From CBCT to MR-Linac in Image-Guided Prostate Cancer Radiotherapy Towards Treatment Personalization
Abstract
:1. Introduction
2. Methods—Literature Search
3. Results
3.1. Imaging Techniques Used on Board the Linear Accelerator to Guide Prostate Cancer Treatment
3.2. Positioning Errors in Prostate Cancer Treatment
3.2.1. Interfractional Error Management in Prostate IGRT
3.2.2. Intrafractional Error Management in Prostate IGRT
3.3. The Influence of Positioning Errors on the PTV Margin
- ICRU Report 62: PTV margin = ∑ + 0.7σ,
- Stroom’s method: PTV margin = 2 ∑ + 0.7σ,
- Van Herk’s formula: PTV margin = 2.5 ∑ + 0.7σ.
3.4. Dosimetric Impact of PTV Margin Optimization on Target Coverage and OARs
Plan Adaptation and Its Impact on Setup Errors
3.5. The Impact of Treatment Time on Error Reduction
4. Discussion
5. Conclusions
- CBCT is the most frequently employed IGRT technique, representing 41% of pretreatment imaging in prostate cancer radiotherapy.
- Daily IGRT verification improves target volume coverage in 90% of patients compared with weekly imaging.
- To avoid the risk of underdosing the tumor volume, the PTV margin must be kept at 3 mm or above, especially in situations when IGRT is not used daily.
- When patient positioning is based on skin tattoo vs. IGRT, it is recommended for the PTV margin to be doubled.
- As confirmed by a number of studies, VMAT has the advantage of reducing the intrafractional displacement variation of the prostate by half when compared to IMRT.
- Among linac-based techniques, VMAT provides optimal-quality treatment plans, offering a reduction of up to 50% in monitor units and treatment time while achieving the most conformal isodoses.
- MRI-guided radiotherapy represents the next solution for individualized and adaptive treatment in prostate cancer patients.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mendes, V.D.S.; Nierer, L.; Li, M.; Corradini, S.; Reiner, M.; Kamp, F.; Niyazi, M.; Kurz, C.; Landry, G.; Belka, C. Dosimetric comparison of MR-linac-based IMRT and conventional VMAT treatment plans for prostate cancer. Radiat. Oncol. 2021, 16, 133. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Mizowaki, T.; Inokuchi, H.; Ikeda, I.; Inoue, T.; Kamba, T.; Ogawa, O.; Hiraoka, M. Decreased acute toxicities of intensity-modulated radiation therapy for localized prostate cancer with prostate-based versus bone-based image guidance. Int. J. Clin. Oncol. 2017, 23, 158–164. [Google Scholar] [CrossRef]
- Fischer-Valuck, B.V.; Rao, Y.J.; Michalski, J.M. Intensity-modulated radiotherapy for prostate cancer. Transl. Androl. Urol. 2018, 7, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Sarkar, V.; Wang, B.; Rassiah-Szegedi, P.; Szegedi, M.; Huang, Y.J.; Huang, L.; Tward, J.; Salter, B. Calculation of delivered composite dose from Calypso tracking data for prostate cancer: And subsequent evaluation of reasonable treatment interruption tolerance limits. J. Appl. Clin. Med. Phys. 2019, 20, 105–113. [Google Scholar] [CrossRef]
- Kinhikar, R.A.; Pawar, A.B.; Mahantshetty, U.; Murthy, V.; Dheshpande, D.D.; Shrivastava, K.S. Rapid Arc, helical tomotherapy, sliding window intensity modulated radiotherapy and three dimensional conformal radiation for localized prostate cancer: A dosimetric comparison. J. Cancer Res. Ther. 2021, 10, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Varnava, M.; Sumida, I.; Oda, M.; Kurosu, K.; Isohashi, F.; Seo, Y.; Otani, K.; Ogawa, K. Dosimetric comparison between volumetric modulated arc therapy planning techniques for prostate cancer in the presence of intrafractional organ deformation. J. Rad. Res. 2021, 62, 309–318. [Google Scholar] [CrossRef]
