The -124C>T Mutation of the TERT Promoter Indicates Favorable Prognosis in Ovarian Clear Cell Carcinoma: A Single Institutional Study in China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Tissue Samples
2.2. Tissue Microarray (TMA) Construction
2.3. Immunohistochemistry
2.4. DNA Extraction and Mutation Analysis
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics and Clinicopathological Factors
3.2. Prognostic Factors in OCCC
3.3. Correlations Between TERTp Mutation and Other Clinicopathological Factors in OCCC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alizadeh, H.; Akbarabadi, P.; Dadfar, A.; Tareh, M.R.; Soltani, B. A comprehensive overview of ovarian cancer stem cells: Correlation with high recurrence rate, underlying mechanisms, and therapeutic opportunities. Mol. Cancer 2025, 24, 135. [Google Scholar] [CrossRef]
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer statistics, 2025. CA Cancer J. Clin. 2025, 75, 10–45. [Google Scholar] [CrossRef]
- Wang, M.; Bi, Y.; Jin, Y.; Zheng, Z.J. Global Incidence of Ovarian Cancer According to Histologic Subtype: A Population-Based Cancer Registry Study. JCO Glob. Oncol. 2024, 10, e2300393. [Google Scholar] [CrossRef]
- Pavone, G.; Martorana, F.; Ricco, V.; Ciliberti, E.A.; Nerone, M.; Sessa, C.; Colombo, I. A systematic review of phase I trials in patients with ovarian cancer. Cancer Treat. Rev. 2025, 139, 102982. [Google Scholar] [CrossRef]
- Perrone, C.; Angioli, R.; Luvero, D.; Giannini, A.; Di Donato, V.; Cuccu, I.; Muzii, L.; Raspagliesi, F.; Bogani, G. Targeting BRAF pathway in low-grade serous ovarian cancer. J. Gynecol. Oncol. 2024, 35, e104. [Google Scholar] [CrossRef]
- Tonti, N.; Golia D’Augè, T.; Cuccu, I.; De Angelis, E.; D’Oria, O.; Perniola, G.; Laganà, A.S.; Etrusco, A.; Ferrari, F.; Saponara, S.; et al. The Role of Tumor Biomarkers in Tailoring the Approach to Advanced Ovarian Cancer. Int. J. Mol. Sci. 2024, 25, 11239. [Google Scholar] [CrossRef]
- Machida, H.; Matsuo, K.; Yamagami, W.; Ebina, Y.; Kobayashi, Y.; Tabata, T.; Kanauchi, M.; Nagase, S.; Enomoto, T.; Mikami, M. Trends and characteristics of epithelial ovarian cancer in Japan between 2002 and 2015: A JSGO-JSOG joint study. Gynecol. Oncol. 2019, 153, 589–596. [Google Scholar] [CrossRef]
- Tan, T.Z.; Ye, J.; Yee, C.V.; Lim, D.; Ngoi, N.Y.L.; Tan, D.S.P.; Huang, R.Y. Analysis of gene expression signatures identifies prognostic and functionally distinct ovarian clear cell carcinoma subtypes. EBioMedicine 2019, 50, 203–210. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, Z.; Zhang, T.; Qian, L.; Xiao, W.; Wei, H.; Jin, T.; Zhou, Y. Updates of Pathogenesis, Diagnostic and Therapeutic Perspectives for Ovarian Clear Cell Carcinoma. J. Cancer 2021, 12, 2295–2316. [Google Scholar] [CrossRef]
- Bolton, K.L.; Chen, D.; Corona de la Fuente, R.; Fu, Z.; Murali, R.; Kobel, M.; Tazi, Y.; Cunningham, J.M.; Chan, I.C.C.; Wiley, B.J.; et al. Molecular Subclasses of Clear Cell Ovarian Carcinoma and Their Impact on Disease Behavior and Outcomes. Clin. Cancer Res. 2022, 28, 4947–4956. [Google Scholar] [CrossRef]
