Reassessing the Prognostic Value of Lymph Node Metastasis in Deficient Mismatch Repair Colorectal Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Postoperative Follow-Up
2.3. Deficient Mismatch Repair
2.4. Lymph Node-Based Prognostic Factors
2.5. Statistical Analysis
3. Results
3.1. Demographic and Clinicopathological Characteristics
3.2. Lymph Node-Based Prognostic Models
3.3. Survival Analysis of Traditional Prognostic Factors in dMMR CRC
3.4. Survival Analysis of Lymph Node-Based Prognostic Models
3.5. Predictive Performance of the Combined LODDS and Age Prognostic Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AJCC | American Joint Committee on Cancer |
AUC | Area under the curve |
C-index | Concordance index |
CRC | Colorectal cancer |
CSCO | Chinese Society of Clinical Oncology |
DFS | Disease-free survival |
dMMR | Deficient mismatch repair |
EOCRC | Early-onset colorectal cancer |
ESMO | European Society for Medical Oncology |
LNR | Lymph node ratio |
LOCRC | Late-onset colorectal cancer |
LODDS | Log odds of positive lymph nodes |
MMR | Mismatch repair |
MSI | Microsatellite instability |
NCCN | National Comprehensive Cancer Network |
NLNs | Negative lymph nodes |
OS | Overall survival |
PLNs | Positive lymph nodes |
pMMR | proficient mismatch repair |
ROC | Receiver operating characteristic curve |
TimeROC | Time-dependent receiver operating characteristic curve |
TLNs | Total lymph nodes |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Grady, W.M.; Carethers, J.M. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 2008, 135, 1079–1099. [Google Scholar] [CrossRef] [PubMed]
- Raut, C.P.; Pawlik, T.M.; Rodriguez-Bigas, M.A. Clinicopathologic features in colorectal cancer patients with microsatellite instability. Mutat. Res. 2004, 568, 275–282. [Google Scholar] [CrossRef]
- Ward, R.; Meagher, A.; Tomlinson, I.; O'Connor, T.; Norrie, M.; Wu, R.; Hawkins, N. Microsatellite instability and the clinicopathological features of sporadic colorectal cancer. Gut 2001, 48, 821–829. [Google Scholar] [CrossRef]
- Gelsomino, F.; Barbolini, M.; Spallanzani, A.; Pugliese, G.; Cascinu, S. The evolving role of microsatellite instability in colorectal cancer: A review. Cancer Treat. Rev. 2016, 51, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Amodio, V.; Vitiello, P.P.; Bardelli, A.; Germano, G. DNA repair-dependent immunogenic liabilities in colorectal cancer: Opportunities from errors. Br. J. Cancer 2024, 131, 1576–1590. [Google Scholar] [CrossRef] [PubMed]
- Lipson, E.J.; Sharfman, W.H.; Drake, C.G.; Wollner, I.; Taube, J.M.; Anders, R.A.; Xu, H.; Yao, S.; Pons, A.; Chen, L.; et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin. Cancer Res. 2013, 19, 462–468. [Google Scholar] [CrossRef]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef]
- Ribic, C.M.; Sargent, D.J.; Moore, M.J.; Thibodeau, S.N.; French, A.J.; Goldberg, R.M.; Hamilton, S.R.; Laurent-Puig, P.; Gryfe, R.; Shepherd, L.E.; et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003, 349, 247–257. [Google Scholar] [CrossRef]