- Emin, S. Feasibility of Adaptive SBRT of Prostate Cancer: Investigating Uncertainties in AI-Driven and CBCT-Guided Online Adaptive Radiotherapy. Master’s Thesis, Lund University, Lund, Sweden, 2020. [Google Scholar]
- Lemus, O.M.D.; Cao, M.; Cai, B.; Cummings, M.; Zheng, D. Adaptive Radiotherapy: Next-Generation Radiotherapy. Cancers 2024, 16, 1206. [Google Scholar] [CrossRef]
- Benitez, C.M.; Steinberg, M.L.; Cao, M.; Qi, S.; Lamb, M.J.; Kishan, A.U.; Valle, F.L. MRI-Guided Radiation Therapy for Prostate Cancer: The Next Frontier in Ultrahypofractionation. Cancers 2023, 15, 4657. [Google Scholar] [CrossRef]
- Keesman, R.; Van der Bijl, E.; Janssen, T.M.; Vijlbrief, T.; Pos, F.J.; Van der Heide, U.A. Clinical Workflow for Treating Patients with a Metallic Hip Prosthesis Using Magnetic Resonance Imaging-Guided Radiotherapy. Phys. Imaging Radiat. Oncol. 2020, 15, 85–90. [Google Scholar] [CrossRef]
- Güngör, G.; Serbez, I.; Temur, B.; Gür, G.; Kayalılar, N.; Mustafayev, T.Z.; Korkmaz, L.; Aydın, G.; Yapıcı, B.; Atalar, B.; et al. Time Analysis of Online Adaptive Magnetic Resonance–Guided Radiation Therapy Workflow According to Anatomical Sites. Pract. Radiat. Oncol. 2020, 11, e11–e21. [Google Scholar] [CrossRef]
- Goyal, S.; Kataria, T. Image Guidance in Radiation Therapy: Techniques and Applications. Radiol. Res. Pract. 2014, 2014, 705604. [Google Scholar] [CrossRef] [PubMed]
- Goff, P.H.; Harrison, L.B.; Furhang, E.; Ng, E.; Bhatia, S.; Trichter, F.; Ennis, R.D. 2D Kv orthogonal imaging with fiducial markers is more precise for daily image guided alignments than soft-tissue cone beam computed tomography for prostate radiation therapy. Adv. Radiat. Oncol. 2017, 2, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Kishan, A.U.; Ma, T.M.; Lamb, J.M.; Casado, M.; Wilhalme, H.; Low, D.A.; Sheng, K.; Sharma, S.; Nickols, N.G.; Pham, J.; et al. Magnetic Resonance Imaging-Guided vs Computed Tomography-Guided Stereotactic Body Radiotherapy for Prostate Cancer: The MIRAGE Randomized Clinical Trial. JAMA Oncol. 2023, 9, 365–373. [Google Scholar] [CrossRef]
- Boldrini, L.; Romano, A.; Chiloiro, G.; Corradini, S.; De Luca, V.; Verusio, V.; D’Aviero, A.; Castelluccia, A.; Alitto, A.R.; Catucci, F.; et al. Magnetic Resonance Guided SBRT Reirradiation in Locally Recurrent Prostate Cancer: A Multicentric Retrospective Analysis. Radiat. Oncol. 2023, 18, 84. [Google Scholar] [CrossRef] [PubMed]
- Mannerberg, A.; Kügele, M.; Hamid, S.; Edvardsson, S.; Petersson, K.; Gunnlaugsson, A.; Back, S.A.J.; Engelholm, S.; Ceberg, S. Faster and more accurate patient positioning with surface guided radiotherapy for ultra-hypofractionated prostate cancer patients. Tech. Innov. Patient Support Radiat. Oncol. 2021, 19, 41–45. [Google Scholar] [CrossRef]
- Camps, S.M.; Fontanarosa, D.; Verhaegen, F.; Vanneste, B.G.L. The Use of Ultrasound Imaging in the External Beam Radiotherapy Workflow of Prostate Cancer Patients. BioMed Res. Int. 2018, 2018, 7569590. [Google Scholar] [CrossRef]
- Serizawa, I.; Kozuka, T.; Soyano, T.; Sasamura, K.; Kamima, T.; Kunogi, H.; Kurihara, N.; Numao, N.; Yamamoto, S.; Yonese, J.; et al. Clinical and Dosimetric Comparison Between Non-image Guided Radiation Therapy and Fiducial-Based Image Guided Radiation Therapy With or Without Reduced Margin in Intensity Modulated Radiation Therapy for Prostate Cancer. Adv. Radiat. Oncol. 2024, 9, 101612. [Google Scholar] [CrossRef]
- Ghanem, A.I.; Elsaid, A.A.; Elshaikh, M.A.; Khedr, G.A. Volumetric-Modulated Arc Radiotherapy with Daily Image-Guidance Carries Better Toxicity Profile for Higher Risk Prostate Cancer. Asian Pac. J. Cancer Prev. 2021, 22, 61–68. [Google Scholar] [CrossRef]
- Kanakavelu, N.; Samue, J.J. Determination of patient set-up error and optimal treatment margin for intensity modulated radiotherapy using image guidance system. Off. J. Balk. Union. Oncol. 2016, 21, 505–511. [Google Scholar]
