Dosimetric Comparison of VMAT Alone and VMAT with HDR Brachytherapy Boost Using Clinical and Biological Dose Models in Localized Prostate Cancer
Simple Summary
Abstract
1. Introduction
1.1. High-Dose-Rate Brachytherapy (HDR-BT)
1.2. Modern EBRT Techniques: Intensity-Modulated Radiotherapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT)
1.2.1. Hypofractionated EBRT
1.2.2. Combining Hypofractionated EBRT with HDR-BT
1.3. Study Objectives
2. Materials and Methods
2.1. Materials
2.1.1. Treatment Planning
2.1.2. EBRT VMAT Technique
Dose Constraints—EBRT VMAT
2.1.3. HDR-BT Technique
Dose Constraints—HDR-BT
2.1.4. Evaluation of VMAT and HDR-BT Planning Combinations
2.2. Study Part A
2.3. Study Part B
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADT | Androgen Deprivation Therapy |
BED | Biological Equivalent Dose |
BT | Brachytherapy |
CTV | Clinical Target Volume |
DVH | Dose–Volume Histogram |
EBRT | External Beam Radiotherapy |
EQD2 | Equivalent Dose in 2 Gy fractions |
fr | Fraction |
GI | Gastrointestinal |
GU | Genitouriary |
Gy | Gray |
HDR | High-Dose-Rate |
ICRU | International Commission on Radiation Units and Measurements |
IMRT | Intensity-Modulated Radiotherapy |
LDR | Low-Dose-Rate |
MLC | Multileaf Collimator |
MRI | Magnetic Resonance Imaging |
OARs | Organs At Risk |
PC | Prostate Cancer |
P-CT | Planning Computed Tomography |
PD | Prescribed Dose |
PTV | Planning Target Volume |
SBRT | Stereotactic Body Radiotherapy |
VMAT | Volumetric Modulated Arc Therapy |
3D-cRT | 3D-Conformal RT |
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA A Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, F.C.; Donovan, J.L.; Lane, J.A.; Metcalfe, C.; Davis, M.; Turner, E.L.; Martin, R.M.; Young, G.J.; Walsh, E.I.; Bryant, R.J.; et al. Fifteen-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N. Engl. J. Med. 2023, 388, 1547–1558. [Google Scholar] [CrossRef] [PubMed]
- Alitto, A.R.; Tagliaferri, L.; Lancellotta, V.; D’Aviero, A.; Piras, A.; Frascino, V.; Catucci, F.; Fionda, B.; Staackmann, C.; Saldi, S.; et al. BIT-ART: Multicentric Comparison of HDR-brachytherapy, Intensity-modulated Radiotherapy and Tomotherapy for Advanced Radiotherapy in Prostate Cancer. In Vivo 2020, 34, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Marina, O.; Gustafson, G.S.; Kestin, L.L.; Brabbins, D.S.; Chen, P.Y.; Ye, H.; Martinez, A.A.; Ghilezan, M.I.; Wallace, M.; Krauss, D.J. Comparison of dose-escalated, image-guided radiotherapy vs. dose-escalated, high-dose-rate brachytherapy boost in a modern cohort of intermediate-risk prostate cancer patients. Brachytherapy 2014, 13, 59–67. [Google Scholar] [CrossRef]
- Vigneault, E.; Morton, G.; Parulekar, W.R.; Niazi, T.M.; Springer, C.W.; Barkati, M.; Chung, P.; Koll, W.; Kamran, A.; Monreal, M.; et al. Randomised Phase II Feasibility Trial of Image-guided External Beam Radiotherapy With or Without High Dose Rate Brachytherapy Boost in Men with Intermediate-risk Prostate Cancer (CCTG PR15/ NCT01982786). Clin. Oncol. (R Coll. Radiol.) 2018, 30, 527–533. [Google Scholar] [CrossRef]