- Jover, R.; Zapater, P.; Castells, A.; Llor, X.; Andreu, M.; Cubiella, J.; Balaguer, F.; Sempere, L.; Xicola, R.M.; Bujanda, L.; et al. The efficacy of adjuvant chemotherapy with 5-fluorouracil in colorectal cancer depends on the mismatch repair status. Eur. J. Cancer 2009, 45, 365–373. [Google Scholar] [CrossRef]
- Hemminki, A.; Mecklin, J.P.; Järvinen, H.; Aaltonen, L.A.; Joensuu, H. Microsatellite instability is a favorable prognostic indicator in patients with colorectal cancer receiving chemotherapy. Gastroenterology 2000, 119, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Carethers, J.M.; Smith, E.J.; Behling, C.A.; Nguyen, L.; Tajima, A.; Doctolero, R.T.; Cabrera, B.L.; Goel, A.; Arnold, C.A.; Miyai, K.; et al. Use of 5-fluorouracil and survival in patients with microsatellite-unstable colorectal cancer. Gastroenterology 2004, 126, 394–401. [Google Scholar] [CrossRef]
- Alonso, S.; Saltz, L. The Landmark Series: Chemotherapy for Non-Metastatic Colon Cancer. Ann. Surg. Oncol. 2021, 28, 995–1001. [Google Scholar] [CrossRef]
- Benson, A.B.; Venook, A.P.; Adam, M.; Chang, G.; Chen, Y.J.; Ciombor, K.K.; Cohen, S.A.; Cooper, H.S.; Deming, D.; Garrido-Laguna, I.; et al. Colon Cancer, Version 3.2024, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc Netw. 2024, 22, e240029. [Google Scholar] [CrossRef] [PubMed]
- Argilés, G.; Tabernero, J.; Labianca, R.; Hochhauser, D.; Salazar, R.; Iveson, T.; Laurent-Puig, P.; Quirke, P.; Yoshino, T.; Taieb, J.; et al. Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 1291–1305. [Google Scholar] [CrossRef]
- Chinese Society of Clinical Oncology Csco Diagnosis and Treatment Guidelines for Colorectal Cancer Working Group. Chinese Society of Clinical Oncology (CSCO) diagnosis and treatment guidelines for colorectal cancer 2018 (English version). Chin. J. Cancer Res. 2019, 31, 117–134. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Zhang, L.; Yu, L.; Zhu, Y.; Fang, H.; Chen, B.; Zhang, H. Log odds of positive lymph nodes is an excellent prognostic factor for patients with rectal cancer after neoadjuvant chemoradiotherapy. Ann. Transl. Med. 2021, 9, 637. [Google Scholar] [CrossRef]
- Eveno, C.; Nemeth, J.; Soliman, H.; Praz, F.; de The, H.; Valleur, P.; Talbot, I.C.; Pocard, M. Association between a high number of isolated lymph nodes in T1 to T4 N0M0 colorectal cancer and the microsatellite instability phenotype. Arch. Surg. 2010, 145, 12–17. [Google Scholar] [CrossRef]
- Søreide, K.; Nedrebø, B.S.; Søreide, J.A.; Slewa, A.; Kørner, H. Lymph node harvest in colon cancer: Influence of microsatellite instability and proximal tumor location. World J. Surg. 2009, 33, 2695–2703. [Google Scholar] [CrossRef]
- Belt, E.J.; te Velde, E.A.; Krijgsman, O.; Brosens, R.P.; Tijssen, M.; van Essen, H.F.; Stockmann, H.B.; Bril, H.; Carvalho, B.; Ylstra, B.; et al. High lymph node yield is related to microsatellite instability in colon cancer. Ann. Surg. Oncol. 2012, 19, 1222–1230. [Google Scholar] [CrossRef]
- Kang, S.; Na, Y.; Joung, S.Y.; Lee, S.I.; Oh, S.C.; Min, B.W. The significance of microsatellite instability in colorectal cancer after controlling for clinicopathological factors. Medicine (Baltimore) 2018, 97, e0019. [Google Scholar] [CrossRef]