- Amro, H.; Hamstra, D.; Mcshan, D.; Sandler, H.; Vineberg, K.; Hadley, S. The Dosimetric Impact of Prostate Rotations During Electromagnetically Guided External Beam Radiation Therapy. Int. J. Rad. Oncol. Biol. Phys. 2014, 85, 230–236. [Google Scholar] [CrossRef]
- Oehler, C.; Lang, S.; Dimmerling, P.; Bolesch, C.; Kloeck, S.; Tini, A.; Glanzmann, C.; Najafi, Y.; Studer, G.; Zwahlen, D.R. PTV margin definition in hypofractionated IGRT of localized prostate cancer using cone beam CT and orthogonal image pairs with fiducial markers. Radiat. Oncol. 2014, 9, 229. [Google Scholar] [CrossRef] [PubMed]
- Van Herk, M. Errors and Margins in Radiotherapy. Semin. Rad. Oncol. 2014, 14, 52–64. [Google Scholar] [CrossRef]
- Benedeka, H.; Lernera, M.; Nilssona, P.; Knöösa, T.; Gunnlaugssona, A.; Cebergb, C. The effect of prostate motion during hypofractionated radiotherapy can be reduced by using flattening filter free beams. Phys. Imaging Radiat. Oncol. 2018, 6, 66–70. [Google Scholar] [CrossRef]
- Mayyas, E.; Chetty, I.J.; Chetvertkov, M.; Wen, N.; Neicu, T.; Nurushev, T.; Ren, L.; Lu, M.; Stricker, H.; Pradhan, D.; et al. Evaluation of multiple image-based modalities for image-guided radiation therapy (IGRT) of prostate carcinoma: A prospective study. Med. Phys. 2013, 40, 041707. [Google Scholar] [CrossRef]
- Krengli, M.; Loi, G.; Pisani, C.; Beldì, D.; Apicella, G.; Amisano, V.; Brambilla, M. Three dimensional surface and ultrasound imaging for daily IGRT of prostate cancer. Radiat. Oncol. 2016, 11, 159. [Google Scholar] [CrossRef] [PubMed]
- af Rosenschöld, P.M.; Desai, N.B.; Oh, J.H.; Apte, A.; Hunt, M.; Kalikstein, A.; Mechalakos, J.; Happersett, L.; Deasy, J.O.; Zelefsky, M.J. Modeling positioning uncertainties of prostate cancer external beam radiation therapy using pre-treatment data. Radiother. Oncol. 2014, 110, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Ahunbay, E.; Lawton, C.; Li, X.L. Assessment and management of interfractional variations in daily diagnostic-quality-CT guided prostate-bed irradiation after prostatectomy. Med. Phys. 2014, 41, 031710. [Google Scholar] [CrossRef]
- Sato, H.; Abe, E.; Utsunomiya, S.; Kaidu, M.; Yamana, N.; Tanaka, K.; Ohta, A.; Obinata, M.; Liu, J.; Kawaguchi, G.; et al. Superiority of a soft tissue-based setup using cone-beam computed tomography over a bony structurebased setup in intensity-modulated radiotherapy for prostate cancer. J. Appl. Clin. Med. Phys. 2015, 16, 239–245. [Google Scholar] [CrossRef]
- Richter, A.; Polat, B.; Lawrenz, I.; Weick, S.; Sauer, O.; Flentje, M.; Mantel, F. Initial results for patient setup verification using transperineal ultrasound and cone beam CT in external beam radiation therapy of prostate cancer. Radiat. Oncol. 2016, 11, 147. [Google Scholar] [CrossRef]
- Fargier-Voiron, M.; Presles, B.; Pommier, P.; Munoz, A.; Rit, S.; Sarrut, D.; Biston, M.-C. Ultrasound versus Cone-beam CT image-guided radiotherapy for prostate and post-prostatectomy pretreatment localization. Phys. Medica 2015, 31, 997–1004. [Google Scholar] [CrossRef]
- Kim, J.; Sung, J.; Lee, J.S. Optimal planning target margin for prostate radiotherapy based on interfractional and intrafractional variability assessment during 1.5T MRI-guided radiotherapy. Front. Oncol. 2023, 13, 1337626. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, M.; Piotrowski, T.; Adamiak, E.; Malicki, J. Dosimetric consequences of prostate-based couch shifts on the precision of dose delivery during simultaneous IMRT irradiation of the prostate, seminal vesicles and pelvic lymph nodes. Phys. Med. 2014, 30, 228–233. [Google Scholar] [CrossRef]