- Armstrong, D.K.; Alvarez, R.D.; Backes, F.J.; Bakkum-Gamez, J.N.; Barroilhet, L.; Behbakht, K.; Berchuck, A.; Chen, L.M.; Chitiyo, V.C.; Cristea, M.; et al. NCCN Guidelines(R) Insights: Ovarian Cancer, Version 3.2022. J. Natl. Compr. Canc. Netw. 2022, 20, 972–980. [Google Scholar] [CrossRef]
- Iida, Y.; Okamoto, A.; Hollis, R.L.; Gourley, C.; Herrington, C.S. Clear cell carcinoma of the ovary: A clinical and molecular perspective. Int. J. Gynecol. Cancer 2021, 31, 605–616. [Google Scholar] [CrossRef]
- Ye, S.; Zhou, S.; Wu, Y.; Pei, X.; Jiang, W.; Shi, W.; Yang, W.; Zhou, X.; Shan, B.; Yang, H. Genomic profiling of ovarian clear cell carcinoma in Chinese patients reveals potential prognostic biomarkers for survival. Ann. Med. 2023, 55, 2218104. [Google Scholar] [CrossRef]
- Watanabe, T.; Nanamiya, H.; Endo, Y.; Kojima, M.; Nomura, S.; Furukawa, S.; Soeda, S.; Tamura, H.; Ryufuku, M.; Tanaka, D.; et al. Identification and clinical significance of somatic oncogenic mutations in epithelial ovarian cancer. J. Ovarian. Res. 2021, 14, 129. [Google Scholar] [CrossRef]
- Kobel, M.; Kang, E.Y.; Weir, A.; Rambau, P.F.; Lee, C.H.; Nelson, G.S.; Ghatage, P.; Meagher, N.S.; Riggan, M.J.; Alsop, J.; et al. p53 and ovarian carcinoma survival: An Ovarian Tumor Tissue Analysis consortium study. J. Pathol. Clin. Res. 2023, 9, 208–222. [Google Scholar] [CrossRef]
- Yano, M.; Katoh, T.; Miyazawa, M.; Miyazawa, M.; Ogane, N.; Miwa, M.; Hasegawa, K.; Narahara, H.; Yasuda, M. Clinicopathological correlation of ARID1A status with HDAC6 and its related factors in ovarian clear cell carcinoma. Sci. Rep. 2019, 9, 2397. [Google Scholar] [CrossRef]
- Lashen, A.; Algethami, M.; Alqahtani, S.; Shoqafi, A.; Sheha, A.; Jeyapalan, J.N.; Mongan, N.P.; Rakha, E.A.; Madhusudan, S. The Clinicopathological Significance of the Cyclin D1/E1-Cyclin-Dependent Kinase (CDK2/4/6)-Retinoblastoma (RB1/pRB1) Pathway in Epithelial Ovarian Cancers. Int. J. Mol. Sci. 2024, 25, 4060. [Google Scholar] [CrossRef]
- Mutch, D.G.; Prat, J. 2014 FIGO staging for ovarian, fallopian tube and peritoneal cancer. Gynecol. Oncol. 2014, 133, 401–404. [Google Scholar] [CrossRef]
- Ge, H.; Xiao, Y.; Qin, G.; Gu, Y.; Cai, X.; Jiang, W.; Tu, X.; Yang, W.; Bi, R. Mismatch repair deficiency is associated with specific morphologic features and frequent loss of ARID1A expression in ovarian clear cell carcinoma. Diagn. Pathol. 2021, 16, 12. [Google Scholar] [CrossRef]
- Katagiri, A.; Nakayama, K.; Rahman, M.T.; Rahman, M.; Katagiri, H.; Nakayama, N.; Ishikawa, M.; Ishibashi, T.; Iida, K.; Kobayashi, H.; et al. Loss of ARID1A expression is related to shorter progression-free survival and chemoresistance in ovarian clear cell carcinoma. Mod. Pathol. 2012, 25, 282–288. [Google Scholar] [CrossRef]