- Aoba, T.; Ebata, T.; Yokoyama, Y.; Igami, T.; Sugawara, G.; Takahashi, Y.; Nimura, Y.; Nagino, M. Assessment of nodal status for perihilar cholangiocarcinoma: Location, number, or ratio of involved nodes. Ann. Surg. 2013, 257, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Appleby, D.H.; Zhang, X.; Gan, L.; Wang, J.J.; Wan, F. Comparison of three lymph node staging schemes for predicting outcome in patients with gastric cancer. Br. J. Surg. 2013, 100, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Morales-Oyarvide, V.; Rubinson, D.A.; Dunne, R.F.; Kozak, M.M.; Bui, J.L.; Yuan, C.; Qian, Z.R.; Babic, A.; Da Silva, A.; Nowak, J.A.; et al. Lymph node metastases in resected pancreatic ductal adenocarcinoma: Predictors of disease recurrence and survival. Br. J. Cancer 2017, 117, 1874–1882. [Google Scholar] [CrossRef]
- Weiser, M.R. AJCC 8th Edition: Colorectal Cancer. Ann. Surg. Oncol. 2018, 25, 1454–1455. [Google Scholar] [CrossRef]
- Camp, R.L.; Dolled-Filhart, M.; Rimm, D.L. X-tile: A new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin. Cancer Res. 2004, 10, 7252–7259. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Alban, T.J.; Parthasarathy, P.; Mokhtari, M.; Toro Castano, P.; Cohen, M.L.; Lathia, J.D.; Ahluwalia, M.; Tiwari, P. Sexually dimorphic computational histopathological signatures prognostic of overall survival in high-grade gliomas via deep learning. Sci. Adv. 2024, 10, eadi0302. [Google Scholar] [CrossRef]
- Zhu, P.; Dai, C.; Xiong, Y.; Qu, J.; Wang, R.; Yao, L.; Zhang, F.; Hou, J.; Zeng, M.; Guo, J.; et al. Tumor contour irregularity on preoperative CT predicts prognosis in renal cell carcinoma: A multi-institutional study. eClinicalMedicine 2024, 75, 102775. [Google Scholar] [CrossRef]
- Ye, Y.H.; Xin, H.Y.; Li, J.L.; Li, N.; Pan, S.Y.; Chen, L.; Pan, J.Y.; Hu, Z.Q.; Wang, P.C.; Luo, C.B.; et al. Development and validation of a stromal-immune signature to predict prognosis in intrahepatic cholangiocarcinoma. Clin. Mol. Hepatol. 2024, 30, 914–928. [Google Scholar] [CrossRef]
- Adamoski, D.; dos Reis, L.M.; Mafra, A.C.P.; Corrêa-da-Silva, F.; Moraes-Vieira, P.M.M.; Berindan-Neagoe, I.; Calin, G.A.; Dias, S.M.G. HuR controls glutaminase RNA metabolism. Nat. Commun. 2024, 15, 5620. [Google Scholar] [CrossRef]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef] [PubMed]
- Overman, M.J.; McDermott, R.; Leach, J.L.; Lonardi, S.; Lenz, H.J.; Morse, M.A.; Desai, J.; Hill, A.; Axelson, M.; Moss, R.A.; et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 2017, 18, 1182–1191. [Google Scholar] [CrossRef] [PubMed]
- Lenz, H.J.; Van Cutsem, E.; Luisa Limon, M.; Wong, K.Y.M.; Hendlisz, A.; Aglietta, M.; Garcia-Alfonso, P.; Neyns, B.; Luppi, G.; Cardin, D.B.; et al. First-Line Nivolumab Plus Low-Dose Ipilimumab for Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: The Phase II CheckMate 142 Study. J. Clin. Oncol. 2022, 40, 161–170. [Google Scholar] [CrossRef]
- André, T.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef]
