W.; Ren, S.; Zhu, Y.; Wang, L.; et al. Pretreatment C-reactive protein to albumin ratio for predicting overall survival in advanced pancreatic cancer patients. Sci. Rep. 2017, 7, 2993. [Google Scholar] [CrossRef] [PubMed]
- Mourtzakis, M.; Prado, C.M.; Lieffers, J.R.; Reiman, T.; McCargar, L.J.; Baracos, V.E. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl. Physiol. Nutr. Metab. 2008, 33, 997–1006. [Google Scholar] [CrossRef]
- Liu, C.; An, L.; Zhang, S.; Deng, S.; Wang, N.; Tang, H. Association between preoperative sarcopenia and prognosis of pancreatic cancer after curative-intent surgery: An updated systematic review and meta-analysis. World J. Surg. Oncol. 2024, 22, 38. [Google Scholar] [CrossRef] [PubMed]
- Raoul, P.; Cintoni, M.; Coppola, A.; Alfieri, S.; Tortora, G.; Gasbarrini, A.; Mele, M.C.; Rinninella, E. Preoperative low skeletal muscle mass index assessed using L3-CT as a prognostic marker of clinical outcomes in pancreatic cancer patients undergoing surgery: A systematic review and meta-analysis. Int. J. Surg. 2024, 110, 6126–6134. [Google Scholar] [CrossRef] [PubMed]
- Griffin, O.M.; Bashir, Y.; O’Connor, D.; Peakin, J.; McMahon, J.; Duggan, S.N.; Geoghegan, J.; Conlon, K.C. Measurement of body composition in pancreatic cancer: A systematic review, meta-analysis, and recommendations for future study design. Dig. Surg. 2022, 39, 141–152. [Google Scholar] [CrossRef]
- Bundred, J.; Kamarajah, S.K.; Roberts, K.J. Body composition assessment and sarcopenia in patients with pancreatic cancer: A systematic review and meta-analysis. HPB 2019, 21, 1603–1612. [Google Scholar] [CrossRef]
- Takagi, K.; Inoue, Y.; Oba, A.; Ono, Y.; Sato, T.; Ito, H.; Saino, Y.; Saiura, A.; Takahashi, Y. Impact of sarcopenia on S1 adjuvant chemotherapy and prognosis in pancreatic cancer patients. Biosci. Trends 2023, 17, 310–317. [Google Scholar] [CrossRef]
- Sohal, D.P.S.; Boutin, R.D.; Lenchik, L.; Kim, J.; Beg, M.S.; Wang-Gillam, A.; Wade, J.L., 3rd; Guthrie, K.A.; Chiorean, E.G.; Ahmad, S.A.; et al. Body composition measurements and clinical outcomes in patients with resectable pancreatic adenocarcinoma: Analysis from SWOG S1505. J. Gastrointest. Surg. 2024, 28, 232–235. [Google Scholar] [CrossRef]
- Unno, M.; Motoi, F.; Matsuyama, Y.; Satoi, S.; Toyama, H.; Matsumoto, I.; Aosasa, S.; Shirakawa, H.; Wada, K.; Fujii, T.; et al. Neoadjuvant Chemotherapy with Gemcitabine and S-1 Versus Upfront Surgery for Resectable Pancreatic Cancer: Results of the Randomized Phase II/III Prep-02/JSAP05 Trial. Ann. Surg. 2025. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Takamoto, T.; Nara, S.; Ban, D.; Mizui, T.; Miyata, A.; Esaki, M. Neoadjuvant gemcitabine and S-1 in pancreatic ductal adenocarcinoma: Effects on nutritional status and pancreaticoduodenectomy outcomes. Surgery 2025, 180, 109026. [Google Scholar] [CrossRef] [PubMed]
- Sabater, L.; Ausania, F.; Bakker, O.J.; Boadas, J.; Domínguez-Muñoz, J.E.; Falconi, M.; Fernández-Cruz, L.; Frulloni, L.; González-Sánchez, V.; Lariño-Noia, J.; et al. Evidence-based guidelines for the management of exocrine pancreatic insufficiency after pancreatic surgery. Ann. Surg. 2016, 264, 949–958. [Google Scholar] [CrossRef]