- McCarty, K.S., Jr.; Szabo, E.; Flowers, J.L.; Cox, E.B.; Leight, G.S.; Miller, L.; Konrath, J.; Soper, J.T.; Budwit, D.A.; Creasman, W.T.; et al. Use of a monoclonal anti-estrogen receptor antibody in the immunohistochemical evaluation of human tumors. Cancer Res. 1986, 46 (Suppl. S8), 4244s–4248s. [Google Scholar]
- Ayhan, A.; Kuhn, E.; Wu, R.C.; Ogawa, H.; Bahadirli-Talbott, A.; Mao, T.L.; Sugimura, H.; Shih, I.M.; Wang, T.L. CCNE1 copy-number gain and overexpression identify ovarian clear cell carcinoma with a poor prognosis. Mod. Pathol. 2017, 30, 297–303. [Google Scholar] [CrossRef]
- Tessier-Cloutier, B.; Kortekaas, K.E.; Thompson, E.; Pors, J.; Chen, J.; Ho, J.; Prentice, L.M.; McConechy, M.K.; Chow, C.; Proctor, L.; et al. Major p53 immunohistochemical patterns in in situ and invasive squamous cell carcinomas of the vulva and correlation with TP53 mutation status. Mod. Pathol. 2020, 33, 1595–1605. [Google Scholar] [CrossRef]
- Tornesello, M.L.; Cerasuolo, A.; Starita, N.; Amiranda, S.; Bonelli, P.; Tuccillo, F.M.; Buonaguro, F.M.; Buonaguro, L.; Tornesello, A.L. Reactivation of telomerase reverse transcriptase expression in cancer: The role of TERT promoter mutations. Front. Cell Dev. Biol. 2023, 11, 1286683. [Google Scholar] [CrossRef]
- Hafezi, F.; Perez Bercoff, D. The Solo Play of TERT Promoter Mutations. Cells 2020, 9, 749. [Google Scholar] [CrossRef]
- Giunco, S.; Padovan, M.; Angelini, C.; Cavallin, F.; Cerretti, G.; Morello, M.; Caccese, M.; Rizzo, B.; d’Avella, D.; Della Puppa, A.; et al. Prognostic role and interaction of TERT promoter status, telomere length and MGMT promoter methylation in newly diagnosed IDH wild-type glioblastoma patients. ESMO Open 2023, 8, 101570. [Google Scholar] [CrossRef]
- Boscolo-Rizzo, P.; Tirelli, G.; Polesel, J.; Sia, E.; Phillips, V.; Borsetto, D.; De Rossi, A.; Giunco, S. TERT promoter mutations in head and neck squamous cell carcinoma: A systematic review and meta-analysis on prevalence and prognostic significance. Oral Oncol. 2023, 140, 106398. [Google Scholar] [CrossRef]
- Wu, R.C.; Ayhan, A.; Maeda, D.; Kim, K.R.; Clarke, B.A.; Shaw, P.; Chui, M.H.; Rosen, B.; Shih Ie, M.; Wang, T.L. Frequent somatic mutations of the telomerase reverse transcriptase promoter in ovarian clear cell carcinoma but not in other major types of gynaecological malignancy. J. Pathol. 2014, 232, 473–481. [Google Scholar] [CrossRef]
- Kuhn, E.; Meeker, A.K.; Visvanathan, K.; Gross, A.L.; Wang, T.L.; Kurman, R.J.; Shih Ie, M. Telomere length in different histologic types of ovarian carcinoma with emphasis on clear cell carcinoma. Mod. Pathol. 2011, 24, 1139–1145. [Google Scholar] [CrossRef]
- Huang, H.N.; Chiang, Y.C.; Cheng, W.F.; Chen, C.A.; Lin, M.C.; Kuo, K.T. Molecular alterations in endometrial and ovarian clear cell carcinomas: Clinical impacts of telomerase reverse transcriptase promoter mutation. Mod. Pathol. 2015, 28, 303–311. [Google Scholar] [CrossRef]