- Brenner, D.J. Hypofractionation for prostate cancer radiotherapy—What are the issues? Int. J. Radiat. Oncol. Biol. Phys. 2003, 57, 912–914. [Google Scholar] [CrossRef]
- Leborgne, F.; Fowler, J.; Leborgne, J.H.; Mezzera, J. Later outcomes and alpha/beta estimate from hypofractionated conformal three-dimensional radiotherapy versus standard fractionation for localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 1200–1207. [Google Scholar] [CrossRef]
- Tree, A.C.; Alexander, E.J.; van As, N.J.; Dearnaley, D.P.; Khoo, V. Biological dose escalation and hypofractionation: What is there to be gained and how will it best be done? Clin. Oncol. (R Coll. Radiol.) 2013, 25, 483–498. [Google Scholar] [CrossRef]
- Kalbasi, A.; Li, J.; Berman, A.; Swisher-McClure, S.; Smaldone, M.; Uzzo, R.G.; Small, D.S.; Mitra, N.; Bekelman, J.E. Dose-Escalated Irradiation and Overall Survival in Men With Nonmetastatic Prostate Cancer. JAMA Oncol. 2015, 1, 897–906. [Google Scholar] [CrossRef]
- Arcangeli, G.; Saracino, B.; Arcangeli, S.; Gomellini, S.; Petrongari, M.G.; Sanguineti, G.; Strigari, L. Moderate Hypofractionation in High-Risk, Organ-Confined Prostate Cancer: Final Results of a Phase III Randomized Trial. J. Clin. Oncol. 2017, 35, 1891–1897. [Google Scholar] [CrossRef]
- Catton, C.N.; Lukka, H.; Gu, C.-S.; Martin, J.M.; Supiot, S.; Chung, P.W.M.; Bauman, G.S.; Bahary, J.-P.; Ahmed, S.; Cheung, P.; et al. Randomized Trial of a Hypofractionated Radiation Regimen for the Treatment of Localized Prostate Cancer. J. Clin. Oncol. 2017, 35, 1884–1890. [Google Scholar] [CrossRef] [PubMed]
- Morton, G.C. The emerging role of high-dose-rate brachytherapy for prostate cancer. Clin. Oncol. R Coll. Radiol. 2005, 17, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Lasorsa, F.; Biasatti, A.; Orsini, A.; Bignante, G.; Farah, G.M.; Pandolfo, S.D.; Lambertini, L.; Reddy, D.; Damiano, R.; Ditonno, P.; et al. Focal Therapy for Prostate Cancer: Recent Advances and Insights. Curr. Oncol. 2024, 32, 15. [Google Scholar] [CrossRef] [PubMed]
- Vigneault, E.; Mbodji, K.; Magnan, S.; Després, P.; Lavallée, M.-C.; Aubin, S.; Beaulieu, L.; Foster, W.; Martin, A.-G. High-dose-rate brachytherapy boost for prostate cancer treatment: Different combinations of hypofractionated regimens and clinical outcomes. Radiother. Oncol. 2017, 124, 49–55. [Google Scholar] [CrossRef]
- Dayes, I.S.; Parpia, S.; Gilbert, J.; Julian, J.A.; Davis, I.R.; Levine, M.N.; Sathya, J. Long-Term Results of a Randomized Trial Comparing Iridium Implant Plus External Beam Radiation Therapy With External Beam Radiation Therapy Alone in Node-Negative Locally Advanced Cancer of the Prostate. Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, 90–93. [Google Scholar] [CrossRef]