- Gianotti, L.; Braga, M.; Nespoli, L.; Radaelli, G.; Beneduce, A.; Di Carlo, V. A randomized controlled trial of preoperative oral supplementation with a specialized diet in patients with gastrointestinal cancer. Gastroenterology 2002, 122, 1763–1770. [Google Scholar] [CrossRef]
- Vella, R.; Pizzocaro, E.; Bannone, E.; Gualtieri, P.; Frank, G.; Giardino, A.; Frigerio, I.; Pastorelli, D.; Gruttadauria, S.; Mazzali, G.; et al. Nutritional intervention for the elderly during chemotherapy: A systematic review. Cancers 2024, 16, 2809. [Google Scholar] [CrossRef]
- Ueno, M.; Sugimori, K.; Taguri, M.; Ohkawa, S.; Kobayashi, S.; Miwa, H.; Kaneko, T.; Morimoto, M.; Yamanaka, T. Randomized phase II study of gemcitabine monotherapy vs. gemcitabine with an EPA-enriched oral supplement in advanced pancreatic cancer. Nutr. Cancer 2022, 74, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Emanuel, A.; Krampitz, J.; Rosenberger, F.; Kind, S.; Rötzer, I. Nutritional interventions in pancreatic cancer: A systematic review. Cancers 2022, 14, 2212. [Google Scholar] [CrossRef]
- Pires, L.B.C.; Salaroli, L.B.; Podesta, O.P.G.; Haraguchi, F.K.; Lopes-Júnior, L.C. Omega-3 supplementation and nutritional status in patients with pancreatic neoplasms: A systematic review. Nutrients 2024, 16, 4036. [Google Scholar] [CrossRef]
- Trestini, I.; Cintoni, M.; Rinninella, E.; Grassi, F.; Paiella, S.; Salvia, R.; Bria, E.; Pozzo, C.; Alfieri, S.; Gasbarrini, A.; et al. Neoadjuvant treatment: A window of opportunity for nutritional prehabilitation in patients with pancreatic ductal adenocarcinoma. World J. Gastrointest. Surg. 2021, 13, 885–903. [Google Scholar] [CrossRef]
- Ngo-Huang, A.T.; Parker, N.H.; Xiao, L.; Schadler, K.L.; Petzel, M.Q.B.; Prakash, L.R.; Kim, M.P.; Tzeng, C.-W.D.; Lee, J.E.; Ikoma, N.; et al. Effects of a Pragmatic Home-Based Exercise Program Concurrent with Neoadjuvant Therapy on Physical Function of Patients with Pancreatic Cancer: The PancFit Randomized Clinical Trial. Ann. Surg. 2023, 278, 22–30. [Google Scholar] [CrossRef]
- Sherman, M.H.; Yu, R.T.; Engle, D.D.; Ding, N.; Atkins, A.R.; Tiriac, H.; Collisson, E.A.; Connor, F.; Van Dyke, T.; Kozlov, S.; et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 2014, 159, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xue, K.; Zhang, Y.; Tian, B. Geriatric Nutritional Risk Index Predicts Postoperative Outcomes in Elderly Patients with Pancreatoduodenectomy: A Propensity Score-Matched Analysis. Gland. Surg. 2025, 14, 807–817. [Google Scholar] [CrossRef]
- Gündoğdu, E.; Karahan, B.N.; Şendil, A.M.; Zengin, A.; Ulaş, M.; Kılıç, M. The Prognostic Impact of Preoperative Nutritional Status on Postoperative Complications and Overall Survival in Patients with Resectable Pancreatic Cancer. Support. Care Cancer 2025, 33, 240. [Google Scholar] [CrossRef]
- Funamizu, N.; Mori, S.; Sakamoto, A.; Honjo, M.; Tamura, K.; Sakamoto, K.; Ogawa, K.; Umeda, Y.; Aoki, T.; Takada, Y.; et al. Novel Modified Frailty Index Predicts Completion of Adjuvant Chemotherapy in Resectable Pancreatic Cancer in a Dual Center Study. Sci. Rep. 2025, 15, 17000. [Google Scholar] [CrossRef]
