Clinical and Molecular Profiling of Colorectal Cancer: A Comprehensive Cohort Study of BRAF-Mutated Cases from a Tertiary Centre
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Part A: Localised Disease
3.2. Part B: Metastatic Disease
3.3. Part C: RNF43 Mutation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Afrǎsânie, V.A.; Marinca, M.V.; Alexa-Stratulat, T.; Gafton, B.; Pǎduraru, M.; Adavidoaiei, A.M.; Miron, L.; Rusu, C. KRAS, NRAS, BRAF, HER2 and Microsatellite Instability in Metastatic Colorectal Cancer—Practical Implications for the Clinician. Radiol. Oncol. 2019, 53, 265. [Google Scholar] [CrossRef]
- De Luca, A.; Maiello, M.R.; D’Alessio, A.; Pergameno, M.; Normanno, N. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: Role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin. Ther. Targets 2012, 16, S17–S27. [Google Scholar] [CrossRef]
- Chu, J.E.; Johnson, B.; Kugathasan, L.; Morris, V.K.; Raghav, K.; Swanson, L.; Lim, H.J.; Renouf, D.J.; Gill, S.; Wolber, R.; et al. Population-based screening for BRAFV600E in metastatic colo-rectal cancer reveals increased prevalence and poor prognosis. Clin. Cancer Res. 2020, 26, 4599–4605. [Google Scholar] [CrossRef]
- Ahmed, A.I.; Philips, W.; Marginean, H.; Asmis, T.R.; Vickers, M.M.; Lo, B.; Goodwin, R.A. Impact of synchronous vs metachronous primary tumor resection on prognosis of BRAF-V600E mutant metastatic colorectal cancer (mCRC). J. Clin. Oncol. 2025, 43, 304. [Google Scholar] [CrossRef]
- Cremolini, C.; Loupakis, F.; Antoniotti, C.; Lupi, C.; Sensi, E.; Lonardi, S.; Mezi, S.; Tomasello, G.; Ronzoni, M.; Zaniboni, A.; et al. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: Updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol. 2015, 16, 1306–1315. [Google Scholar] [CrossRef] [PubMed]
- Yaeger, R.; Cercek, A.; Chou, J.F.; Sylvester, B.E.; Kemeny, N.E.; Hechtman, J.F.; Ladanyi, M.; Rosen, N.; Weiser, M.R.; Ca-panu, M.; et al. BRAF mutation predicts for poor outcomes after me-tastasectomy in patients with metastatic colorectal cancer. Cancer 2014, 120, 2316–2324. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Wang, X.; Wang, Z.; Deng, T.; Qi, C.; Liu, D.; Li, Y.; Ji, C.; Li, J.; Shen, L. Molecular mechanisms underlying the resistance of BRAF V600E-mutant metastatic colorectal cancer to EGFR/BRAF inhibitors. Ther. Adv. Med. Oncol. 2022, 14, 17588359221105022. [Google Scholar] [CrossRef]
- Kopetz, S.; Grothey, A.; Yaeger, R.; Van Cutsem, E.; Desai, J.; Yoshino, T.; Wasan, H.; Ciardiello, F.; Loupakis, F.; Hong, Y.S.; et al. Encorafenib, Binimetinib, and Cetuximab in BRAF V600E–Mutated Colorectal Cancer. N. Engl. J. Med. 2019, 381, 1632–1643. [Google Scholar] [CrossRef]
- Kopetz, S.; Yoshino, T.; Van Cutsem, E.; Eng, C.; Kim, T.W.; Wasan, H.S.; Desai, J.; Ciardiello, F.; Yaeger, R.; Maughan, T.S.; et al. BREAKWATER: Analysis of first-line encorafenib + cetuximab + chemotherapy in BRAF V600E-mutant metastatic colorectal cancer. J. Clin. Oncol. 2025, 43, 16. [Google Scholar] [CrossRef]
- Johnson, B.; Morris, V.; Wang, X.; Dasari, A.; Raghav, K.; Shen, J.P.; Lee, M.S.; Huey, R.; Parseghian, C.; Willis, J.; et al. Comprehensive Landscape of BRAF Variant Classes, Clonalities, and Co-Mutations in Metastatic Colorectal Cancer Using ctDNA Profiling. Cancers 2024, 16, 737. [Google Scholar] [CrossRef] [PubMed]