- Morris, W.J.; Tyldesley, S.; Rodda, S.; Halperin, R.; Pai, H.; McKenzie, M.; Duncan, G.; Morton, G.; Hamm, J.; Murray, N. Androgen Suppression Combined with Elective Nodal and Dose Escalated Radiation Therapy (the ASCENDE-RT Trial): An Analysis of Survival Endpoints for a Randomized Trial Comparing a Low-Dose-Rate Brachytherapy Boost to a Dose-Escalated External Beam Boost for High- and Intermediate-risk Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 275–285. [Google Scholar] [CrossRef]
- Pettersson, A.; Alm, D.; Garmo, H.; Hjelm Eriksson, M.; Castellanos, E.; Åström, L.; Kindblom, J.; Widmark, A.; Gunnlaugsson, A.; Franck Lissbrant, I.; et al. Comparative Effectiveness of Different Radical Radiotherapy Treatment Regimens for Prostate Cancer: A Population-Based Cohort Study. JNCI Cancer Spectr. 2020, 4, pkaa006. [Google Scholar] [CrossRef]
- Hoskin, P.J.; Colombo, A.; Henry, A.; Niehoff, P.; Paulsen Hellebust, T.; Siebert, F.-A.; Kovacs, G. GEC/ESTRO recommendations on high dose rate afterloading brachytherapy for localised prostate cancer: An update. Radiother. Oncol. 2013, 107, 325–332. [Google Scholar] [CrossRef]
- Beckendorf, V.; Guerif, S.; Le Prisé, E.; Cosset, J.-M.; Bougnoux, A.; Chauvet, B.; Salem, N.; Chapet, O.; Bourdain, S.; Bachaud, J.-M.; et al. 70 Gy versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 1056–1063. [Google Scholar] [CrossRef]
- Michalski, J.M.; Moughan, J.; Purdy, J.; Bosch, W.; Bruner, D.W.; Bahary, J.-P.; Lau, H.; Duclos, M.; Parliament, M.; Morton, G.; et al. Effect of Standard vs Dose-Escalated Radiation Therapy for Patients With Intermediate-Risk Prostate Cancer: The NRG Oncology RTOG 0126 Randomized Clinical Trial. JAMA Oncol. 2018, 4, e180039. [Google Scholar] [CrossRef]
- Pasalic, D.; Kuban, D.A.; Allen, P.K.; Tang, C.; Mesko, S.M.; Grant, S.R.; Augustyn, A.A.; Frank, S.J.; Choi, S.; Hoffman, K.E.; et al. Dose Escalation for Prostate Adenocarcinoma: A Long-Term Update on the Outcomes of a Phase 3, Single Institution Randomized Clinical Trial. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, N.; Kestin, L.; Ghilezan, M.; Krauss, D.; Vicini, F.; Brabbins, D.; Gustafson, G.; Ye, H.; Martinez, A. Comparison of acute and late toxicities for three modern high-dose radiation treatment techniques for localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Elith, C.A.; Cao, F.; Dempsey, S.E.; Findlay, N.; Warren-Forward, H. A Retrospective Planning Analysis Comparing Volumetric-Modulated Arc Therapy (VMAT) to Intensity-Modulated Radiation Therapy (IMRT) for Radiotherapy Treatment of Prostate Cancer. J. Med. Imaging Radiat. Sci. 2013, 44, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.R.; Dignam, J.J.; Amin, M.B.; Bruner, D.W.; Low, D.; Swanson, G.P.; Shah, A.B.; D’Souza, D.P.; Michalski, J.M.; Dayes, I.S.; et al. Randomized Phase III Noninferiority Study Comparing Two Radiotherapy Fractionation Schedules in Patients With Low-Risk Prostate Cancer. J. Clin. Oncol. 2016, 34, 2325–2332. [Google Scholar] [CrossRef]