- Diaz, L.A., Jr.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): Final analysis of a randomised, open-label, phase 3 study. Lancet Oncol. 2022, 23, 659–670. [Google Scholar] [CrossRef] [PubMed]
- Popat, S.; Hubner, R.; Houlston, R.S. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol. 2005, 23, 609–618. [Google Scholar] [CrossRef]
- Platt, J.R.; Ansett, J.; Seligmann, J.F.; West, N.P.; Tolan, D.J.M. The impact of mismatch repair status and systemic inflammatory markers on radiological staging in colon cancer. Br. J. Radiol. 2023, 96, 20230098. [Google Scholar] [CrossRef]
- Germano, G.; Amirouchene-Angelozzi, N.; Rospo, G.; Bardelli, A. The Clinical Impact of the Genomic Landscape of Mismatch Repair-Deficient Cancers. Cancer Discov. 2018, 8, 1518–1528. [Google Scholar] [CrossRef]
- Tong, G.; Zhang, G.; Hu, Y.; Xu, X.; Wang, Y. Correlation between mismatch repair statuses and the prognosis of stage I-IV colorectal cancer. Front. Oncol. 2023, 13, 1278398. [Google Scholar] [CrossRef]
- Chalabi, M.; Fanchi, L.F.; Dijkstra, K.K.; Van den Berg, J.G.; Aalbers, A.G.; Sikorska, K.; Lopez-Yurda, M.; Grootscholten, C.; Beets, G.L.; Snaebjornsson, P.; et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 2020, 26, 566–576. [Google Scholar] [CrossRef]
- Ludford, K.; Raghav, K.; Murphy, M.A.B.; Fleming, N.D.; Nelson, D.; Lee, M.S.; Smaglo, B.G.; You, Y.N.; Tillman, M.M.; Kamiya-Matsuoka, C.; et al. Neoadjuvant pembrolizumab in localized/locally advanced solid tumors with mismatch repair deficiency. Ann. Oncol. 2021, 32, S1210. [Google Scholar] [CrossRef]
- Cercek, A.; Lumish, M.; Sinopoli, J.; Weiss, J.; Shia, J.; Lamendola-Essel, M.; El Dika, I.H.; Segal, N.; Shcherba, M.; Sugarman, R.; et al. PD-1 Blockade in Mismatch Repair-Deficient, Locally Advanced Rectal Cancer. N. Engl. J. Med. 2022, 386, 2363–2376. [Google Scholar] [CrossRef] [PubMed]
- Lau, D.; Kalaitzaki, E.; Church, D.N.; Pandha, H.; Tomlinson, I.; Annels, N.; Gerlinger, M.; Sclafani, F.; Smith, G.; Begum, R.; et al. Rationale and design of the POLEM trial: Avelumab plus fluoropyrimidine-based chemotherapy as adjuvant treatment for stage III mismatch repair deficient or POLE exonuclease domain mutant colon cancer: A phase III randomised study. ESMO Open 2020, 5, e000638. [Google Scholar] [CrossRef]
- Chalabi, M.; Verschoor, Y.L.; Tan, P.B.; Balduzzi, S.; Van Lent, A.U.; Grootscholten, C.; Dokter, S.; Büller, N.V.; Grotenhuis, B.A.; Kuhlmann, K.; et al. Neoadjuvant Immunotherapy in Locally Advanced Mismatch Repair-Deficient Colon Cancer. N. Engl. J. Med. 2024, 390, 1949–1958. [Google Scholar] [CrossRef] [PubMed]
- Taieb, J.; Svrcek, M.; Cohen, R.; Basile, D.; Tougeron, D.; Phelip, J.M. Deficient mismatch repair/microsatellite unstable colorectal cancer: Diagnosis, prognosis and treatment. Eur. J. Cancer 2022, 175, 136–157. [Google Scholar] [CrossRef]
- Li, T.; Yang, Y.; Wu, W.; Fu, Z.; Cheng, F.; Qiu, J.; Li, Q.; Zhang, K.; Luo, Z.; Qiu, Z.; et al. Prognostic implications of ENE and LODDS in relation to lymph node-positive colorectal cancer location. Transl. Oncol. 2021, 14, 101190. [Google Scholar] [CrossRef]