- Hirose, Y.; Nakamura, M.; Tomita, T.; Kitsuda, K.; Notogawa, T.; Miki, K.; Nakamura, K.; Ishigaki, T. Evaluation of different set-up error corrections on dose–volume metrics in prostate IMRT using CBCT images. J. Radiat. Res. 2014, 55, 966–975. [Google Scholar] [CrossRef]
- Shiraishi, K.; Futaguchi, M.; Haga, A.; Sakumi, A.; Sasaki, K.; Yamamoto, K.; Igaki, H.; Ohtomo, K.; Yoda, K.; Nakagawa, K. Validation of planning target volume margins by analyzing intrafractional localization errors for 14 prostate cancer patients based on three-dimensional cross-correlation between the prostate images of planning CT and intrafraction cone-beam CT during volumetric modulated arc therapy. BioMed Res. Int. 2014, 2014, 960928. [Google Scholar]
- Rastogi, M.; Nanda, S.S.; Gandhi, A.K.; Dalela, D.; Khurana, R.; Mishra, S.P.; Srivastava, A.; Farzana, S.; Bhatt, M.L.B.; Husain, N. Pelvic bone anatomy vs implanted gold seed marker registration for image-guided intensity modulated radiotherapy for prostate carcinoma: Comparative analysis of inter-fraction motion and toxicities. J. Egypt. Nat. Cancer Inst. 2017, 29, 185–190. [Google Scholar] [CrossRef]
- Wang, G.; Wang, W.L.; Liu, Y.Q.; Dong, H.M.; Hu, Y.X. Positioning error and expanding margins of planning target volume with kilovoltage cone beam computed tomography for prostate cancer radiotherapy. OncoTargets Ther. 2018, 11, 1981–1988. [Google Scholar] [CrossRef] [PubMed]
- Ingrosso, G.; Miceli, R.; Ponti, E.; Lancia, A.; di Cristino, D.; de Pasquale, F.; Bove, P.; Santoni, R. Interfraction prostate displacement during image-guided radiotherapy using intraprostatic fiducial markers and a cone-beam computed tomography system: A volumetric off-line analysis in relation to the variations of rectal and bladder volumes. J. Cancer Res. Ther. 2019, 15, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.; Baek, J.; Kim, O.; Kim, J. Assessment of setup uncertainties for various tumor sites when using daily CBCT for more than 2200 VMAT treatments. J. Appl. Clin. Med. Phys. 2020, 15, 85–99. [Google Scholar] [CrossRef]
- Ballhausen, H.; Li, M.; Ganswindt, U.; Belka, C. Shorter treatment times reduce the impact of intra-fractional motion. Strahlenther. Onkol. 2019, 194, 664–674. [Google Scholar] [CrossRef]
- Tetar, S.U.; Bruynzeel, A.M.E.; Verweij, L. Magnetic resonance imaging-guided radiotherapy for intermediate- and high-risk prostate cancer: Trade-off between planning target volume margin and online plan adaption. Phys. Imaging Radiat. Oncol. 2022, 23, 92–96. [Google Scholar] [CrossRef]
- Mandal, A.; Singh, P.; Bera, S.; Kumar, A.; Singh, D.; Verma, M.; Rakesh, A.; Sinha, A. Set-up Errors and Determination of Planning Target Volume Margins Protocol for Different Anatomical Sites in a Newly Established Tertiary Radiotherapy Centre in India. Asian J. Oncol. 2020, 6, 81–87. [Google Scholar] [CrossRef]
- Su, Z.; Li, Z.; Henderson, R.; Hoppe, B.S.; Nichols, R.C.; Bryant, C.; Mendenhall, W.; Mendenhall, N. PTV Margin Analysis for Prostate Patients Treated with Initial Pelvic Nodal IMRT and Prostate Proton Boost. Phys. Med. Biol. 2019, 64, 04NT04. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, H.; Navaser, M.; Mofid, B.; Mahdavi, S.R.; Mohammadi, R.; Tavakol, A. Fiducial markers in prostate cancer image-guided radiotherapy. Med. J. Islam. Repub. Iran. 2019, 33, 15. [Google Scholar] [CrossRef] [PubMed]
- Wahlstedt, I.; Andratschke, N.; Behrens, C.P. Gating has a negligible impact on dose delivered in MRI-guided online adaptive radiotherapy of prostate cancer. Radiother. Oncol. 2022, 170, 205–212. [Google Scholar] [CrossRef]
- de Muinck Keizer, D.M.; de Groot-van Breugel, E.N.; Raaymakers, B.W.; Lagendijk, J.J.; de Boer, H.C. On-line daily plan optimization combined with a virtual couch shift procedure to address intrafraction motion in prostate magnetic resonance guided radiotherapy. Phys. Imaging Radiat. Oncol. 2021, 19, 90–95. [Google Scholar] [CrossRef]
