Differential BACH1 Expression in Basal-like Breast Tumors of Black Women Identified via Immunohistochemistry
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Tumor Collection and Tissue Microarray Construction
2.2. Immunohistochemistry
2.3. TMA Scoring
2.4. Statistical Analyses
3. Results
3.1. Detection of BACH1 and MCT1 in the Breast Tumor Tissues Using IHC Analysis
3.2. BACH1 Expression Levels Are Positively Associated with Breast Tumor Size
3.3. BACH1 Expression Differs by Tumor Grade, Not by Tumor Tissue Type
3.4. BACH1 Expression Is Higher in Basal-like Breast Tumors than in the Other Subtypes
3.5. BACH1 Expression Is Higher in Tumors from Black Women than Those from White Women, Particularly in the Basal-like Subtype
3.6. BACH1 Expression Shows No Correlation with Patient Age
3.7. MCT1 Expression Levels Are Higher in Basal-like Tumors Regardless of Patient Race
3.8. MCT1 Expression Differs in the Histological Grade 3 Tumor Group
3.9. MCT1 Expression Has No Association with Tissue Types, Tumor Size, or Patient Age
3.10. Correlation Between BACH1 and MCT1 Expression in Breast Tumors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TNBC | triple-negative breast cancer |
TCGA | the cancer genome atlas |
BACH1 | BTB and CNC Homology1 |
MCT1 | monocarboxylate transporter 1 |
ER | estrogen receptor |
PR | progesterone receptor |
HER2 | human epidermal growth factor receptor2 |
IHC | immunohistochemistry |
TMA | tissue microarray |
DCIS | ductal carcinoma in situ |
LCIS | lobular carcinoma in situ |
MTS | metastasis |
LN_MTS | lymph node metastasis |
EMT | epithelial to mesenchymal transition |
MMP9 | matrix metalloproteinase 9 |
CXCR4 | C-X-C chemokine receptor type 4 |
FOXA1 | forkhead box 1 |
HK2 | hexokinase 2 |
GAPDH | glyceraldehyde-3-phosphate dehydrogenase |
NRF2 | nuclear factor-erythroid factor 2-related factor |
Keap1 | kelch like ECH associated protein 1 |
Appendix A
Variables | Whites | Blacks | ||
---|---|---|---|---|
Age Groups (3 groups) | N | % | N | % |
24–49 | 17 | 30.9 | 21 | 28.0 |
50–65 | 22 | 40.0 | 24 | 32.0 |
66–96 | 16 | 29.1 | 30 | 40.0 |
Total | 55 | 75 | ||
Age Groups (2 groups) | ||||
below 55 | 22 | 40.0 | 30 | 40.0 |
55 or older | 33 | 60.0 | 45 | 60.0 |
Total | 55 | 75 | ||
Tumor Size (diameter) Groups a | ||||
3–25 mm | 34 | 64.2 | 38 | 53.5 |
27–85 mm | 19 | 35.8 | 33 | 46.5 |
Total | 53 | 71 | 100.0 |
Race/Ethnicity | Tumor Size | Age at Diagnosis | |||||
---|---|---|---|---|---|---|---|
White | Mean | 24.96 | 57.85 | ||||
Median | 24.00 | 58.00 | |||||
SD | 14.560 | 14.904 | |||||
N | 53 | 55 | |||||
Min | 3 | 24 | |||||
Max | 60 | 96 | |||||
Black | Mean | 29.69 | 61.01 | ||||
Median | 25.00 | 61.00 | |||||
SD | 19.084 | 16.467 | |||||
N | 71 | 75 | |||||
Min | 4 | 29 | |||||
Max | 85 | 95 | |||||
Total | Mean | 27.67 | 59.68 | ||||
Median | 25.00 | 61.00 | |||||
SD | 17.390 | 15.842 | |||||
N | 124 | 130 | |||||
Min | 3 | 24 | |||||
Max | 85 | 96 | |||||
IHC scores | Race | N | Median | Mean | SD | Min | Max |
MCT1_Hscore a | White | 52 | 140 | 141.06 | 104.14 | 0 | 295 |
Black | 68 | 185 | 171.4 | 105.9 | 10 | 295 | |
BACH1_Allred a | White | 49 | 3 | 3.02 | 1.942 | 0 | 7 |
Black | 69 | 4 | 3.971 | 1.514 | 0 | 7 |
References
- Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast cancer. Nat. Rev. Dis. Primer 2019, 5, 66. [Google Scholar] [CrossRef] [PubMed]