- Baqar, A.R.; Wilkins, S.; Wang, W.; Oliva, K.; McMurrick, P. Log odds of positive lymph nodes is prognostically equivalent to lymph node ratio in non-metastatic colon cancer. BMC Cancer 2020, 20, 762. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Zhang, C.H.; Pan, Y.B.; Biondi, A.; Fico, V.; Persiani, R.; Wu, S.; Gao, Y.J.; Chen, H.M.; Shi, O.M.; et al. Prognosis of colorectal cancer patients is associated with the novel log odds of positive lymph nodes scheme: Derivation and external validation. J. Cancer 2020, 11, 1702–1711. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, T.; Shi, Q.; Zhu, G.; Zhu, S.; Hou, F. Tumor-draining lymph nodes: Opportunities, challenges, and future directions in colorectal cancer immunotherapy. J. Immunother. Cancer 2024, 12, e008026. [Google Scholar] [CrossRef]
- Lee, S.H.; Pankaj, A.; Neyaz, A.; Ono, Y.; Rickelt, S.; Ferrone, C.; Ting, D.; Patil, D.T.; Yilmaz, O.; Berger, D.; et al. Immune microenvironment and lymph node yield in colorectal cancer. Br. J. Cancer 2023, 129, 917–924. [Google Scholar] [CrossRef]
- Betge, J.; Harbaum, L.; Pollheimer, M.J.; Lindtner, R.A.; Kornprat, P.; Ebert, M.P.; Langner, C. Lymph node retrieval in colorectal cancer: Determining factors and prognostic significance. Int. J. Color. Dis. 2017, 32, 991–998. [Google Scholar] [CrossRef]
- Shin, U.S.; Cho, S.S.; Moon, S.M.; Park, S.H.; Jee, S.H.; Jung, E.J.; Hwang, D.Y. Is microsatellite instability really a good prognostic factor of colorectal cancer? Ann. Coloproctol. 2014, 30, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Scarinci, A.; Di Cesare, T.; Cavaniglia, D.; Neri, T.; Colletti, M.; Cosenza, G.; Liverani, A. The impact of log odds of positive lymph nodes (LODDS) in colon and rectal cancer patient stratification: A single-center analysis of 323 patients. Updates Surg. 2018, 70, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Wilkinson, K.H.; Sheka, A.C.; Leverson, G.E.; Kennedy, G.D. The Log Odds of Positive Lymph Nodes Stratifies and Predicts Survival of High-Risk Individuals Among Stage III Rectal Cancer Patients. Oncologist 2016, 21, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, T.; Ishihara, S.; Sunami, E.; Kitayama, J.; Watanabe, T. Log odds of positive lymph nodes as a prognostic indicator in stage IV colorectal cancer patients undergoing curative resection. J. Surg. Oncol. 2015, 111, 465–471. [Google Scholar] [CrossRef]
- Dai, X.; Dai, Z.; Fu, J.; Liang, Z.; Du, P.; Wu, T. Prognostic significance of negative lymph node count in microsatellite instability-high colorectal cancer. World J. Surg. Oncol. 2024, 22, 186. [Google Scholar] [CrossRef]
- Tang, J.; Peng, W.; Tian, C.; Zhang, Y.; Ji, D.; Wang, L.; Jin, K.; Wang, F.; Shao, Y.; Wang, X.; et al. Molecular characteristics of early-onset compared with late-onset colorectal cancer: A case controlled study. Int. J. Surg. 2024, 110, 4559–4570. [Google Scholar] [CrossRef]
- Puccini, A.; Lenz, H.J.; Marshall, J.L.; Arguello, D.; Raghavan, D.; Korn, W.M.; Weinberg, B.A.; Poorman, K.; Heeke, A.L.; Philip, P.A.; et al. Impact of Patient Age on Molecular Alterations of Left-Sided Colorectal Tumors. Oncologist 2019, 24, 319–326. [Google Scholar] [CrossRef]