- Ceccon, C.; Borga, C.; Angerilli, V.; Bergamo, F.; Munari, G.; Sabbadin, M.; Gasparello, J.; Schiavi, F.; Zovato, S.; Scarpa, M.; et al. MLH1 gene promoter methylation status partially overlaps with CpG methylator phenotype (CIMP) in colorectal adenocarcinoma. Pathol. Res. Pract. 2025, 266, 155786. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Sinicrope, F.A. Mismatch Repair-Deficient Colorectal Cancer: Building on Checkpoint Blockade. J. Clin. Oncol. 2022, 40, 2735–2750. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.H.N.; Lai, J.C.W.; Ho, S.L.; Leung, W.K.; Law, W.L.; Lee, J.F.Y.; Chan, A.K.W.; Tsui, W.Y.; Chan, A.S.Y.; Lee, B.C.H.; et al. RNF43 germline and somatic mutation in serrated neoplasia pathway and its association with BRAF mutation. Gut 2017, 66, 1645–1656. [Google Scholar] [CrossRef]
- Polakis, P. Wnt Signaling in Cancer. Cold Spring Harb. Perspect. Biol. 2012, 4, a008052. [Google Scholar] [CrossRef]
- Elez, E.; Ros, J.; Fernández, J.; Villacampa, G.; Moreno-Cárdenas, A.B.; Arenillas, C.; Bernatowicz, K.; Comas, R.; Li, S.; Kodack, D.P.; et al. RNF43 mutations predict response to anti-BRAF/EGFR combinatory therapies in BRAFV600E metastatic colorectal cancer. Nat. Med. 2022, 28, 2162–2170. [Google Scholar] [CrossRef]
- Tu, J.; Park, S.; Yu, W.; Zhang, S.; Wu, L.; Carmon, K.; Liu, Q.J. The most common RNF43 mutant G659Vfs41 is fully functional in inhibiting Wnt signaling and unlikely to play a role in tumorigenesis. Sci. Rep. 2019, 9, 18557. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, H.; Deng, Y.; Ma, Y.; Huang, H.; Liu, Y.; Zhang, Y.; Zhang, H.; Ye, S.; E, M.; et al. The clinical and genomic distinctions of Class1/2/3 BRAF-mutant colorectal cancer and differential prognoses. Biomark. Res. 2023, 11, 11. [Google Scholar] [CrossRef]
- Jones, J.C.; Renfro, L.A.; Al-Shamsi, H.O.; Schrock, A.B.; Rankin, A.; Zhang, B.Y.; Kasi, P.M.; Voss, J.S.; Leal, A.D.; Sun, J.; et al. Non-V600BRAF mutations define a clinically distinct molecular subtype of metastatic colorectal cancer. J. Clin. Oncol. 2017, 35, 2624–2630. [Google Scholar] [CrossRef]
- Osterlund, E.; Ristimäki, A.; Mäkinen, M.J.; Kytölä, S.; Kononen, J.; Pfeiffer, P.; Soveri, L.M.; Keinänen, M.; Sorbye, H.; Nunes, L.; et al. Atypical (non-V600E) BRAF mutations in metastatic colorectal cancer in population and real-world cohorts. Int. J. Cancer 2024, 154, 488–503. [Google Scholar] [CrossRef]
- Kopetz, S.; Murphy, D.A.; Pu, J.; Ciardiello, F.; Desai, J.; Van Cutsem, E.; Wasan, H.S.; Yoshino, T.; Saffari, H.; Zhang, X.; et al. Molecular profiling of BRAF-V600E-mutant metastatic colorectal cancer in the phase 3 BEACON CRC trial. Nat. Med. 2024, 30, 3261–3271. [Google Scholar] [CrossRef]
- Barras, D.; Missiaglia, E.; Wirapati, P.; Sieber, O.M.; Jorissen, R.N.; Love, C.; Molloy, P.L.; Jones, I.T.; McLaughlin, S.; Gibbs, P.; et al. BRAF V600E Mutant Colorectal Cancer Subtypes Based on Gene Expression. Clin. Cancer Res. 2017, 23, 104–115. [Google Scholar] [CrossRef]
V600BRAFmt (N = 228) | Non-V600BRAFmt (N = 25) | p-Value | |
---|---|---|---|
Demographic information | |||
Age, years median (IQR) | 73 (63–79) | 63 (54–71) | 0.04 |
Male, n (%) | 136 (60) | 12 (48) | 0.3 |
Tumour characteristics | |||
Stage at diagnosis, n (%) I II III | 12 (5) 60 (26) 156 (68) | 3 (12) 8 (32) 14 (56) | |
Right-side primary | 166 (73) | 10 (40) | <0.01 |
BRAF mutation Class 1 Class 2 Class 3 Unclassified | 228 | 3 17 5 | |
MMRd, n (%) MLH1 + PMS2 loss PMS2 loss MSH2 + MSH 6 loss MLH1 + PMS 2 + MSH 6 loss | 128 (56) 117 7 2 2 | 2 (8) 0 1 0 1 | <0.01 |
Treatment | |||
Resection of primary, n (%) | 213 (93) | 24 (96) | 0.6 |
Adjuvant systemic treatment | 100 (44) | 15 (60) | 0.1 |
Adjuvant treatment received Doublet Single agent | 57 43 | 11 4 | |