- Böckelmann, F.; Putz, F.; Kallis, K.; Lettmaier, S.; Fietkau, R.; Bert, C. Adaptive radiotherapy and the dosimetric impact of inter- and intrafractional motion on the planning target volume for prostate cancer patients. Strahlenther. Onkol. 2020, 196, 647–656. [Google Scholar] [CrossRef]
- Iwama, K.; Yamazaki, H.; Nishimura, T.; Oota, Y.; Aibe, H.; Nakamura, S.; Ikeno, H.; Yoshida, K.; Okabe, H. Analysis of Intrafractional Organ Motion for Patients with Prostate Cancer Using Soft Tissue Matching Image-guided Intensity-modulated Radiation Therapy by Helical Tomotherapy. Anticancer. Res. 2014, 33, 5675–5680. [Google Scholar]
- Hirose, K.; Sato, M.; Hatayama, Y.; Kawaguchi, H.; Komai, F.; Sohma, M.; Obara, H.; Suzuki, M.; Tanaka, M.; Fujioka, I.; et al. The potential failure risk of the cone-beam computed tomography-based planning target volume margin definition for prostate image-guided radiotherapy based on a prospective single-institutional hybrid analysis. Radiat. Oncol. 2018, 13, 106. [Google Scholar] [CrossRef]
- Drozdz, S.; Schwedas, M.; Salz, H.; Foller, S.; Wendt, T.G. Prostate cancer treated with image-guided helical TomoTherapy and image-guided LINAC-IMRT. Strahlenther. Onkol. 2016, 192, 223–231. [Google Scholar] [CrossRef]
- Rudat, V.; Nour, A.; Hammoud, M.; Alaradi, A.; Mohammed, A. Image-guided intensity modulated radiotherapy of prostate cancer. Strahlenther. Onkol. 2016, 19, 109–117. [Google Scholar] [CrossRef]
- Chiesa, S.; Placidi, L.; Azario, L.; Mattiucci, G.C.; Greco, F.; Damiani, A.; Mantini, G.; Frascino, V.; Piermattei, A.; Valentini, V.; et al. Adaptive optimization by 6 DOF robotic couch in prostate volumetric IMRT treatment: Rototranslational shift and dosimetric consequences. J. Appl. Clin. Med. Phys. 2015, 16, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, G.F.; Hou, X.Y.; Gao, H.; Xu, Y.G.; Zhao, T.A. A dosimetric Comparison between Conventional Fractionated and Hypofractionated Image-guided Radiation Therapies for Localized Prostate Cancer. Chin. Med. J. 2016, 129, 1447–1454. [Google Scholar] [CrossRef] [PubMed]
- Heng, S.P.; Low, S.H.; Sivamany, K. The influence of the bowel and bladder preparation protocol for radiotherapy of prostate cancer using kilo-voltage cone beam CT: Our experience. Indian J. Cancer 2015, 52, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Gozal, F.; Gondhowiardjo, S.A.; Kodrat, H.; Wibowo, W.E. Dosimetric analysis of three-dimensional conformal radiotherapy, intensity-modulated radiotherapy-step and shoot, helical tomotherapy, and volumetric modulated arc therapy in prostate cancer radiotherapy. J. Cancer Res. Ther. 2021, 17, 893–900. [Google Scholar] [CrossRef]
- Pokhrel, D.; Tackett, T.; Stephen, J.; Visak, J.; Amin-Zimmerman, F.; McGregor, A.; Strup, S.E.; St Clair, W. Prostate SBRT using O-Ring Halcyon Linac. Plan quality, delivery efficiency, and accuracy. J. Appl. Clin. Med. Phys. 2020, 22, 68–75. [Google Scholar] [CrossRef]
- Utsunomiya, S.; Yamamoto, J.; Tanabe, S.; Oishi, M.; Satsuma, A.; Kaidu, M.; Abe, E.; Ohta, A.; Kushima, N.; Aoyama, H. Complementary Relation Between the Improvement of Dose Delivery Technique and PTV Margin Reduction in Dose-Escalated Radiation Therapy for Prostate Cancer. Pract. Radiat. Oncol. 2019, 9, 172–178. [Google Scholar] [CrossRef]
- Ma, T.M.; Ballas, L.K.; Wilhalme, H.; Sachdeva, A.; Chong, N.; Sharma, S.; Yang, T.; Basehart, V.; Reiter, R.E.; Saigal, C.; et al. Quality-of-Life Outcomes and Toxicity Profile Among Patients with Localized Prostate Cancer After Radical Prostatectomy Treated with Stereotactic Body Radiation: The SCIMITAR Multicenter Phase 2 Trial. Int. J. Radiat. Oncol. 2022, 115, 142–152. [Google Scholar] [CrossRef]