- Yiu, R.; Qiu, H.; Lee, S.H.; García-Aguilar, J. Mechanisms of microsatellite instability in colorectal cancer patients in different age groups. Dis. Colon Rectum 2005, 48, 2061–2069. [Google Scholar] [CrossRef]
- Chen, F.; Chen, J.; Luo, D.; Zhang, R.; Yang, Y.; Li, Q.; Li, X. Prognosis and clinicopathological features of patients with early-onset and late-onset colorectal cancer with second primary malignancies. J. Gastroenterol. Hepatol. 2025, 40, 133–141. [Google Scholar] [CrossRef]
- Svrcek, M.; Lascols, O.; Cohen, R.; Collura, A.; Jonchère, V.; Fléjou, J.F.; Buhard, O.; Duval, A. MSI/MMR-deficient tumor diagnosis: Which standard for screening and for diagnosis? Diagnostic modalities for the colon and other sites: Differences between tumors. Bull. Cancer 2019, 106, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Loft, M.; To, Y.H.; Gibbs, P.; Tie, J. Clinical application of circulating tumour DNA in colorectal cancer. lancet Gastroenterol. Hepatol. 2023, 8, 837–852. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Zeng, D.; Zhou, R.; Shi, M.; Liao, W. Tumor Microenvironment Evaluation for Gastrointestinal Cancer in the Era of Immunotherapy and Machine Learning. Front. Immunol. 2022, 13, 819807. [Google Scholar] [CrossRef] [PubMed]
Variable | Univariate Analysis HR (95% CI) | p-Value | Multivariate Analysis HR (95% CI) | p-Value | |
---|---|---|---|---|---|
Sex | Female | Reference | NI | ||
Male | 1.027 (0.596–1.770) | 0.923 | |||
Age | LOCRC | Reference | Reference | ||
EOCRC | 0.452 (0.213–0.959) | 0.038 | 0.394 (0.185–0.839) | 0.016 | |
Location | Rectum | Reference | NI | ||
Left-sided colon | 0.665 (0.262–1.684) | 0.389 | |||
Right-sided colon | 0.949 (0.469–1.917) | 0.883 | |||
Surgical procedures | Open | Reference | NI | ||
Laparoscopic | 0.898 (0.475–1.695) | 0.739 | |||
Histologic type | Adenocarcinoma | Reference | NI | ||
Mucinous/ Signet ring cell | 1.689 (0.758–3.766) | 0.200 | |||
Differentiation | Poor | Reference | Reference | ||
Moderate/well | 0.371 (0.207–0.664) | <0.001 | 0.557 (0.304–1.023) | 0.059 | |
Vascular invasion | Negative | Reference | Reference | ||
Positive | 3.146 (1.794–5.518) | <0.001 | 1.056 (0.541–2.062) | 0.874 | |
Perineural invasion | Negative | Reference | Reference | ||
Positive | 2.915 (1.581–5.373) | <0.001 | 1.147 (0.475–2.771) | 0.760 | |
T stage | 1/2 | Reference | Reference | ||
3 | 4.285 (0.965–19.036) | 0.056 | 2.628 (0.568–12.163) | 0.217 | |
4 | 11.860 (2.651–53.063) | 0.001 | 4.141 (0.827–20.745) | 0.084 | |
N stage | 0 | Reference | Reference | ||
1 | 7.312 (3.777–14.794) | <0.001 | 5.547 (2.722–11.303) | <0.001 | |
2 | 11.282 (5.349–23.794) | <0.001 | 7.728 (3.348–17.839) | <0.001 | |
TLNs | <12 | Reference | NI | ||
≥12 | 0.757 (0.233–2.459) | 0.643 |
Variable | Univariate Analysis HR (95% CI) | p-Value | Multivariate Analysis HR (95% CI) | p-Value | |
---|---|---|---|---|---|
Sex | Female | Reference | NI | ||
Male | 0.897 (0.564–1.429) | 0.648 | |||
Age | LOCRC | Reference | NI | ||
EOCRC | 0.696 (0.399–1.213) | 0.201 | |||
Location | Rectum | Reference | NI | ||
Left-sided colon | 0.754 (0.347–1.636) | 0.475 | |||