- Harimoto, N.; Sugimachi, K.; Nishijima, T.F.; Tomino, T.; Shimagaki, T.; Mano, Y.; Onishi, E.; Sugiyama, M.; Kimura, Y.; Morita, M. Combined Effect of Frailty and Sarcopenia on Postoperative Complications in Older Adults Undergoing Curative Surgery for Hepato-Biliary-Pancreatic Cancer. Ann. Gastroenterol. Surg. 2024, 9, 587–594. [Google Scholar] [CrossRef]
- Funamizu, N.; Omura, K.; Takada, Y.; Ozaki, T.; Mishima, K.; Igarashi, K.; Wakabayashi, G. Geriatric Nutritional Risk Index Less Than 92 Is a Predictor for Late Postpancreatectomy Hemorrhage Following Pancreatoduodenectomy: A Retrospective Cohort Study. Cancers 2020, 12, 2779. [Google Scholar] [CrossRef]
- Funamizu, N.; Sogabe, K.; Shine, M.; Utsunomiya, T.; Honjo, M.; Ito, C.; Uraoka, M.; Nagaoka, T.; Tamura, K.; Sakamoto, K.; et al. Association between the Preoperative C-Reactive Protein-to-Albumin Ratio and the Risk for Postoperative Pancreatic Fistula following Distal Pancreatectomy for Pancreatic Cancer. Nutrients 2022, 14, 5277. [Google Scholar] [CrossRef]
- Mortier, V.; Wei, F.; Pellat, A.; Marchese, U.; Dohan, A.; Brezault, C.; Barat, M.; Fuks, D.; Soyer, P.; Coriat, R. Impact of Sarcopenia on Patients with Localized Pancreatic Ductal Adenocarcinoma Receiving FOLFIRINOX or Gemcitabine as Adjuvant Chemotherapy. Cancers 2022, 14, 6179. [Google Scholar] [CrossRef] [PubMed]
- Prado, C.M.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and Clinical Implications of Sarcopenic Obesity in Patients with Solid Tumours of the Respiratory and Gastrointestinal Tracts. Lancet Oncol. 2008, 9, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.; Birdsell, L.; Macdonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer Cachexia in the Age of Obesity: Skeletal Muscle Depletion Is a Powerful Prognostic Factor, Independent of Body Mass Index. J. Clin. Oncol. 2013, 31, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- Sato, N.; Tamura, T.; Minagawa, N.; Hirata, K. Preoperative Body Mass Index-to-Prognostic Nutritional Index Ratio Predicts Pancreatic Fistula after Pancreaticoduodenectomy. Hepatobiliary Surg. Nutr. 2016, 5, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Cintoni, M.; Grassi, F.; Palombaro, M.; Rinninella, E.; Pulcini, G.; Di Donato, A.; Salvatore, L.; Quero, G.; Tortora, G.; Alfieri, S.; et al. Nutritional interventions during chemotherapy for pancreatic cancer: A systematic review of prospective studies. Nutrients 2023, 15, 727. [Google Scholar] [CrossRef] [PubMed]
- Poulia, K.A.; Antoniadou, D.; Sarantis, P.; Karamouzis, M.V. Pancreatic Cancer Prognosis, Malnutrition Risk, and Quality of Life: A Cross-Sectional Study. Nutrients 2022, 14, 442. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, C.; Spiro, A.; Ahern, R.; Emery, P.W. Oral nutritional interventions in malnourished patients with cancer: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2012, 104, 371–385. [Google Scholar] [CrossRef]
- Giordano, G.; Cincione, R.I.; Losavio, F.; Senia, T.; Aquilini Mummolo, A.; Pacilli, M.; Lizzi, V.; Bruno, G.; Piscazzi, A.; Conteduca, V.; et al. Pancreatic Enzyme Replacement and Nutritional Support with nab-Paclitaxel-Based First-Line Chemotherapy Regimens in Metastatic Pancreatic Cancer. Oncologist 2023, 28, e793–e800. [Google Scholar] [CrossRef]
- Argilés, J.M.; Busquets, S.; Stemmler, B.; López-Soriano, F.J. Cancer cachexia: Understanding the molecular basis. Nat. Rev. Cancer 2014, 14, 754–762. [Google Scholar] [CrossRef]