- Incrocci, L.; Wortel, R.C.; Alemayehu, W.G.; Aluwini, S.; Schimmel, E.; Krol, S.; van der Toorn, P.-P.; de Jager, H.; Heemsbergen, W.; Heijmen, B.; et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): Final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2016, 17, 1061–1069. [Google Scholar] [CrossRef]
- Dearnaley, D.; Syndikus, I.; Mossop, H.; Khoo, V.; Birtle, A.; Bloomfield, D.; Graham, J.; Kirkbride, P.; Logue, J.; Malik, Z.; et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016, 17, 1047–1060. [Google Scholar] [CrossRef]
- Widmark, A.; Gunnlaugsson, A.; Beckman, L.; Thellenberg-Karlsson, C.; Hoyer, M.; Lagerlund, M.; Kindblom, J.; Ginman, C.; Johansson, B.; Björnlinger, K.; et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet 2019, 394, 385–395. [Google Scholar] [CrossRef]
- Morgan, S.C.; Hoffman, K.; Loblaw, D.A.; Buyyounouski, M.K.; Patton, C.; Barocas, D.; Bentzen, S.; Chang, M.; Efstathiou, J.; Greany, P.; et al. Hypofractionated Radiation Therapy for Localized Prostate Cancer: Executive Summary of an ASTRO, ASCO and AUA Evidence-Based Guideline. J. Urol. 2019, 201, 528–534. [Google Scholar] [CrossRef]
- Beaudry, M.M.; Carignan, D.; Foster, W.; Lavallee, M.C.; Aubin, S.; Lacroix, F.; Poulin, E.; Lachance, B.; Després, P.; Beaulieu, L.; et al. Comparison of four-year toxicities and local control of ultra-hypofractionated vs moderate-hypofractionated image guided prostate radiation with HDR brachytherapy boost: A phase I-II single institution trial. Clin. Transl. Radiat. Oncol. 2023, 40, 100593. [Google Scholar] [CrossRef]
- Phuong, C.; Chan, J.W.; Ni, L.; Wall, P.; Mohamad, O.; Wong, A.C.; Hsu, I.-C.; Chang, A.J. Safety of accelerated hypofractionated whole pelvis radiation therapy prior to high dose rate brachytherapy or stereotactic body radiation therapy prostate boost. Radiat. Oncol. 2022, 17, 12. [Google Scholar] [CrossRef]
- Den, R.B.; Greenspan, J.; Doyle, L.A.; Harrison, A.S.; Peng, C.; Williams, N.L.; Lallas, C.D.; Trabulsi, E.J.; Gomella, L.G.; Hurwitz, M.D.; et al. A phase IB clinical trial of 15 Gy HDR brachytherapy followed by hypofractionated/SBRT in the management of intermediate-risk prostate cancer. Brachytherapy 2020, 19, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Musunuru, H.B.; Cheung, P.; Vesprini, D.; Liu, S.K.; Chu, W.; Chung, H.T.; Morton, G.; Deabreu, A.; Davidson, M.; Ravi, A.; et al. Stereotactic pelvic radiotherapy with HDR boost for dose escalation in intermediate and high-risk prostate cancer (SPARE): Efficacy, toxicity and quality of life. Radiother. Oncol. 2021, 161, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Zelefsky, M.J.; Kollmeier, M.; Cox, B.; Fidaleo, A.; Sperling, D.; Pei, X.; Carver, B.; Coleman, J.; Lovelock, M.; Hunt, M. Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 125–129. [Google Scholar] [CrossRef]
- Murray, J.R.; Tree, A.C.; Alexander, E.J.; Sohaib, A.; Hazell, S.; Thomas, K.; Gunapala, R.; Parker, C.C.; Huddart, R.A.; Gao, A.; et al. Standard and Hypofractionated Dose Escalation to Intraprostatic Tumor Nodules in Localized Prostate Cancer: Efficacy and Toxicity in the DELINEATE Trial. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 715–724. [Google Scholar] [CrossRef]