Right-sided colon | 0.921 (0.506–1.677) | 0.788 | |||
Surgical procedures | Open | Reference | NI | ||
Laparoscopic | 0.995 (0.591–1.675) | 0.984 | |||
Histologic type | Adenocarcinoma | Reference | Reference | ||
Mucinous/ Signet ring cell | 2.145 (1.122–4.097) | 0.021 | 1.531 (0.783–2.995) | 0.213 | |
Differentiation | Poor | Reference | Reference | ||
Moderate/well | 0.389 (0.238–0.637) | <0.001 | 0.635 (0.375–1.076) | 0.091 | |
Vascular invasion | Negative | Reference | Reference | ||
Positive | 3.288 (2.030–5.326) | <0.001 | 0.988 (0.541–1.835) | 0.969 | |
Perineural invasion | Negative | Reference | Reference | ||
Positive | 2.859 (1.708–4.788) | <0.001 | 1.593 (0.705–3.599) | 0.263 | |
T stage | 1/2 | Reference | Reference | ||
3 | 5.105 (1.229–21.211) | 0.025 | 3.104 (0.758–13.545) | 0.113 | |
4 | 11.593 (2.785–48.260) | <0.001 | 3.545 (0.763–16.476) | 0.106 | |
N stage | 0 | Reference | Reference | ||
1 | 5.611 (3.255–9.673) | <0.001 | 4.147 (2.246–7.657) | <0.001 | |
2 | 9.180 (4.984–16.908) | <0.001 | 6.243 (3.021–12.902) | <0.001 | |
TLNs | <12 | Reference | NI | ||
≥12 | 0.621 (0.243–1.590) | 0.321 |
Staging System | OS | DFS | |||
---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | ||
pN | pN0 | Reference | Reference | ||
pN1 | 5.550 (2.645–11.648) | <0.001 | 5.773 (23.346–9.963) | <0.001 | |
pN2 | 6.836 (2.800–16.688) | <0.001 | 9.264 (5.030–17.059) | <0.001 | |
NLN | NLN0 | Reference | Reference | ||
NLN1 | 2.670 (1.309–5.444) | 0.007 | 1.923 (1.095–3.378) | 0.023 | |
NLN2 | 6.242 (2.916–13.360) | <0.001 | 4.622 (2.511–8.510) | <0.001 | |
LNR | LNR0 | Reference | Reference | ||
LNR1 | 7.107 (3.757–13.446) | <0.001 | 5.178 (3.048–8.794) | <0.001 | |
LNR2 | 13.082 (6.140–27.870) | <0.001 | 10.397 (5.547–19.488) | <0.001 | |
LOODS | LOODS0 | Reference | Reference | ||
LOODS1 | 3.683 (699–7.984) | <0.001 | 3.735 (2.019–6.911) | <0.001 | |
LOODS2 | 17.432 (8.758–34.699) | <0.001 | 12.195 (6.875–21.630) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Z.; Luo, D.; Chen, F.; Chen, J.; Shan, Z.; Weng, J.; Zhang, Y.; Li, Q.; Li, X. Reassessing the Prognostic Value of Lymph Node Metastasis in Deficient Mismatch Repair Colorectal Cancer. Curr. Oncol. 2025, 32, 254. https://doi.org/10.3390/curroncol32050254
Ye Z, Luo D, Chen F, Chen J, Shan Z, Weng J, Zhang Y, Li Q, Li X. Reassessing the Prognostic Value of Lymph Node Metastasis in Deficient Mismatch Repair Colorectal Cancer. Current Oncology. 2025; 32(5):254. https://doi.org/10.3390/curroncol32050254
Chicago/Turabian StyleYe, Zilan, Dakui Luo, Fan Chen, Jiayu Chen, Zezhi Shan, Junyong Weng, Yu Zhang, Qingguo Li, and Xinxiang Li. 2025. "Reassessing the Prognostic Value of Lymph Node Metastasis in Deficient Mismatch Repair Colorectal Cancer" Current Oncology 32, no. 5: 254. https://doi.org/10.3390/curroncol32050254
APA StyleYe, Z., Luo, D., Chen, F., Chen, J., Shan, Z., Weng, J., Zhang, Y., Li, Q., & Li, X. (2025). Reassessing the Prognostic Value of Lymph Node Metastasis in Deficient Mismatch Repair Colorectal Cancer. Current Oncology, 32(5), 254. https://doi.org/10.3390/curroncol32050254