- Baracos, V.E.; Martin, L.; Korc, M.; Guttridge, D.C.; Fearon, K.C.H. Cancer-Associated Cachexia. Nat. Rev. Dis. Primers 2018, 4, 17105. [Google Scholar] [CrossRef]
- Riquelme, E.; Zhang, Y.; Zhang, L.; Montiel, M.; Zoltan, M.; Dong, W.; Quesada, P.; Sahin, I.; Chandra, V.; San Lucas, A.; et al. Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell 2019, 178, 795–806. [Google Scholar] [CrossRef]
- Pushalkar, S.; Hundeyin, M.; Daley, D.; Zambirinis, C.P.; Kurz, E.; Mishra, A.; Mohan, N.; Aykut, B.; Usyk, M.; Torres, L.E.; et al. The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression. Cancer Discov. 2018, 8, 403–416. [Google Scholar] [CrossRef]
- Nejman, D.; Livyatan, I.; Fuks, G.; Gavert, N.; Zwang, Y.; Geller, L.T.; Rotter-Maskowitz, A.; Weiser, R.; Mallel, G.; Gigi, E.; et al. The Human Tumor Microbiome Is Composed of Tumor Type-Specific Intracellular Bacteria. Science 2020, 368, 973–980. [Google Scholar] [CrossRef]
- Du, Y.; Liu, X.-Y.; Pan, R.-L.; Zhang, X.-T.; Si, X.-Y.; Chen, M.-J.; Wang, M.-Z.; Zhang, L. Tocilizumab for Advanced Non-Small-Cell Lung Cancer With Concomitant Cachexia: An Observational Study. J. Cachexia Sarcopenia Muscle 2024, 15, 2815–2825. [Google Scholar] [CrossRef]
- Chen, P.; Wang, D.; Zhan, Z.; Chen, L.; Chen, Y. Tocilizumab in Combination with Corticosteroids: Potential for Managing Cancer Cachexia with Systemic Hyperinflammation. Front. Immunol. 2024, 15, 1477310. [Google Scholar] [CrossRef]
- Tsimberidou, A.M.; Vining, D.J.; Arora, S.P.; de Achaval, S.; Larson, J.; Kauh, J.; Cartwright, C.; Avritscher, R.; Alibhai, I.; Tweardy, D.J.; et al. Phase I trial of TTI-101, a first-in-class oral inhibitor of STAT3, in patients with advanced solid tumors. Clin. Cancer Res. 2025, 31, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Arends, J.; Baracos, V.; Bertz, H.; Bozzetti, F.; Calder, P.C.; Deutz, N.E.P.; Erickson, N.; Laviano, A.; Lisanti, M.P.; Lobo, D.N.; et al. ESPEN expert group recommendations for action against cancer-related malnutrition. Clin. Nutr. 2017, 36, 1187–1196. [Google Scholar] [CrossRef]
- Pressoir, M.; Desné, S.; Berchery, D.; Rossignol, G.; Poiree, B.; Meslier, M.; Traversier, S.; Vittot, M.; Simon, M.; Gekiere, J.P.; et al. Prevalence, risk factors and clinical implications of malnutrition in French Comprehensive Cancer Centres. Br. J. Cancer 2010, 102, 966–971. [Google Scholar] [CrossRef] [PubMed]
- Latenstein, A.E.J.; Dijksterhuis, W.P.M.; Mackay, T.M.; Beijer, S.; van Eijck, C.H.J.; de Hingh, I.H.J.T.; Molenaar, I.Q.; van Oijen, M.G.H.; van Santvoort, H.C.; de van der Schueren, M.A.E.; et al. Cachexia, dietetic consultation, and survival in patients with pancreatic and periampullary cancer: A multicenter cohort study. Cancer Med. 2020, 9, 9385–9395. [Google Scholar] [CrossRef] [PubMed]
- Petzel, M.Q.B.; Hoffman, L. Nutrition Implications for Long-Term Survivors of Pancreatic Cancer Surgery. Nutr. Clin. Pract. 2017, 32, 588–598. [Google Scholar] [CrossRef]
- Klassen, P.N.; Mazurak, V.C.; Baracos, V.; Martin, L.; Ghosh, S.; Kasnik, K.; Sawyer, M.B. Dose Optimization of Pancreatic Enzyme Replacement Therapy Is Essential to Mitigate Muscle Loss in Patients with Advanced Pancreatic Cancer and Exocrine Pancreatic Insufficiency. Clin. Nutr. 2024, 43, 1900–1906. [Google Scholar] [CrossRef]