- Chatzikonstantinou, G.; Keller, C.; Scherf, C.; Bathen, B.; Köhn, J.; Tselis, N. Real-world dosimetric comparison between CyberKnife SBRT and HDR brachytherapy for the treatment of prostate cancer. Brachytherapy 2021, 20, 44–49. [Google Scholar] [CrossRef]
- Brand, D.H.; Brüningk, S.C.; Wilkins, A.; Fernandez, K.; Naismith, O.; Gao, A.; Syndikus, I.; Dearnaley, D.P.; Tree, A.C.; van As, N.; et al. Estimates of Alpha/Beta (α/β) Ratios for Individual Late Rectal Toxicity Endpoints: An Analysis of the CHHiP Trial. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 596–608. [Google Scholar] [CrossRef]
- Gocho, T.; Hori, M.; Fukushima, Y.; Someya, M.; Kitagawa, M.; Hasegawa, T.; Tsuchiya, T.; Hareyama, M.; Takagi, M.; Hashimoto, K.; et al. Evaluation of the urethral α/β ratio and tissue repair half-time for iodine-125 prostate brachytherapy with or without supplemental external beam radiotherapy. Brachytherapy 2020, 19, 290–297. [Google Scholar] [CrossRef]
- Brand, D.H.; Brüningk, S.C.; Wilkins, A.; Naismith, O.; Gao, A.; Syndikus, I.; Dearnaley, D.P.; van As, N.; Hall, E.; Gulliford, S.; et al. The Fraction Size Sensitivity of Late Genitourinary Toxicity: Analysis of Alpha/Beta (α/β) Ratios in the CHHiP Trial. Int. J. Radiat. Oncol. Biol. Phys. 2023, 115, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.J.; Martinez, A.A.; Edmundson, G.K.; Mitchell, C.; Thames, H.D.; Armour, E.P. Direct evidence that prostate tumors show high sensitivity to fractionation (low alpha/beta ratio), similar to late-responding normal tissue. Int. J. Radiat. Oncol. Biol. Phys. 2002, 52, 6–13. [Google Scholar] [CrossRef]
- Bartolozzi, C.; Menchi, I.; Lencioni, R.; Serni, S.; Lapini, A.; Barbanti, G.; Bozza, A.; Amorosi, A.; Manganelli, A.; Carini, M. Local staging of prostate carcinoma with endorectal coil MRI: Correlation with whole-mount radical prostatectomy specimens. Eur. Radiol. 1996, 6, 339–345. [Google Scholar] [CrossRef]
- Ponchietti, R.; Di Loro, F.; Fanfani, A.; Amorosi, A. Estimation of prostate cancer volume by endorectal coil magnetic resonance imaging vs. pathologic volume. Eur. Urol. 1999, 35, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Turkbey, B.; Albert, P.S.; Kurdziel, K.; Choyke, P.L. Imaging localized prostate cancer: Current approaches and new developments. AJR Am. J. Roentgenol. 2009, 192, 1471–1480. [Google Scholar] [CrossRef]
- Ghadjar, P.; Matzinger, O.; Isaak, B.; Behrensmeier, F.; Stroux, A.; Rentsch, C.A.; Thalmann, G.N.; Aebersold, D.M. Association of urethral toxicity with dose exposure in combined high-dose-rate brachytherapy and intensity-modulated radiation therapy in intermediate- and high-risk prostate cancer. Radiother. Oncol. 2009, 91, 237–242. [Google Scholar] [CrossRef]