- Yoo, H.; Kim, H.S. Clinicopathological and Prognostic Values of Telomerase Reverse Transcriptase (TERT) Promoter Mutations in Ovarian Clear Cell Carcinoma for Predicting Tumor Recurrence, Platinum Resistance and Survival. Cancer Genom. Proteom. 2023, 20, 626–636. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nishikimi, K.; Mitsuhashi, A.; Piao, H.; Matsuoka, A.; Otsuka, S.; Tate, S.; Shozu, M.; Usui, H. Suppressor-type TERT mutations associated with recurrence in ovarian clear cell carcinoma. Genes Chromosomes Cancer 2023, 62, 471–476. [Google Scholar] [CrossRef]
- Nishikimi, K.; Nakagawa, K.; Tate, S.; Matsuoka, A.; Iwamoto, M.; Kiyokawa, T.; Shozu, M. Uncommon Human Telomerase Reverse Transcriptase Promoter Mutations Are Associated With Poor Survival in Ovarian Clear Cell Carcinoma. Am. J. Clin. Pathol. 2018, 149, 352–361. [Google Scholar] [CrossRef]
- Ambrozkiewicz, F.; Trailin, A.; Cervenkova, L.; Vaclavikova, R.; Hanicinec, V.; Allah, M.A.O.; Palek, R.; Treska, V.; Daum, O.; Tonar, Z.; et al. CTNNB1 mutations, TERT polymorphism and CD8+ cell densities in resected hepatocellular carcinoma are associated with longer time to recurrence. BMC Cancer 2022, 22, 884. [Google Scholar] [CrossRef]
- Stern, J.L.; Hibshman, G.; Hu, K.; Ferrara, S.E.; Costello, J.C.; Kim, W.; Tamayo, P.; Cech, T.R.; Huang, F.W. Mesenchymal and MAPK Expression Signatures Associate with Telomerase Promoter Mutations in Multiple Cancers. Mol. Cancer Res. 2020, 18, 1050–1062. [Google Scholar] [CrossRef]
- Holzl, D.; Hutarew, G.; Zellinger, B.; Schlicker, H.U.; Schwartz, C.; Winkler, P.A.; Sotlar, K.; Kraus, T.F.J. Integrated analysis of programmed cell death ligand 1 expression reveals increased levels in high-grade glioma. J. Cancer Res. Clin. Oncol. 2021, 147, 2271–2280. [Google Scholar] [CrossRef]
- Arita, H.; Yamasaki, K.; Matsushita, Y.; Nakamura, T.; Shimokawa, A.; Takami, H.; Tanaka, S.; Mukasa, A.; Shirahata, M.; Shimizu, S.; et al. A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas. Acta Neuropathol. Commun. 2016, 4, 79. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Q.L.; Sun, W.; Chandrasekharan, P.; Cheng, H.S.; Ying, Z.; Lakshmanan, M.; Raju, A.; Tenen, D.G.; Cheng, S.Y.; et al. Non-canonical NF-kappaB signalling and ETS1/2 cooperatively drive C250T mutant TERT promoter activation. Nat. Cell Biol. 2015, 17, 1327–1338. [Google Scholar] [CrossRef]
- Maloberti, T.; Repaci, A.; Poppi, L.; Di Paola, F.J.; Calafato, G.; Coluccelli, S.; Carosi, F.; Colapinto, A.; Colombero, S.; Credi, G.; et al. Exploring the role of TERT in thyroid Cancer: A systematic review. Crit. Rev. Oncol. Hematol. 2025, 213, 104792. [Google Scholar] [CrossRef]
- Saito, R.; Fukushima, M.; Sasaki, M.; Okamoto, A.; Ogiwara, H. Targeting USP8 causes synthetic lethality through degradation of FGFR2 in ARID1A-deficient ovarian clear cell carcinoma. NPJ Precis. Oncol. 2025, 9, 69. [Google Scholar] [CrossRef]