- Di Martino, M.; de la Hoz Rodriguez, Á.; Saibanti, A.; Salvador Camarmo, G.; Pagano, N.; Martín-Pérez, E.; Donadon, M. Pancreatic Exocrine Insufficiency after Pancreatic Resection: A Systematic Review. BMC Surg. 2025, 25, 53. [Google Scholar] [CrossRef]
- Rovesti, G.; Valoriani, F.; Rimini, M.; Bardasi, C.; Ballarin, R.; Di Benedetto, F.; Menozzi, R.; Dominici, M.; Spallanzani, A. Clinical implications of malnutrition in the management of patients with pancreatic cancer: Introducing the concept of the nutritional oncology board. Nutrients 2021, 13, 3522. [Google Scholar] [CrossRef]
- Flint, T.R.; Janowitz, T.; Connell, C.M.; Roberts, E.W.; Denton, A.E.; Coll, A.P.; Jodrell, D.I.; Fearon, D.T. Tumor-Induced IL-6 Reprograms Host Metabolism to Suppress Anti-Tumor Immunity. Cell Metab. 2016, 24, 672–684. [Google Scholar] [CrossRef]
- Dasgupta, A.; Gibbard, D.F.; Schmitt, R.E.; Arneson-Wissink, P.; Ducharme, J.; Bruinsma, M.W.; Hawse, J.R.; Jatoi, A.; Doles, J. A TGF-β/KLF10 Signaling Axis Regulates Atrophy-Associated Genes to Induce Muscle Wasting in Pancreatic Cancer. Proc. Natl. Acad. Sci. USA 2023, 120, e2215095120. [Google Scholar] [CrossRef] [PubMed]
- Vaes, R.D.W.; van Bijnen, A.A.; Olde Damink, S.W.M.; Rensen, S.S. Pancreatic Tumor Organoid-Derived Factors from Cachectic Patients Disrupt Contractile Smooth Muscle Cells. Cancers 2024, 16, 542. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Knees, J.W.; Falkenthal, J.; Geisel, D.; Neumann, C.C.M.; Hilfenhaus, G.; Stephan, L.U.; Schöning, W.; Malinka, T.; Pratschke, J.; Stintzing, S.; et al. Cachexia-Affected Survival Based on Inflammatory Parameters Compared to Complex Conventional Nutritional Assessments in Patients with Pancreatic Cancer and Other Gastrointestinal Tumors—The CONKO 020 Investigation. Cancers 2024, 16, 1194. [Google Scholar] [CrossRef]
- Bossi, P.; Delrio, P.; Mascheroni, A.; Zanetti, M. The Spectrum of Malnutrition/Cachexia/Sarcopenia in Oncology According to Different Cancer Types and Settings: A Narrative Review. Nutrients 2021, 13, 1980. [Google Scholar] [CrossRef]
- von Haehling, S.; Coats, A.J.S.; Anker, S.D. Ethical guidelines for publishing in the Journal of Cachexia, Sarcopenia and Muscle: Update 2023. J. Cachexia Sarcopenia Muscle 2023, 14, 2981–2983. [Google Scholar] [CrossRef]
- Argilés, J.M.; López-Soriano, F.J.; Stemmler, B.; Busquets, S. Therapeutic Strategies Against Cancer Cachexia. Eur. J. Transl. Myol. 2019, 29, 7960. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Shi, G.; Shi, J.; Li, Z.; Xiao, Y.; Qiu, Y.; He, L.; Xie, F.; Yu, D.; Cao, H.; et al. Research progress on the mechanism and treatment of cachexia based on tumor microenvironment. Nutrition 2025, 133, 112697. [Google Scholar] [CrossRef]
- Funamizu, N.; Honjo, M.; Tamura, K.; Sakamoto, K.; Ogawa, K.; Takada, Y. microRNAs Associated with Gemcitabine Resistance via EMT, TME, and Drug Metabolism in Pancreatic Cancer. Cancers 2023, 15, 1230. [Google Scholar] [CrossRef]