- Hsu, I.-C.; Hunt, D.; Straube, W.; Pouliot, J.; Cunha, A.; Krishnamurthy, D.; Sandler, H. Dosimetric analysis of radiation therapy oncology group 0321: The importance of urethral dose. Pract. Radiat. Oncol. 2014, 4, 27–34. [Google Scholar] [CrossRef]
- Pettersson, N.; Olsson, C.; Tucker, S.L.; Alsadius, D.; Wilderäng, U.; Johansson, K.-A.; Steineck, G. Urethral pain among prostate cancer survivors 1 to 14 years after radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, e29–e37. [Google Scholar] [CrossRef] [PubMed]
- Ghadjar, P.; Oesch, S.L.; Rentsch, C.A.; Isaak, B.; Cihoric, N.; Manser, P.; Thalmann, G.N.; Aebersold, D.M. Late toxicity and five year outcomes after high-dose-rate brachytherapy as a monotherapy for localized prostate cancer. Radiat. Oncol. 2014, 9, 122. [Google Scholar] [CrossRef] [PubMed]
- Kamitani, N.; Watanabe, K.; Ikeda, N.; Kawata, Y.; Tokiya, R.; Hayashi, T.; Miyaji, Y.; Tamada, T.; Katsui, K. Long-term outcomes of high-dose-rate brachytherapy and external beam radiotherapy without hormone therapy for high-risk localized prostate cancer. Jpn. J. Radiol. 2024, 42, 1322–1329. [Google Scholar] [CrossRef]
- Michalski, J.M.; Moughan, J.; Purdy, J.A.; Bruner, D.W.; Amin, M.; Bahary, J.P.; Lau, H.; Duclos, M.; Yee, D.; Morton, G.; et al. Long-Term Outcomes of NRG/RTOG 0126, a Randomized Trial of High Dose (79.2 Gy) vs. Standard Dose (70.2 Gy) Radiation Therapy (RT) for Men with Localized Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, S4–S5. [Google Scholar] [CrossRef]
- Miller, L.E.; Efstathiou, J.A.; Bhattacharyya, S.K.; Payne, H.A.; Woodward, E.; Pinkawa, M. Association of the Placement of a Perirectal Hydrogel Spacer With the Clinical Outcomes of Men Receiving Radiotherapy for Prostate Cancer: A Systematic Review and Meta-analysis. JAMA Netw. Open 2020, 3, e208221. [Google Scholar] [CrossRef]
- Kundu, P.; Lin, E.Y.; Yoon, S.M.; Parikh, N.R.; Ruan, D.; Kishan, A.U.; Lee, A.; Steinberg, M.L.; Chang, A.J. Rectal Radiation Dose and Clinical Outcomes in Prostate Cancer Patients Treated With Stereotactic Body Radiation Therapy With and Without Hydrogel. Front. Oncol. 2022, 12, 853246. [Google Scholar] [CrossRef]
- Rancati, T.; Palorini, F.; Cozzarini, C.; Fiorino, C.; Valdagni, R. Understanding urinary toxicity after radiotherapy for prostate cancer: First steps forward. Tumori 2017, 103, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Landoni, V.; Fiorino, C.; Cozzarini, C.; Sanguineti, G.; Valdagni, R.; Rancati, T. Predicting toxicity in radiotherapy for prostate cancer. Phys. Med. 2016, 32, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Henry, A.; Pieters, B.R.; André Siebert, F.; Hoskin, P. GEC-ESTRO ACROP prostate brachytherapy guidelines. Radiother. Oncol. 2022, 167, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Iturriaga, A.; Casquero, F.; Urresola, A.; Ezquerro, A.; Lopez, J.I.; Espinosa, J.M.; Minguez, P.; Llarena, R.; Irasarri, A.; Bilbao, P.; et al. Dose escalation to dominant intraprostatic lesions with MRI-transrectal ultrasound fusion High-Dose-Rate prostate brachytherapy. Prospective phase II trial. Radiother. Oncol. 2016, 119, 91–96. [Google Scholar] [CrossRef]