- Lambert, A.W.; Pattabiraman, D.R.; Weinberg, R.A. Emerging Biological Principles of Metastasis. Cell 2017, 168, 670–691. [Google Scholar] [CrossRef] [PubMed]
- Rankin, E.B.; Giaccia, A.J. Hypoxic control of metastasis. Science 2016, 352, 175–180. [Google Scholar] [CrossRef]
- Oyake, T.; Itoh, K.; Motohashi, H.; Hayashi, N.; Hoshino, H.; Nishizawa, M.; Yamamoto, M.; Igarashi, K. Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol. Cell. Biol. 1996, 16, 6083–6095. [Google Scholar] [CrossRef]
- Padilla, J.; Lee, J. A Novel Therapeutic Target, BACH1, Regulates Cancer Metabolism. Cells 2021, 10, 634. [Google Scholar] [CrossRef]
- Lee, U.; Frankenberger, C.; Yun, J.; Bevilacqua, E.; Caldas, C.; Chin, S.-F.; Rueda, O.M.; Reinitz, J.; Rosner, M.R. A prognostic gene signature for metastasis-free survival of triple negative breast cancer patients. PLoS ONE 2013, 8, e82125. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Wu, H.; Lei, R.; Chong, R.A.; Wei, Y.; Lu, X.; Tagkopoulos, I.; Kung, S.-Y.; Yang, Q.; Hu, G.; et al. Transcriptional network analysis identifies BACH1 as a master regulator of breast cancer bone metastasis. J. Biol. Chem. 2012, 287, 33533–33544. [Google Scholar] [CrossRef]
- Igarashi, K.; Kurosaki, T.; Roychoudhuri, R. BACH transcription factors in innate and adaptive immunity. Nat. Rev. Immunol. 2017, 17, 437–450. [Google Scholar] [CrossRef]
- Igarashi, K.; Nishizawa, H.; Saiki, Y.; Matsumoto, M. The transcription factor BACH1 at the crossroads of cancer biology: From epithelial-mesenchymal transition to ferroptosis. JBC Rev. 2021, 297, 101032. [Google Scholar] [CrossRef]
- Lee, J.; Yesilkanal, A.E.; Wynne, J.P.; Frankenberger, C.; Liu, J.; Yan, J.; Elbaz, M.; Rabe, D.C.; Rustandy, F.D.; Tiwari, P.; et al. Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism. Nature 2019, 568, 254–258. [Google Scholar] [CrossRef]
- Yun, J.; Frankenberger, C.A.; Kuo, W.-L.; Boelens, M.C.; Eves, E.M.; Cheng, N.; Liang, H.; Li, W.-H.; Ishwaran, H.; Minn, A.J.; et al. Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer. EMBO J. 2011, 30, 4500–4514. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Matsumoto, M.; Saiki, Y.; Alam, M.; Nishizawa, H.; Rokugo, M.; Brydun, A.; Yamada, S.; Kaneko, M.K.; Funayama, R.; et al. BACH1 Promotes Pancreatic Cancer Metastasis by Repressing Epithelial Genes and Enhancing Epithelial–Mesenchymal Transition. Cancer Res. 2020, 80, 1279–1292. [Google Scholar] [CrossRef]
- Lignitto, L.; LeBoeuf, S.E.; Homer, H.; Jiang, S.; Askenazi, M.; Karakousi, T.R.; Pass, H.I.; Bhutkar, A.J.; Tsirigos, A.; Ueberheide, B.; et al. Nrf2 Activation Promotes Lung Cancer Metastasis by Inhibiting the Degradation of Bach1. Cell 2019, 178, 316–329.e18. [Google Scholar] [CrossRef]
- Wiel, C.; Le Gal, K.; Ibrahim, M.X.; Jahangir, C.A.; Kashif, M.; Yao, H.; Ziegler, D.V.; Xu, X.; Ghosh, T.; Mondal, T.; et al. BACH1 Stabilization by Antioxidants Stimulates Lung Cancer Metastasis. Cell 2019, 178, 330–345.e22. [Google Scholar] [CrossRef]
- Sonveaux, P.; Végran, F.; Schroeder, T.; Wergin, M.C.; Verrax, J.; Rabbani, Z.N.; Saedeleer, C.J.D.; Kennedy, K.M.; Diepart, C.; Jordan, B.F.; et al. Targeting Lactate-Fueled Respiration Selectively Kills Hypoxic Tumor Cells in Mice. Available online: https://www.jci.org/articles/view/36843/pdf (accessed on 19 August 2019).