- Liu, G.; Xu, P.; Fu, Z.; Hua, X.; Liu, X.; Li, W.; Zhang, M.; Wu, J.; Wen, J.; Xu, J.; et al. Prognostic and Clinicopathological Significance of ARID1A in Endometrium-Related Gynecological Cancers: A Meta-Analysis. J. Cell Biochem. 2017, 118, 4517–4525. [Google Scholar] [CrossRef]
- Guan, B.; Wang, T.L.; Shih Ie, M. ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res. 2011, 71, 6718–6727. [Google Scholar] [CrossRef]
- Bitler, B.G.; Wu, S.; Park, P.H.; Hai, Y.; Aird, K.M.; Wang, Y.; Zhai, Y.; Kossenkov, A.V.; Vara-Ailor, A.; Rauscher, F.J., III; et al. ARID1A-mutated ovarian cancers depend on HDAC6 activity. Nat. Cell Biol. 2017, 19, 962–973. [Google Scholar] [CrossRef]
- Yano, M.; Katoh, T.; Miyazawa, M.; Ogasawara, A.; Hasegawa, K.; Kobayashi, E.; Yasuda, M. Histone deacetylase 6 and programmed death ligand-1 expressions after neoadjuvant chemotherapy are upregulated in patients with ovarian high-grade serous carcinoma. Sci. Rep. 2025, 15, 19231. [Google Scholar] [CrossRef]
- Rahman, M.; Nakayama, K.; Rahman, M.T.; Nakayama, N.; Ishikawa, M.; Katagiri, A.; Iida, K.; Nakayama, S.; Otsuki, Y.; Shih Ie, M.; et al. Clinicopathologic and biological analysis of PIK3CA mutation in ovarian clear cell carcinoma. Hum. Pathol. 2012, 43, 2197–2206. [Google Scholar] [CrossRef]
- Huang, H.N.; Lin, M.C.; Huang, W.C.; Chiang, Y.C.; Kuo, K.T. Loss of ARID1A expression and its relationship with PI3K-Akt pathway alterations and ZNF217 amplification in ovarian clear cell carcinoma. Mod. Pathol. 2014, 27, 983–990. [Google Scholar] [CrossRef]
-124C>T Mutation | -146C>T Mutation | -138C>T Mutation | SNP Statue | p53 | ARID1A Expression | HDAC6 | CyclinE1 | PIK3CA Exon9 Mutation | PIK3CA Exon20 Mutation | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wild-type | Mutant | p | Wild-type | Mutant | p | Wild-type | Mutant | p | Noncarrier | Carrier | p | Wild-type | Mutant | p | Intact | Deficient | p | 0 | 1+ | 2+ | 3+ | p | Normal | Abnormal | p | Wild-type | Mutant | p | Wild-type | Mutant | p | |
Age | 0.061 | 0.454 | 1 | 0.76 | 0.419 | 0.647 | 0.335 | 0.11 | 0.824 | 0.149 | ||||||||||||||||||||||
<60 y | 56 (75) | 19 (25) | 72 (96) | 3 (4) | 74 (99) | 1 (1) | 27 (39) | 42 (61) | 113 (86) | 18 (14) | 50 (47) | 57 (53) | 44 (33) | 32 (24) | 34 (26) | 22 (17) | 99 (74) | 34 (26) | 41 (51) | 39 (49) | 64 (78) | 18 (22) | ||||||||||
≥60 y | 12 (100) | 0 (0) | 11 (92) | 1 (8) | 12 (100) | 0 (0) | 4 (33) | 8 (67) | 27 (79) | 7 (21) | 9 (41) | 13 (59) | 15 (44) | 5 (15) | 6 (18) | 8 (23) | 30 (88) | 4 (12) | 15 (56) | 12 (44) | 25 (93) | 2 (7) | ||||||||||
Tumor size | 1 | 1 | 1 | 0.128 | 0.322 | 0.332 | 0.983 | 0.4 | 0.505 | 0.395 | ||||||||||||||||||||||
<15 cm | 51 (79) | 14 (21) | 62 (95) | 3 (5) | 64 (99) | 1 (1) | 26 (43) | 34 (57) | 102 (83) | 21 (17) | 40 (43) | 53 (57) | 44 (36) | 27 (22) | 29 (24) | 23 (18) | 98 (79) | 26 (21) | 40 (50) | 40 (50) | 68 (84) | 13 (16) | ||||||||||
≥15 cm | 17 (77) | 5 (23) | 21 (96) | 1 (4) | 22 (100) | 0 (0) | 5 (24) | 16 (76) | 38 (90) | 4 (10) | 19 (53) | 17 (47) | 15 (35) | 10 (23) | 11 (26) | 7 (16) | 31 (72) | 12 (28) | 16 (59) | 11 (41) | 21 (75) | 7 (25) | ||||||||||