- Bologna, E.; Ditonno, F.; Licari, L.C.; Franco, A.; Manfredi, C.; Mossack, S.; Pandolfo, S.D.; de Nunzio, C.; Simone, G.; Leonardo, C.; et al. Tissue-Based Genomic Testing in Prostate Cancer: 10-Year Analysis of National Trends on the Use of Prolaris, Decipher, ProMark, and Oncotype DX. Clin. Pract. 2024, 14, 508–520. [Google Scholar] [CrossRef]
Prostate α/β 1.5 Gy | Biologically Equivalent Dose: Median (Q1-Q3) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EQD2 Values | BED Values | Dmin | D0.1ccm | D1ccm | D2ccm | |||||||||||
Radiation Technique | Dose (Gy) | VMAT | HDR | Total | VMAT | HDR | Total | Urethra | Rectum | Bladder | Urethra | Rectum | Bladder | Urethra | Rectum | Bladder |
VMAT | 86 (43 × 2) | 86 | 86 | 200.67 | 200.67 | 215.1 (204.2–225.6) | 148.3 (143.6–148.6) | 175.6 (170.2–179.0) | 253.5 (246.6–262.5) | 140.4 (122.7–143.5) | 165.3 (144.6–172.7) | 251.8 (239.1–253.4) | 125.1 (103.7–135.0) | 156.0 (126.3–167.9) | ||
VMAT hfx | 70 Gy (25 × 2.8) | 86 | 86 | 200.67 | 200.67 | 217.9 (203.6–225.1) | 140.2 (139.0–140.8) | 171.6 (166.4–175.3) | 267.0 (254.7–271.1) | 132.5 (128.2–135.6) | 161.2 (140.0–168.5) | 259.8 (245.9–261.2) | 119.4 (109.4–126.8) | 151.7 (121.3–163.7) | ||
VMAT hfx | 56.9 (15 × 3.8) | 86 | 86 | 200.71 | 200.71 | 224.0 (211.7–236.3) | 133.8 (132.3–134.1) | 168.9 (163.1–172.6) | 273.6 (260.6–277.9) | 128.5 (125.5–130.2) | 157.7 (136.3–165.3) | 265.9 (251.5–267.6) | 112.9 (103.1–120.4) | 148.0 (117.2–120.6) | ||
VMAT nfx + HDR | 46 Gy (23 × 2) + 2×7.7 | 46 | 40 | 86 | 107.33 | 93.33 | 200.66 | 144.5 (140.7–151.1) | 107.0 (102.4–110.1) | 151.1 (144.1–155.8) | 299.5 (292.5–314.8) | 95.9 (89.6–99.1) | 118.7 (117.1–124.6) | 266.9 (261.7–273.6) | 84.5 (78.0–88.9) | 106.1 (94.8–110.9) |
VMAT hfx + HDR | 36 (12 × 3) + 2 × 7.6 | 46.29 | 39.7 | 86 | 108 | 92.66 | 200.66 | 147.8 (139.5–155.6) | 102.3 (97.7–105.0) | 151.8 (147.1–161.6) | 303.6 (298.4–320.2) | 91.1 (85.1–93.5) | 116.7 (114.9–127.4) | 271.6 (266.3–277.3) | 79.7 (73.3–84.1) | 104.1 (91.7–116.0) |
EQD2 Values (α/β = 1.5 Gy) in Gy | BED Values (α/β = 1.5 Gy) in Gy | EQD2 Values (α/β = 3 Gy) in Gy | BED Values (α/β = 3 Gy) in Gy | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Radiation Technique | VMAT | HDR | Total | VMAT | HDR | Total | VMAT | HDR | Total | VMAT | HDR | Total |
Normofractionated VMAT | ||||||||||||
86 Gy / 43 fr (2 Gy/fr) | 86 | - | 86 | 206.7 | - | 206.7 | 86 | - | 86 | 143.33 | - | 143.33 |
100 Gy / 50 fr (2 Gy/fr) | 100 | - | 100 | 233.3 | - | 233.3 | 100 | - | 100 | 166.76 | - | 166.76 |
Moderately hypofractionated VMAT | ||||||||||||
60 Gy / 20 fr (3 Gy/fr) | 77.14 | - | 77.14 | 180 | - | 180 | 72 | - | 72 | 120 | - | 120 |
66 Gy / 23 fr (3 Gy/fr) | 84.86 | - | 84.86 | 198 | - | 198 | 79.2 | - | 79.2 | 132 | - | 132 |
84 Gy / 28 fr (3 Gy/fr) | 108 | - | 108 | 252 | - | 252 | 100.8 | - | 100.8 | 168 | - | 168 |