- Kennedy, K.M.; Scarbrough, P.M.; Ribeiro, A.; Richardson, R.; Yuan, H.; Sonveaux, P.; Landon, C.D.; Chi, J.-T.; Pizzo, S.; Schroeder, T.; et al. Catabolism of Exogenous Lactate Reveals It as a Legitimate Metabolic Substrate in Breast Cancer. PLoS ONE 2013, 8, e75154. [Google Scholar] [CrossRef] [PubMed]
- Padilla, J.; Lee, B.-S.; Zhai, K.; Rentz, B.; Bobo, T.; Dowling, N.M.; Lee, J. A Heme-Binding Transcription Factor BACH1 Regulates Lactate Catabolism Suggesting a Combined Therapy for Triple-Negative Breast Cancer. Cells 2022, 11, 1177. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.S.; Graham, N.A.; Gu, W.; Espindola Camacho, C.; Mah, V.; Maresh, E.L.; Alavi, M.; Bagryanova, L.; Krotee, P.A.L.; Gardner, B.K.; et al. MCT1 Modulates Cancer Cell Pyruvate Export and Growth of Tumors that Co-express MCT1 and MCT4. Cell Rep. 2016, 14, 1590–1601. [Google Scholar] [CrossRef]
- Johnson, J.M.; Cotzia, P.; Fratamico, R.; Mikkilineni, L.; Chen, J.; Colombo, D.; Mollaee, M.; Whitaker-Menezes, D.; Domingo-Vidal, M.; Lin, Z.; et al. MCT1 in Invasive Ductal Carcinoma: Monocarboxylate Metabolism and Aggressive Breast Cancer. Front. Cell Dev. Biol. 2017, 5, 27. [Google Scholar] [CrossRef]
- Tasdogan, A.; Faubert, B.; Ramesh, V.; Ubellacker, J.M.; Shen, B.; Solmonson, A.; Murphy, M.M.; Gu, Z.; Gu, W.; Martin, M.; et al. Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature 2020, 577, 115–120. [Google Scholar] [CrossRef]
- Braga, M.; Kaliszczak, M.; Carroll, L.; Schug, Z.T.; Heinzmann, K.; Baxan, N.; Benito, A.; Valbuena, G.N.; Stribbling, S.; Beckley, A.; et al. Tracing Nutrient Flux Following Monocarboxylate Transporter-1 Inhibition with AZD3965. Cancers 2020, 12, 1703. [Google Scholar] [CrossRef]
- Cancer Research, UK. A Cancer Research United Kingdom Phase I Trial of AZD3965, a Monocarboxylate Transporter 1 Inhibitor (MCT1) in Patients with Advanced Cancer [Internet]. clinicaltrials.gov. Report No.: NCT01791595. 2019. Available online: https://clinicaltrials.gov/ct2/show/NCT01791595 (accessed on 6 August 2020).