- Walter, F.; Freislederer, P.; Belka, C.; Heinz, C.; Sohn, M.; Roeder, F. Evaluation of daily patient positioning for radiotherapy with a commercial 3D surface-imaging system (Catalyst). Radiat. Oncol. 2016, 11, 154. [Google Scholar] [CrossRef]
- Batista, V.; Gober, M.; Moura, F.; Webster, A. Surface guided radiation therapy: An international survey on current clinical practice. Tech. Innov. Patient Support. Radiat. Oncol. 2022, 22, 1–8. [Google Scholar] [CrossRef]
- Ariyaratne, H.; Chesham, H.; Pettingell, J.; Alonzi, R. Image-guided radiotherapy for prostate cancer with cone beam CT: Dosimetric effects of imaging frequency and PTV margin. Radiother. Oncol. 2016, 121, 103–108. [Google Scholar] [CrossRef]
- Nichol, A.M.; Brock, K.K.; Lockwood, G.A. A magnetic resonance imaging study of prostate deformation relative to implanted gold fiducial markers. Int. J. Radiat. Oncol. Biol. Phys. 2017, 67, 48–56. [Google Scholar] [CrossRef]
- Westley, L.R.; Alexander, S.E.; Goodwin, E. Magnetic resonance imageguided adaptive radiotherapy enables safe CTV-to-PTV margin reduction in prostate cancer: A cine MRI motion study. Front. Oncol. 2024, 14, 1379596. [Google Scholar] [CrossRef]
- Onal, C.; Efe, E.; Bozca, R.; Yavas, C.; Yavas, G.; Arslan, G. The impact of margin reduction on radiation dose distribution of ultra-hypofractionated prostate radiotherapy utilizing a 1.5-T MR-Linac. J. Appl. Clin. Med. Phys. 2024, 25, e14179. [Google Scholar] [CrossRef] [PubMed]
- ICRU, Report 83; Oxford University Press: Oxford, UK, 2010; Volume 10.
- Moteabbed, M.; Trofimov, A.; Sharp, G.C.; Wang, Y.; Zietman, A.L.; Efstathiou, J.A.; Lu, H.M. A prospective comparison of the effects of interfractional variations on proton therapy and IMRT for prostate cancer. Int. J. Rad. Oncol. Biol. Phys. 2016, 95, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Maund, I.F.; Benson, J.; Fairfoul, J.; Cook, J.; Huddart, R.; Poynter, A. Image-guided radiotherapy of the prostate using daily CBCT: The feasibility and likely benefit of implementing a margin reduction. Br. J. Radiol. 2014, 87, 20140459. [Google Scholar] [CrossRef] [PubMed]
- Dassen, M.G.; Janssen, T.; Kusters, M. Comparing adaptation strategies in MRI-guided online adaptive radiotherapy for prostate cancer: Implications for treatment margins. Radiother. Oncol. 2023, 186, 109761. [Google Scholar] [CrossRef]
- Thome, W.D.; Paulsen, A. First experience and prospective evaluation on feasibility and acute toxicity of online adaptive radiotherapy of the prostate bed as salvage treatment in patients with biochemically recurrent prostate cancer on a 1.5T MR-linac. J. Clin. Med. 2022, 11, 4651. [Google Scholar]
- Liu, L.; Wu, N.; Ouyang, H.; Dai, J.R.; Wang, W.H. Diffusion-weighted MRI in early assessment of tumour response to radiotherapy in high-risk prostate cancer. Br. J. Radiol. 2014, 87, 20140359. [Google Scholar] [CrossRef]
- Künzel, L.A.; Leibfarth, S.; Dohm, O.S. Automatic VMAT planning for post-operative prostate cancer cases using particle swarm optimization: A proof of concept study. Phys. Med. 2020, 69, 101–109. [Google Scholar] [CrossRef]
- Jeong, S.; Lee, J.H.; Chung, M.J.; Lee, S.W.; Lee, J.W.; Kang, D.G.; Kim, S.H. Analysis of Geometric Shifts and Proper Setup-Margin in Prostate Cancer Patients Treated With Pelvic Intensity-Modulated Radiotherapy Using Endorectal Ballooning and Daily Enema for Prostate Immobilization. Medicine 2016, 95, e2387. [Google Scholar] [CrossRef]
- Knybel, L.; Cvek, J.; Blazek, T.; Binarova, A.; Parackova, T.; Resova, T. Prostate deformation during hypofractionated radiotherapy: An analysis of implanted fiducial marker displacement. Radiat. Oncol. 2021, 16, 235. [Google Scholar] [CrossRef] [PubMed]