Laterality | 0.505 | 0.153 | 1 | 0.39 | 0.009 | 0.179 | 0.65 | 0.825 | 0.801 | 0.517 | ||||||||||||||||||||||
Unilaterality | 54 (76) | 17 (24) | 69 (97) | 2 (3) | 70 (99) | 1 (1) | 23 (35) | 42 (65) | 119 (89) | 15 (11) | 51 (49) | 53 (51) | 44 (33) | 30 (23) | 34 (26) | 24 (18) | 103 (77) | 31 (23) | 46 (52) | 43 (48) | 73 (80) | 18 (20) | ||||||||||
Bilaterality | 14 (88) | 2 (12) | 14 (88) | 2 (12) | 16 (100) | 0 (0) | 8 (50) | 8 (50) | 21 (68) | 10 (32) | 8 (32) | 17 (68) | 15 (44) | 7 (20) | 6 (18) | 6 (18) | 26 (79) | 7 (21) | 10 (56) | 8 (44) | 16 (89) | 2 (11) | ||||||||||
CA125 | 0.017 | 1 | 0.211 | 0.344 | 0.011 | 0.828 | 0.163 | 0.804 | 0.216 | 1 | ||||||||||||||||||||||
Normal | 8 (50) | 8 (50) | 15 (94) | 1 (6) | 15 (94) | 1 (6) | 3 (23) | 10 (77) | 30 (100) | 0 (0) | 12 (46) | 14 (54) | 10 (34) | 4 (13) | 7 (23) | 9 (30) | 23 (77) | 7 (23) | 8 (40) | 12 (60) | 16 (80) | 4 (20) | ||||||||||
Abnormal | 50 (83) | 10 (17) | 57 (95) | 3 (5) | 60 (100) | 0 (0) | 24 (41) | 34 (59) | 90 (79) | 24 (21) | 44 (49) | 46 (51) | 43 (37) | 28 (25) | 29 (25) | 15 (13) | 91 (79) | 24 (21) | 40 (56) | 31 (44) | 58 (80) | 15 (20) | ||||||||||
Ascites | 1 | 0.349 | 1 | 0.497 | 0.83 | 1 | 0.861 | 0.36 | 0.848 | 1 | ||||||||||||||||||||||
Absent | 35 (78) | 10 (22) | 44 (98) | 1 (2) | 44 (98) | 1 (2) | 14 (34) | 27 (66) | 72 (86) | 12 (14) | 31 (46) | 37 (54) | 29 (35) | 20 (24) | 18 (22) | 16 (19) | 63 (74) | 22 (26) | 31 (53) | 27 (47) | 48 (81) | 11 (19) | ||||||||||
Present | 33 (79) | 9 (21) | 39 (93) | 3 (7) | 42 (100) | 0 (0) | 17 (43) | 23 (57) | 68 (84) | 13 (16) | 28 (46) | 33 (54) | 30 (36) | 17 (21) | 22 (26) | 14 (17) | 66 (80) | 16 (20) | 25 (51) | 24 (49) | 41 (82) | 9 (18) | ||||||||||
Endometriosis | 0.274 | 0.294 | 0.345 | 1 | 1 | 0.59 | 0.38 | 0.567 | 0.107 | 1 | ||||||||||||||||||||||
Absent | 47 (83) | 10 (17) | 53 (93) | 4 (7) | 57 (100) | 0 (0) | 20 (38) | 33 (62) | 87 (85) | 16 (15) | 34 (44) | 44 (56) | 41 (39) | 25 (24) | 23 (22) | 16 (15) | 83 (79) | 22 (21) | 40 (59) | 28 (41) | 56 (81) | 13 (19) | ||||||||||
Present | 21 (70) | 9 (30) | 30 (100) | 0 (0) | 29 (97) | 1 (3) | 11 (39) | 17 (61) | 53 (86) | 9 (14) | 25 (49) | 26 (51) | 18 (30) | 12 (20) | 17 (28) | 14 (22) | 46 (74) | 16 (26) | 16 (41) | 23 (59) | 33 (83) | 7 (17) | ||||||||||
Stage | 0.408 | 0.58 | 1 | 0.621 | 0.034 | 0.337 | 0.338 | 0.566 | 0.668 | 1 | ||||||||||||||||||||||
I–II | 46 (75) | 15 (25) | 59 (97) | 2 (3) | 60 (98) | 1 (2) | 20 (36) | 36 (64) | 100 (89) | 12 (11) | 44 (49) | 46 (51) | 36 (32) | 26 (23) | 27 (24) | 24 (21) | 85 (76) | 27 (24) | 39 (51) | 38 (49) | 65 (82) | 14 (18) | ||||||||||
III–IV | 22 (85) | 4 (15) | 24 (92) | 2 (8) | 26 (100) | 0 (0) | 11 (44) | 14 (56) | 40 (76) | 13 (24) | 15 (38) | 24 (62) | 23 (43) | 11 (21) | 13 (25) | 6 (11) | 44 (80) | 11 (20) | 17 (57) | 13 (43) | 24 (80) | 6 (20) | ||||||||||