- Kononen, J.; Bubendorf, L.; Kallioniemi, A.; Bärlund, M.; Schraml, P.; Leighton, S.; Torhorst, J.; Mihatsch, M.J.; Sauter, G.; Kallioniemi, O.P. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med. 1998, 4, 844–847. [Google Scholar] [CrossRef] [PubMed]
- Khramtsov, A.I.; Khramtsova, G.F.; Tretiakova, M.; Huo, D.; Olopade, O.I.; Goss, K.H. Wnt/β-Catenin Pathway Activation Is Enriched in Basal-Like Breast Cancers and Predicts Poor Outcome. Am. J. Pathol. 2010, 176, 2911–2920. [Google Scholar] [CrossRef] [PubMed]
- Carey, L.A.; Perou, C.M.; Livasy, C.A.; Dressler, L.G.; Cowan, D.; Conway, K.; Karaca, G.; Troester, M.A.; Tse, C.K.; Edmiston, S.; et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 2006, 295, 2492–2502. [Google Scholar] [CrossRef]
- Eilertsen, M.; Andersen, S.; Al-Saad, S.; Kiselev, Y.; Donnem, T.; Stenvold, H.; Pettersen, I.; Al-Shibli, K.; Richardsen, E.; Busund, L.-T.; et al. Monocarboxylate Transporters 1–4 in NSCLC: MCT1 Is an Independent Prognostic Marker for Survival. PLoS ONE 2014, 9, e105038. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yang, Q.; Li, Z.; Xu, Z.; Sun, S.; Wu, Q.; Sun, S. Expression of Monocarboxylate Transporter 1 in Immunosuppressive Macrophages Is Associated With the Poor Prognosis in Breast Cancer. Front. Oncol. 2020, 10, 574787. [Google Scholar] [CrossRef]
- Shousha, S. Oestrogen receptor status of breast carcinoma: Allred/H score conversion table. Histopathology 2008, 53, 346–347. [Google Scholar] [CrossRef]
- Brouckaert, O.; Paridaens, R.; Floris, G.; Rakha, E.; Osborne, K.; Neven, P. A critical review why assessment of steroid hormone receptors in breast cancer should be quantitative. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2013, 24, 47–53. [Google Scholar] [CrossRef]
- Sellke, T.; Bayarri, M.J.; Berger, O.J. calibration of p values for testing precise null hypotheses. Am. Stat. 2001, 55, 62–71. [Google Scholar] [CrossRef]
- Jatoi, I.; Sung, H.; Jemal, A. The Emergence of the racial disparity in U.S. Breast Cancer Mortal. 2022, 386, 2349–2352. [Google Scholar]
- Dunn, O.J. Multiple comparisons using rank sums. Technometrics 1964, 6, 241–253. [Google Scholar] [CrossRef]
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Harrell, F.E., Jr.; Slaughter, J.C. Biostatistics for Biomedical Research; Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University School of Medicine: Nashville, TN, USA, 2023. [Google Scholar]
- Harrell, F.E. rms: Regression Modeling Strategies, R Package Version 6.7-0; 2023. Vanderbilt Institute for Clinical and Translational Research. Vanderbilt University School of Medicine: Nashville, TN, USA. Available online: https://hbiostat.org/R/rms/ (accessed on 10 February 2023).
- Kitamuro, T.; Takahashi, K.; Ogawa, K.; Udono-Fujimoro, R.; Takeda, K.; Furuyama, K.; Nakayama, M.; Sun, J.; Fujita, H.; Hida, W.; et al. Bach1 functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells. J. Biol. Chem. 2003, 278, 9125–9133. [Google Scholar] [CrossRef] [PubMed]
- Cocco, S.; Piezzo, M.; Calabrese, A.; Cianniello, D.; Caputo, R.; Di Lauro, V.; Fusco, G.; Gioia, G.; Licenziato, M.; Laurentiis, M. Biomarkers in Triple-Negative Breast Cancer: State-of-the-Art and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 4579. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dowling, N.M.; Khramtsova, G.; Olopade, O.; Samankan, S.; Lee, B.-S.; Lee, J. Differential BACH1 Expression in Basal-like Breast Tumors of Black Women Identified via Immunohistochemistry. Curr. Oncol. 2025, 32, 404. https://doi.org/10.3390/curroncol32070404
Dowling NM, Khramtsova G, Olopade O, Samankan S, Lee B-S, Lee J. Differential BACH1 Expression in Basal-like Breast Tumors of Black Women Identified via Immunohistochemistry. Current Oncology. 2025; 32(7):404. https://doi.org/10.3390/curroncol32070404
Chicago/Turabian StyleDowling, N. M., Galina Khramtsova, Olufunmilayo Olopade, Shabnam Samankan, Bok-Soon Lee, and Jiyoung Lee. 2025. "Differential BACH1 Expression in Basal-like Breast Tumors of Black Women Identified via Immunohistochemistry" Current Oncology 32, no. 7: 404. https://doi.org/10.3390/curroncol32070404
APA StyleDowling, N. M., Khramtsova, G., Olopade, O., Samankan, S., Lee, B.-S., & Lee, J. (2025). Differential BACH1 Expression in Basal-like Breast Tumors of Black Women Identified via Immunohistochemistry. Current Oncology, 32(7), 404. https://doi.org/10.3390/curroncol32070404