- Eminowicz, G.; Dean, C.; Shoffren, O.; Macdougall, N.; Wells, P.; Muirhead, R. Intensity modulated radiotherapy (IMRT) to prostate and pelvic nodes—Is pelvic lymph node coverage adequate with fiducial-based image-guided radiotherapy? Br. J. Radiol. 2014, 87, 20130696. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, S.R.; Gharehbagh, E.J.; Mofid, B.; Jafari, A.H.; Nikoofar, A.R. Accuracy of the dose delivery in prostate cancer patients-using an electronic portal imaging device (EPID). Int. J. Radiat. Res. 2017, 15, 39–47. [Google Scholar]
- Nourzadeh, H.; Watkins, W.T.; Ahmed, M.; Hui, C.; Schlesinger, D.; Siebersa, J.V. Clinical adequacy assessment of autocontours for prostate IMRT with meaningful endpoints. Med. Phys. 2017, 44, 1525–1537. [Google Scholar] [CrossRef]
- Faccenda, V.; Panizza, D.; Daniotti, M.C.; Pellegrini, R.; Trivellato, S.; Caricato, P.; Lucchini, R.; De Ponti, E.; Arcangeli, S. Dosimetric Impact of Intrafraction Prostate Motion and Interfraction Anatomical Changes in Dose-Escalated Linac-Based SBRT. Cancers 2023, 15, 1153. [Google Scholar] [CrossRef]
- Groher, M.; Kopp, P.; Drerup, M.; Deutschmann, H.; Sedlmayer, F.; Wolf, F. An IGRT margin concept for pelvic lymph nodes in high-risk prostate cancer. Strahlenther. Onkol. 2017, 193, 750–755. [Google Scholar] [CrossRef]
- Willigenburg, T.; Zachiu, C.; Bol, G.H. Clinical application of a sub-fractionation workflow for intrafraction re-planning during prostate radiotherapy treatment on a 1.5 Tesla MR-Linac: A practical method to mitigate intrafraction motion. Radiother. Oncol. 2022, 176, 25–30. [Google Scholar] [CrossRef]
- Van Nunen, A.; Van der Toorn, P.P.G.; Budiharto, T.C.G.; Schuring, D. Optimal image guided radiation therapy strategy for organs at risk sparing in radiotherapy of the prostate including pelvic lymph nodes. Radiother. Oncol. 2018, 127, 68–73. [Google Scholar] [CrossRef]
- Arnaud, A.; Maingon, P.; Gauthier, M.; Naudy, S.; Dumas, J.; Martin, E.; Peignaux-Casasnovas, K.; Truc, G.; Bonnetain, F.; Crehange, G. Image guided IMRT for localized prostate cancer with daily repositioning: Inferring the difference between planned dose and delivered dose distribution. Phys. Medica 2014, 30, 669–675. [Google Scholar] [CrossRef]
- Kasaova, L.; Sirak, M.; Jansa, J.; Paluska, P.; Petera, J. Quantitative Evaluation of the Benefit of Fiducial Image-Guidance for Prostate Cancer Intensity Modulated Radiation Therapy using Daily Dose Volume Histogram Analysis. Technol. Cancer Res. Treat. 2014, 13, 47–55. [Google Scholar] [CrossRef]
- Onal, C.; Arslan, G.; Parlak, C.; Sonmez, S. Comparison of IMRT and VMAT plans with different energy levels using Monte-Carlo algorithm for prostate cancer. Jpn. Radiol. Soc. 2014, 32, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Park, S.Y.; Choi, C.H.; Chun, M.; Kim, J.H.; Kim, J.I. Treatment plan comparison between Tri-Co-60 magnetic resonance image-guided radiation therapy and volumetric modulated arc therapy for prostate cancer. Oncotarget 2017, 8, 91174–91184. [Google Scholar] [CrossRef]
- Tøndel, H.; Lund, J.; Lydersen, S.; Wanderås, A.D.; Aksnessæther, B.; Jensen, C.A.; Kaasa, S.; Solberg, A. Radiotherapy for prostate cancer—Does daily image guidance with tighter margins improve patient reported outcomes compared to weekly orthogonal verified irradiation? Results from a randomized controlled trial. Radiother. Oncol. 2018, 126, 229–235. [Google Scholar] [CrossRef]
- Scobioala, S.; Kittel, C.; Wissmann, N.; Haverkamp, U.; Channaoui, M.; Habibeh, O.; Elsayad, K.; Eich, H.T. A treatment planning study comparing tomotherapy, volumetric modulated arc therapy, Sliding Window and proton therapy for low-risk prostate carcinoma. Radiat. Oncol. 2016, 11, 128. [Google Scholar] [CrossRef]