Disease Progression | 0.035 | 1 | 1 | 0.823 | 0.002 | 0.6 | 0.047 | 0.854 | 1 | 0.618 | ||||||||||||||||||||||
No | 34 (69) | 15 (31) | 47 (96) | 2 (4) | 48 (98) | 1 (2) | 17 (40) | 26 (60) | 83 (93) | 6 (7) | 34 (48) | 37 (52) | 25 (28) | 21 (24) | 20 (23) | 22 (25) | 68 (76) | 21 (24) | 32 (53) | 29 (47) | 52 (84) | 10 (16) | ||||||||||
Yes | 34 (90) | 4 (10) | 36 (95) | 2 (5) | 38 (100) | 0 (0) | 14 (37) | 24 (63) | 57 (75) | 19 (25) | 25 (43) | 33 (57) | 34 (44) | 16 (20) | 20 (26) | 8 (10) | 61 (78) | 17 (22) | 24 (52) | 22 (48) | 37 (79) | 10 (21) | ||||||||||
Survival Statue | 0.026 | 0.598 | 1 | 0.641 | 0.015 | 0.353 | 0.061 | 0.705 | 1 | |||||||||||||||||||||||
Alive | 41 (71) | 17 (29) | 56 (97) | 2 (3) | 57 (98) | 1 (2) | 21 (40) | 31 (60) | 93 (90) | 10 (10) | 42 (49) | 44 (51) | 29 (28) | 27 (26) | 27 (26) | 21 (20) | 79 (76) | 25 (24) | 37 (53) | 33 (47) | 75 (81) | 18 (19) | ||||||||||
Dead | 27 (93) | 2 (7) | 27 (93) | 2 (7) | 29 (100) | 0 (0) | 10 (35) | 19 (65) | 47 (76) | 15 (24) | 17 (40) | 26 (60) | 30 (48) | 10 (16) | 13 (21) | 9 (15) | 50 (79) | 13 (21) | 19 (51) | 18 (49) | 12 (86) | 2 (14) | ||||||||||
-124C>T mutation | 0.572 | 0.218 | 0.262 | |||||||||||||||||||||||||||||
Wild-type | 64 (94) | 4 (6) | 68 (100) | 0 (0) | ||||||||||||||||||||||||||||
Mutant | 19 (100) | 0 (0) | 18 (95) | 1 (5) | ||||||||||||||||||||||||||||
-146C>T mutation | 0.572 | |||||||||||||||||||||||||||||||
Wild-type | 64 (77) | 19 (23) | ||||||||||||||||||||||||||||||
Mutant | 4 (100) | 0 (0) | ||||||||||||||||||||||||||||||
-138C>T mutation | 0.218 | 1 | ||||||||||||||||||||||||||||||
Wild-type | 68 (79) | 18 (21) | 82 (95) | 4 (5) | ||||||||||||||||||||||||||||
Mutant | 0 (0) | 1 (100) | 1 (100) | 0 (0) | ||||||||||||||||||||||||||||
SNP | 0.014 | 1 | 1 | |||||||||||||||||||||||||||||
Noncarrier | 30 (97) | 1 (3) | 30 (97) | 1 (3) | 31 (100) | 0 (0) | ||||||||||||||||||||||||||
Carrier | 38 (76) | 12 (24) | 47 (94) | 3 (6) | 49 (98) | 1 (2) | ||||||||||||||||||||||||||
p53 | 0.725 | 1 | 1 | 1 | ||||||||||||||||||||||||||||
Wild-type | 56 (77) | 17 (23) | 69 (95) | 4 (5) | 72 (99) | 1 (1) | 26 (39) | 41 (61) | ||||||||||||||||||||||||
Mutant | 12 (86) | 2 (14) | 14 (100) | 0 (0) | 14 (100) | 0 (0) | 5 (36) | 9 (64) | ||||||||||||||||||||||||
ARID1A | 0.266 | 0.267 | 0.175 | 0.192 | ||||||||||||||||||||||||||||
Intact | 22 (82) | 5 (18) | 27 (100) | 0 (0) | 12 (48) | 13 (52) | 53 (91) | 5 (9) | ||||||||||||||||||||||||
Deficient | 27 (68) | 13 (32) | 37 (93) | 3 (7) | 10 (28) | 26 (72) | 56 (82) | 12 (18) | ||||||||||||||||||||||||
HDAC6 | 0.461 | 0.641 | 1 | 0.353 | 0.181 | 0.113 | ||||||||||||||||||||||||||
0 | 20 (71) | 8 (29) | 26 (93) | 2 (7) | 27 (96) | 1 (4) | 11 (42) | 15 (58) | 48 (83) | 10 (17) | 21 (57) | 16 (43) | ||||||||||||||||||||
1+ | 18 (78) | 5 (22) | 23 (100) | 0 (0) | 23 (100) | 0 (0) | 10 (48) | 11 (52) | 29 (83) | 6 (17) | 13 (38) | 21 (62) | ||||||||||||||||||||