- Funamizu, N.; Hu, C.; Lacy, C.R.; Schetter, A.N.; Zhang, G.; He, P.; Gaedcke, J.; Ghadimi, M.B.; Ried, T.; Yfantis, H.G.; et al. Macrophage migration inhibitory factor induces epithelial to mesenchymal transition, enhances tumor aggressiveness and predicts clinical outcome in resected pancreatic ductal adenocarcinoma. Int. J. Cancer 2013, 132, 785–794. [Google Scholar]
- Funamizu, N.; Lacy, C.R.; Parpart, S.T.; Takai, A.; Hiyoshi, Y.; Yanaga, K. MicroRNA-301b promotes cell invasiveness through targeting TP63 in pancreatic carcinoma cells. Int. J. Oncol. 2014, 44, 725–734. [Google Scholar] [CrossRef]
- Funamizu, N.; Lacy, C.R.; Kamada, M.; Yanaga, K.; Manome, Y. MicroRNA-200b and -301 are associated with gemcitabine response as biomarkers in pancreatic carcinoma cells. Int. J. Oncol. 2019, 54, 991–1000. [Google Scholar] [CrossRef]
- Yu, J.; Ohuchida, K.; Mizumoto, K.; Sato, N.; Kayashima, T.; Fujita, H.; Nakata, K.; Tanaka, M. MicroRNA, hsa-miR-200c, Is an Independent Prognostic Factor in Pancreatic Cancer and Its Upregulation Inhibits Pancreatic Cancer Invasion but Increases Cell Proliferation. Mol. Cancer 2010, 9, 169. [Google Scholar] [CrossRef]
- LaConti, J.J.; Shivapurkar, N.; Preet, A.; Deslattes Mays, A.; Peran, I.; Kim, S.E.; Marshall, J.L.; Riegel, A.T.; Wellstein, A. Tissue and serum microRNAs in the Kras(G12D) transgenic animal model and in patients with pancreatic cancer. PLoS ONE 2011, 6, e20687. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.L.; Wilson, I.D.; Teare, J.; Marchesi, J.R.; Nicholson, J.K.; Kinross, J.M. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 356–365. [Google Scholar] [CrossRef]
- Zitvogel, L.; Ma, Y.; Raoult, D.; Kroemer, G.; Gajewski, T.F. Anticancer effects of the microbiome and its products. Nat. Rev. Microbiol. 2017, 15, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Deng, D.; Wang, B.; Donati, V.; Frampton, A.E.; Giovannetti, E. Metabolites Derived from Gut Microbiota Mitigate Chemoresistance in Pancreatic Cancer. Expert. Rev. Gastroenterol. Hepatol. 2024, 18, 597–604. [Google Scholar] [CrossRef]
- Geller, L.T.; Barzily-Rokni, M.; Danino, T.; Jonas, O.H.; Shental, N.; Nejman, D.; Gavert, N.; Zwang, Y.; Cooper, Z.A.; Shee, K.; et al. Potential Role of Intratumor Bacteria in Mediating Tumor Resistance to Gemcitabine Chemotherapy. Science 2017, 357, 1156–1160. [Google Scholar] [CrossRef]
Summary of Nutritional Indices: Formulas and Clinical Use | ||||
---|---|---|---|---|
Index | Full name | Formula/Definition | Features | Clinical Significance |
Sarcopenia | CT-based skeletal muscle mass at L3 (PMI, SMA) | Reflects muscle wasting and cachexia | Predicts AC intolerance and poor survival | |
GLIM | Global Leadership Initiative on Malnutrition | Phenotypic + Etiologic criteria (weight loss, BMI, muscle mass + intake/inflammation) | Global standardized malnutrition criteria | Linked to poorer survival and treatment adherence |
BMI | Body Mass Index | Weight (kg)/Height (m)2 | Simple indicator; does not reflect body composition | Limited use alone; may miss sarcopenic obesity |
Albumin | Serum albumin level (g/dL) | Reflects nutrition and inflammation | Low levels predict poor prognosis and AC incompletion | |
PNI | Prognostic Nutritional Index | (10 × Albumin) + (0.005 × Lymphocyte count) | Integrates nutrition and immune status | Useful for predicting AC completion and prognosis |
