From Algorithms to Insight: The Transformative Power of Artificial Intelligence and Machine Learning in Urological Cancer Research
Conflicts of Interest
References
- Manini, C.; Larrinaga, G.; Angulo, J.C.; López, J.I. Hot Spots in Urogenital Basic Cancer Research and Clinics. Cancers 2025, 17, 1173. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jensen, L.J.; Kim, D.; Elgeti, T.; Steffen, I.G.; Schaafs, L.-A.; Haas, M.; Kurz, L.J.; Hamm, B.; Nagel, S.N. Detecting Clinically Significant Prostate Cancer in PI-RADS 3 Lesions Using T2w-Derived Radiomics Feature Maps in 3T Prostate MRI. Curr. Oncol. 2024, 31, 6814–6828. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hectors, S.J.; Cherny, M.; Yadav, K.K.; Beksaç, A.T.; Thulasidass, H.; Lewis, S.; Davicioni, E.; Wang, P.; Tewari, A.K.; Taouli, B. Radiomics Features Measured with Multiparametric Magnetic Resonance Imaging Predict Prostate Cancer Aggressiveness. J. Urol. 2019, 202, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Engel, H.; Nedelcu, A.; Grimm, R.; von Busch, H.; Sigle, A.; Krauss, T.; Schlett, C.L.; Weiss, J.; Benndorf, M.; Oerther, B. Diagnostic performance of a fully automated AI algorithm for lesion detection and PI-RADS classification in patients with suspected prostate cancer. Radiol. Med. 2025; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Chaurasia, A.K.; Harris, H.C.; Toohey, P.W.; Hewitt, A.W. A generalised vision transformer-based self-supervised model for diagnosing and grading prostate cancer using histological images. Prostate Cancer Prostatic Dis. 2025; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.D.; Lu, J.; Erak, E.; Mendes, A.A.; Dairo, O.; Ertunc, O.; Kulac, I.; Valle, J.A.B.-D.; Jones, T.; Hicks, J.L.; et al. Comparison of Pathologist and Artificial Intelligence–based Grading for Prediction of Metastatic Outcomes After Radical Prostatectomy. Eur. Urol. Oncol. 2025, 8, 9–13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cimadamore, A.; Montironi, R.; Cheng, L.; Lopez-Beltran, A.; Rogers, E.T.; Franzese, C.; Crestani, A.; Giannarini, G. The uropathologist of the future: Getting ready with intelligence for the prostate cancer tsunami. Pathologica 2024, 116, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Camps, J.; Jiménez-Franco, A.; García-Pablo, R.; Joven, J.; Arenas, M. Artificial intelligence-driven integration of multi-omics and radiomics: A new hope for precision cancer diagnosis and prognosis. Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2025, 1871, 167841. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Tu, S.; Li, L.; Li, G.; Zhang, Y. Diagnostic, predictive and prognostic molecular biomarkers in clear cell renal cell carcinoma: A retrospective study. Cancer Rep. 2024, 7, e2116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rinderknecht, E.; von Winning, D.; Kravchuk, A.; Schäfer, C.; Schnabel, M.J.; Siepmann, S.; Mayr, R.; Grassinger, J.; Goßler, C.; Pohl, F.; et al. Modification and Validation of the System Causability Scale Using AI-Based Therapeutic Recommendations for Urological Cancer Patients: A Basis for the Development of a Prospective Comparative Study. Curr. Oncol. 2024, 31, 7061–7073. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haas, M.; Saberi, V.; Gossler, C.; Schmelzer, A.; Kravchuk, A.; Breyer, J.; Bründl, J.; Engelmann, S.; Kirschner, C.; Gilfrich, C.; et al. Making prostate cancer research accessible: ChatGPT-4 as a tool to enhance lay communication. Urologie, 2025; ahead of print. (In German). [Google Scholar] [CrossRef] [PubMed]
- Ganjavi, C.; Melamed, S.; Biedermann, B.; Eppler, M.B.; Rodler, S.; Layne, E.; Cei, F.; Gill, I.; Cacciamani, G.E. Generative artificial intelligence in oncology. Curr. Opin. Urol. 2025, 35, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Waters, M. AI meets informed consent: A new era for clinical trial communication. JNCI Cancer Spectr. 2025, 9, pkaf028. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Santos, C.S.; Amorim-Lopes, M. Externally validated and clinically useful machine learning algorithms to support patient-related decision-making in oncology: A scoping review. BMC Med. Res. Methodol. 2025, 25, 45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Macri, R.; Roberts, S.L. The Use of Artificial Intelligence in Clinical Care: A Values-Based Guide for Shared Decision Making. Curr. Oncol. 2023, 30, 2178–2186. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mazor, T.; Farhat, K.S.; Trukhanov, P.; Lindsay, J.; Galvin, M.; Mallaber, E.; Paul, M.A.; Hassett, M.J.; Schrag, D.; Cerami, E.; et al. Clinical Trial Notifications Triggered by Artificial Intelligence–Detected Cancer Progression: A Randomized Trial. JAMA Netw. Open 2025, 8, e252013. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Layne, E.; Olivas, C.; Hershenhouse, J.; Ganjavi, C.; Cei, F.; Gill, I.; Cacciamani, G.E. Large language models for automating clinical trial matching. Curr. Opin. Urol. 2025, 35, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Rieke, N.; Hancox, J.; Li, W.; Milletarì, F.; Roth, H.R.; Albarqouni, S.; Bakas, S.; Galtier, M.N.; Landman, B.A.; Maier-Hein, K.; et al. The future of digital health with federated learning. NPJ Digit. Med. 2020, 3, 119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shen, S.; Qi, W.; Liu, X.; Zeng, J.; Li, S.; Zhu, X.; Dong, C.; Wang, B.; Shi, Y.; Yao, J.; et al. From virtual to reality: Innovative practices of digital twins in tumor therapy. J. Transl. Med. 2025, 23, 348. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fountzilas, E.; Pearce, T.; Baysal, M.A.; Chakraborty, A.; Tsimberidou, A.M. Convergence of evolving artificial intelligence and machine learning techniques in precision oncology. NPJ Digit. Med. 2025, 8, 75. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
May, M.; Brookman-May, S.; Rinderknecht, E. From Algorithms to Insight: The Transformative Power of Artificial Intelligence and Machine Learning in Urological Cancer Research. Curr. Oncol. 2025, 32, 277. https://doi.org/10.3390/curroncol32050277
May M, Brookman-May S, Rinderknecht E. From Algorithms to Insight: The Transformative Power of Artificial Intelligence and Machine Learning in Urological Cancer Research. Current Oncology. 2025; 32(5):277. https://doi.org/10.3390/curroncol32050277
Chicago/Turabian StyleMay, Matthias, Sabine Brookman-May, and Emily Rinderknecht. 2025. "From Algorithms to Insight: The Transformative Power of Artificial Intelligence and Machine Learning in Urological Cancer Research" Current Oncology 32, no. 5: 277. https://doi.org/10.3390/curroncol32050277
APA StyleMay, M., Brookman-May, S., & Rinderknecht, E. (2025). From Algorithms to Insight: The Transformative Power of Artificial Intelligence and Machine Learning in Urological Cancer Research. Current Oncology, 32(5), 277. https://doi.org/10.3390/curroncol32050277