Outcome | |||
Relapse, n (%) | 92 (40) | 10 (40) | 0.97 |
Time to relapse, median months (IQR) | 8 (3–13) | 25 (7–58) | 0.006 |
V600BRAF mut (N = 137) | Non-V600BRAF mut (N = 16) | p-Value | |
---|---|---|---|
Demographic information | |||
Age (years), median (IQR) | 64 (43–75) | 64 (56–77) | 0.5 |
Male, n (%) | 66 (48) | 5 (43) | 0.2 |
Tumour characteristics | |||
Right-side primary | 86 (63) | 9 (56) | 0.3 |
BRAF mutation Class 1 Class 2 Class 3 Non-V600, class unknown | 137 | 2 11 3 | |
MMR deficiency, n (%) MLH1 + PMS2 loss PMS2 loss MSH2 + MSH 6 loss | 28 (20) 24 (89) 2 (7) 1 (4) | 0 | 0.01 |
KRAS mutation, n (%) N = 149 | 1 (1) | 4 (27) | <0.01 |
NRAS mutation, n (%) N = 145 | 4 (3) | 2 (14) | 0.04 |
PIK3CA mutation, n (%) N = 107 | 8 (8) | 4 (33) | 0.02 |
TP53 mutation, n (%) N = 101 | 54 (60) | 7 (64) | 0.8 |
RNF43 mutation, n (%) N = 58 | 10 (18) | 0 (0) | 0.6 |
Treatment | |||
Number of SACT regimens received, n (%) 0 1 2 3 4 >4 | 19 (14) 42 (31) 30 (22) 29 (21) 8 (6) 9 (7) | 1 (6) 5 (31) 2 (13) 6 (38) 1 (6) 1 (6) | |
Treatments received: Fluoropyrimidine/oxaliplatin Fluoropyrimidine/irinotecan FOLFOXIRI PD1/PDL1 blockade BRAF/EGFR inhibition Trifluridine/tipiracil | 81 65 17 13 39 11 | 13 12 0 0 0 4 |
RNF43 Wild Type (n = 111) | RNF43 Mutation (n = 47) | p-Value | |
---|---|---|---|
Demographics | |||
Male, n (%) | 42 (38) | 22 (47) | 0.7 |
Age (years), median (IQR) | 64 (53–76) | 76 (64–80) | 0.04 |
Cancer characteristics | |||
Stage at diagnosis n (%) I II III IV | 6 (5) 14 (13) 42 (38) 49 (44) | 3 (7) 8 (17) 26 (57) 9 (20) | 0.01 |
Primary location Right Left Both | 64 (58) 47 (42) 0 | 37 (80) 8 (17) 2 (3) | 0.01 |
MMR deficiency, n (%) | 30 (27) | 29 (63) | 0.01 |
BRAF mutation, n (%): Class 1 Class 2 Class 3 Non-V600, class unknown | 88 (79) 2 (2) 14 (13) 7 (6) | 46 (98) 1 (2) 0 (0) 0 (0) | 0.02 |
KRAS mutation, n (%) N = 154 | 6 (6) | 2 (4) | 0.99 |
NRAS mutation, n (%) N = 154 | 3 (3) | 2 (4) | 0.57 |
PIK3CA mutation, n (%) N = 64 | 11 (20) | 3 (38) | 0.79 |
TP53 mutation, n (%) N = 65 | 34 (60) | 2 (25) | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freckelton, J.; Mencel, J.; Levink, I.; Rao, S.; Fribbens, C.; Proszek, P.; Brooks, D.; Liu, X.; Cunningham, D.; Chau, I.; et al. Clinical and Molecular Profiling of Colorectal Cancer: A Comprehensive Cohort Study of BRAF-Mutated Cases from a Tertiary Centre. Curr. Oncol. 2025, 32, 507. https://doi.org/10.3390/curroncol32090507
Freckelton J, Mencel J, Levink I, Rao S, Fribbens C, Proszek P, Brooks D, Liu X, Cunningham D, Chau I, et al. Clinical and Molecular Profiling of Colorectal Cancer: A Comprehensive Cohort Study of BRAF-Mutated Cases from a Tertiary Centre. Current Oncology. 2025; 32(9):507. https://doi.org/10.3390/curroncol32090507
Chicago/Turabian StyleFreckelton, Julia, Justin Mencel, Iris Levink, Sheela Rao, Charlotte Fribbens, Paula Proszek, Damian Brooks, Xin Liu, David Cunningham, Ian Chau, and et al. 2025. "Clinical and Molecular Profiling of Colorectal Cancer: A Comprehensive Cohort Study of BRAF-Mutated Cases from a Tertiary Centre" Current Oncology 32, no. 9: 507. https://doi.org/10.3390/curroncol32090507
APA StyleFreckelton, J., Mencel, J., Levink, I., Rao, S., Fribbens, C., Proszek, P., Brooks, D., Liu, X., Cunningham, D., Chau, I., & Starling, N. (2025). Clinical and Molecular Profiling of Colorectal Cancer: A Comprehensive Cohort Study of BRAF-Mutated Cases from a Tertiary Centre. Current Oncology, 32(9), 507. https://doi.org/10.3390/curroncol32090507