2+ | 18 (90) | 2 (10) | 19 (95) | 1 (5) | 20 (100) | 0 (0) | 4 (21) | 15 (79) | 31 (80) | 8 (20) | 18 (53) | 16 (47) | ||||||||||||||||||||
3+ | 11 (73) | 4 (27) | 14 (93) | 1 (7) | 15 (100) | 0 (0) | 5 (36) | 9 (64) | 29 (97) | 1 (3) | 7 (29) | 17 (71) | ||||||||||||||||||||
Cyclin E1 | 0.754 | 0.582 | 1 | 0.559 | 0.032 | 0.102 | 0.134 | |||||||||||||||||||||||||
Normal | 54 (77) | 16 (23) | 66 (94) | 4 (6) | 69 (99) | 1 (1) | 24 (36) | 42 (64) | 105 (81) | 24 (19) | 40 (42) | 56 (58) | 49 (39) | 30 (24) | 27 (21) | 21 (16) | ||||||||||||||||
Abnormal | 14 (82) | 3 (18) | 17 (100) | 0 (0) | 17 (100) | 0 (0) | 7 (47) | 8 (53) | 35 (97) | 1 (3) | 19 (59) | 13 (41) | 9 (24) | 6 (16) | 13 (35) | 9 (25) | ||||||||||||||||
PIK3CA Exon9 | 0.213 | 0.544 | 1 | 1 | 0.568 | 0.262 | 0.421 | 0.175 | ||||||||||||||||||||||||
Wild-type | 29 (76) | 9 (24) | 35 (92) | 3 (8) | 37 (97) | 1 (3) | 11 (31) | 24 (69) | 49 (89) | 6 (11) | 20 (49) | 21 (51) | 22 (39) | 10 (18) | 13 (23) | 11 (20) | 45 (82) | 10 (18) | ||||||||||||||
Mutant | 10 (59) | 7 (41) | 17 (100) | 0 (0) | 17 (100) | 0 (0) | 5 (36) | 9 (64) | 42 (84) | 8 (16) | 14 (34) | 27 (66) | 13 (26) | 14 (28) | 14 (28) | 9 (18) | 35 (69) | 16 (31) | ||||||||||||||
PIK3CA Exon20 | 0.475 | 0.113 | 1 | 0.03 | 1 | 0.148 | 0.538 | 0.083 | 0.45 | |||||||||||||||||||||||
Wild-type | 30 (68) | 14 (32) | 43 (98) | 1 (2) | 43 (98) | 1 (2) | 10 (26) | 29 (74) | 75 (86) | 12 (14) | 25 (37) | 42 (63) | 29 (33) | 22 (24) | 21 (24) | 17 (19) | 70 (79) | 18 (21) | 45 (51) | 44 (49) | ||||||||||||
Mutant | 10 (83) | 2 (17) | 10 (83) | 2 (17) | 12 (100) | 0 (0) | 7 (64) | 4 (36) | 18 (90) | 2 (10) | 9 (60) | 6 (40) | 8 (42) | 2 (10) | 6 (32) | 3 (16) | 12 (60) | 8 (40) | 11 (61) | 7 (39) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Liu, Y.; Hu, J.; Zhang, J.; Ren, M.; Ji, G.; Cai, X.; Bi, R. The -124C>T Mutation of the TERT Promoter Indicates Favorable Prognosis in Ovarian Clear Cell Carcinoma: A Single Institutional Study in China. Curr. Oncol. 2025, 32, 422. https://doi.org/10.3390/curroncol32080422
Zhou X, Liu Y, Hu J, Zhang J, Ren M, Ji G, Cai X, Bi R. The -124C>T Mutation of the TERT Promoter Indicates Favorable Prognosis in Ovarian Clear Cell Carcinoma: A Single Institutional Study in China. Current Oncology. 2025; 32(8):422. https://doi.org/10.3390/curroncol32080422
Chicago/Turabian StyleZhou, Xiaonan, Yifei Liu, Jue Hu, Jing Zhang, Min Ren, Gang Ji, Xu Cai, and Rui Bi. 2025. "The -124C>T Mutation of the TERT Promoter Indicates Favorable Prognosis in Ovarian Clear Cell Carcinoma: A Single Institutional Study in China" Current Oncology 32, no. 8: 422. https://doi.org/10.3390/curroncol32080422
APA StyleZhou, X., Liu, Y., Hu, J., Zhang, J., Ren, M., Ji, G., Cai, X., & Bi, R. (2025). The -124C>T Mutation of the TERT Promoter Indicates Favorable Prognosis in Ovarian Clear Cell Carcinoma: A Single Institutional Study in China. Current Oncology, 32(8), 422. https://doi.org/10.3390/curroncol32080422