GNRI | Geriatric Nutritional Risk Index | (1.489 × Albumin) + (41.7 × BW/IBW) | Elderly specific nutritional risk index | Predicts AC adherence and survival outcomes |
CAR | C-reactive Protein/Albumin Ratio | CRP/Albumin | Reflects inflammation and nutrition | Associated with AC failure and worse survival |
Nutritional Interventions and Therapeutic Impact | |||||||
---|---|---|---|---|---|---|---|
Intervention | Target Phase | Purpose | Biomarkers /Triggers | Study Design/OCEBM | Endpoint (AC Completion) | Certainty (GRADE) | Representative Study |
High-protein, high-calorie diet + ONS | Postoperative weeks 2–4; at AC start and during AC | Muscle maintenance, reduce toxicity | Low GNRI/PNI, low albumin, high CAR, low SMI | Prospective/retrospective pancreatic cancer cohorts; OCEBM 2–3 | Improved completion (moderate) | Low | Gianotti et al. [32] |
PERT | Early postoperative through entire AC course | Prevent malabsorption, weight loss | Clinical signs of PEI: weight loss, steatorrhea, malabsorption | Guideline-supported plus pancreatic cancer cohorts; OCEBM 2–3 | Likely indirect improvement (strong) | Low | Bruno et al. [27] |
Omega-3 fatty acids, immunonutrition | NAC through AC | Control inflammation; reduce toxicity | Elevated CRP/CAR; inflammatory phenotype | Mixed RCTs in GI cancers with pancreatic cancer subgroup analyses; OCEBM 2–3 | Possible improvement | Very low–Low | Ueno et al. [59] |
Resistance training/prehabilitation | NAC; postoperative weeks 2–4; during AC | Maintain or regain muscle and function | Low SMI; sarcopenia metrics | Small prospective/nonrandomized studies including pancreatic cancer; OCEBM 2–3 | Signal of benefit (moderate) | Very low | Ngo-Huang et al. [63] |
Probiotics/synbiotic | Postoperative; during AC | Improve gut milieu; lower infection/toxicity | Antibiotic exposure, diarrhea, dysbiosis | Postoperative RCTs exist, but data on AC completion are limited; OCEBM 2–3 | Uncertain to possible | Very low | Nakaoka et al. [30] |
Vitamin D analogs | NAC phase | Reduce fibrosis, enhance sensitivity | - | Preclinical/early-phase clinical; OCEBM 4–5 | No direct evidence; effect | Very low | Sherman et al. [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Funamizu, N.; Uraoka, M.; Ito, C.; Iwata, M.; Sakamoto, A.; Kamei, Y.; Umeda, Y. Nutritional Status and Chemotherapy Completion in Resectable Pancreatic Cancer: A Narrative Review. Curr. Oncol. 2025, 32, 519. https://doi.org/10.3390/curroncol32090519
Funamizu N, Uraoka M, Ito C, Iwata M, Sakamoto A, Kamei Y, Umeda Y. Nutritional Status and Chemotherapy Completion in Resectable Pancreatic Cancer: A Narrative Review. Current Oncology. 2025; 32(9):519. https://doi.org/10.3390/curroncol32090519
Chicago/Turabian StyleFunamizu, Naotake, Mio Uraoka, Chihiro Ito, Miku Iwata, Akimasa Sakamoto, Yoshiaki Kamei, and Yuzo Umeda. 2025. "Nutritional Status and Chemotherapy Completion in Resectable Pancreatic Cancer: A Narrative Review" Current Oncology 32, no. 9: 519. https://doi.org/10.3390/curroncol32090519
APA StyleFunamizu, N., Uraoka, M., Ito, C., Iwata, M., Sakamoto, A., Kamei, Y., & Umeda, Y. (2025). Nutritional Status and Chemotherapy Completion in Resectable Pancreatic Cancer: A Narrative Review. Current Oncology, 32(9), 519. https://doi.org/10.3390/curroncol32090519