Ultra-hypofractionated VMAT | ||||||||||||
36.25 Gy / 5 fr (7.25 Gy/fr) | 90.63 | - | 90.63 | 211.46 | - | 211.46 | 74.31 | - | 74.13 | 123.85 | - | 123.85 |
Normofractionated VMAT + HDR | ||||||||||||
46 Gy / 23 fr (2 Gy/fr) VMAT + 2 × 9 Gy HDR | 46 | 54 | 100 | 107.33 | 126 | 233.33 | 46 | 43.2 | 89.2 | 76.67 | 72 | 148.67 |
46 Gy / 23 fr (2 Gy/fr) + 2 × 10.5 Gy HDR | 46 | 72 | 118 | 107.33 | 168 | 275.33 | 46 | 56.7 | 102.7 | 76.67 | 94.5 | 171.17 |
46 Gy / 23 fr (2 Gy/fr) + 2 × 12 Gy HDR | 46 | 92.57 | 138.57 | 107.33 | 216 | 323.33 | 46 | 72 | 118 | 76.67 | 120 | 196.67 |
46 Gy / 23 fr (2 Gy/fr) + 2 × 15 Gy HDR | 46 | 141.4 | 187.4 | 107.33 | 330 | 437.33 | 46 | 108 | 154 | 76.67 | 180 | 256.67 |
46 Gy / 23 fr (2 Gy/fr) + 1 × 15 Gy HDR | 46 | 70.71 | 116.71 | 107.33 | 165 | 272.33 | 46 | 54 | 100 | 76.67 | 90 | 166.67 |
Moderately hypofractionated VMAT + HDR | ||||||||||||
37.5 Gy / 15 fr (2.5 Gy/fr) + HDR 2 × 15 Gy | 42.9 | 141.4 | 184.3 | 100 | 330 | 430 | 41.3 | 108 | 149.3 | 68.75 | 180 | 248.75 |
37.5 Gy / 15 fr (2.5 Gy/fr) + HDR 1 × 15 Gy | 42.9 | 70.7 | 113.6 | 100 | 115 | 215 | 41.3 | 54 | 95.3 | 68.75 | 90 | 158.75 |
37.5 Gy / 15 fr (2.5 Gy/fr) + HDR 2 × 12 Gy | 42.9 | 92.57 | 135.47 | 100 | 216 | 316 | 41.3 | 72 | 113.3 | 68.75 | 120 | 188.75 |
60 Gy / 20 fr (3 Gy/fr) + HDR 2 × 9 Gy | 77.1 | 54 | 131.1 | 180 | 126 | 306 | 72 | 43.2 | 115.2 | 168 | 72 | 240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guhlich, M.; Knaus, O.; Strauss, A.; Fischer, L.A.; Fischer, J.; Bendrich, S.; Donath, S.; Dröge, L.H.; Leu, M.; Rieken, S.; et al. Dosimetric Comparison of VMAT Alone and VMAT with HDR Brachytherapy Boost Using Clinical and Biological Dose Models in Localized Prostate Cancer. Curr. Oncol. 2025, 32, 360. https://doi.org/10.3390/curroncol32060360
Guhlich M, Knaus O, Strauss A, Fischer LA, Fischer J, Bendrich S, Donath S, Dröge LH, Leu M, Rieken S, et al. Dosimetric Comparison of VMAT Alone and VMAT with HDR Brachytherapy Boost Using Clinical and Biological Dose Models in Localized Prostate Cancer. Current Oncology. 2025; 32(6):360. https://doi.org/10.3390/curroncol32060360
Chicago/Turabian StyleGuhlich, Manuel, Olga Knaus, Arne Strauss, Laura Anna Fischer, Jann Fischer, Stephanie Bendrich, Sandra Donath, Leif Hendrik Dröge, Martin Leu, Stefan Rieken, and et al. 2025. "Dosimetric Comparison of VMAT Alone and VMAT with HDR Brachytherapy Boost Using Clinical and Biological Dose Models in Localized Prostate Cancer" Current Oncology 32, no. 6: 360. https://doi.org/10.3390/curroncol32060360
APA StyleGuhlich, M., Knaus, O., Strauss, A., Fischer, L. A., Fischer, J., Bendrich, S., Donath, S., Dröge, L. H., Leu, M., Rieken, S., Uhlig, A., Schirmer, M. A., & Hille, A. (2025). Dosimetric Comparison of VMAT Alone and VMAT with HDR Brachytherapy Boost Using Clinical and Biological Dose Models in Localized Prostate Cancer. Current Oncology, 32(6), 360. https://doi.org/10.3390/curroncol32060360