- Rossi, L.; Sharfo, A.W.; Aluwini, S.; Dirkx, M.; Breedveld, S.; Heijmen, B. First fully automated planning solution for robotic radiosurgery—Comparison with automatically planned volumetric arc therapy for prostate cancer. Acta Oncol. 2018, 57, 1490–1498. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.Y.; Zhu, Q.Z.; Zhu, H.L.; Jiang, L.J.; Zhao, N.; Liu, Z.K. Clinical performance evaluation of O-Ring Halcyon Linac: A realworld study. World J. Clin. Cases 2022, 10, 7728–7737. [Google Scholar] [CrossRef]
- Bartlett, G.K.; Njeh, C.F.; Huang, K.C.; DesRosiers, C.; Guo, G. VMAT partial arc technique decreases dose to organs at risk in whole pelvic radiotherapy for prostate cancer when compared to full arc VMAT and IMRT. Med. Dosim. 2023, 48, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Fathy, M.M.; Hassan, B.Z.; El-Gebaly, H.R.; Mokhtar, M.H. Dosimetric evaluation study of IMRT and VMAT techniques for prostate cancer based on different multileaf collimator designs. Radiat. Environ. Biophys. 2023, 62, 97–106. [Google Scholar] [CrossRef]
- Gao, L.R.; Tian, Y.; Wang, M.S. Assessment of delivered dose in prostate cancer patients treated with ultra-hypofractionated radiotherapy on 1.5-Tesla MR-Linac. Front. Oncol. 2023, 13, 1039901. [Google Scholar] [CrossRef]
- Byrne, M.; Meei, A.Y.; Archibald-Heeren, B.; Hu, Y.; Rijken, J.; Luo, S.; Aland, T.; Greer, P. Intrafraction Motion and Margin Assessment for Ethos Online Adaptive Radiotherapy Treatments of the Prostate and Seminal Vesicles. Adv. Radiat. Oncol. 2024, 9, 101–405. [Google Scholar] [CrossRef]
- Elith, C.A.; Dempsey, S.E.; Warren, H.M. Comparing four volumetric modulated arc therapy beam arrangements for the treatment of early-stage prostate cancer. J. Med. Radiat. Sci. 2014, 61, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Cakir, A.; Akgun, Z.; Fayda, M.; Agaoglu, M. Comparison of Three Dimensional Conformal Radiation Therapy, Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy for Low Radiation. Asian Pac. J. Cancer Prev. 2015, 16, 3365–3370. [Google Scholar] [CrossRef] [PubMed]
- Oates, R.; Gill, S.; Foroudi, F.; Joon, M.L.; Schneider, M.; Bressel, M.; Kron, T. What benefit could be derived from on-line adaptive prostate radiotherapy using rectal diameter as a predictor of motion? J. Med. Phys. 2015, 40, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Yagihashi, T.; Inoue, K.; Nagata, H.; Yamanaka, M.; Yamano, A.; Suzuki, S.; Yamakabe, W.; Sato, N.; Omura, M.; Inoue, T. Effectiveness of robust optimization against geometric uncertainties in TomoHelical planning for prostate cancer. J. Appl. Clin. Med. Phys. 2023, 24, e13881. [Google Scholar] [CrossRef]
- Polizzi, M.; Weiss, E.; Jan, N.; Ricco, A.; Kim, S.; Urdaneta, A.; Rosu-Bubulac, M. Rectal deformation management with IGRT in prostate radiotherapy: Can it be managed with rigid alignment alone. J. Appl. Clin. Med. Phys. 2024, 25, 14241. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coc, F.L.; Marcu, L.G. From CBCT to MR-Linac in Image-Guided Prostate Cancer Radiotherapy Towards Treatment Personalization. Curr. Oncol. 2025, 32, 291. https://doi.org/10.3390/curroncol32060291
Coc FL, Marcu LG. From CBCT to MR-Linac in Image-Guided Prostate Cancer Radiotherapy Towards Treatment Personalization. Current Oncology. 2025; 32(6):291. https://doi.org/10.3390/curroncol32060291
Chicago/Turabian StyleCoc, Florentina Larisa, and Loredana G. Marcu. 2025. "From CBCT to MR-Linac in Image-Guided Prostate Cancer Radiotherapy Towards Treatment Personalization" Current Oncology 32, no. 6: 291. https://doi.org/10.3390/curroncol32060291
APA StyleCoc, F. L., & Marcu, L. G. (2025). From CBCT to MR-Linac in Image-Guided Prostate Cancer Radiotherapy Towards Treatment Personalization. Current Oncology, 32(6), 291. https://doi.org/10.3390/curroncol32060291