Equivalent Disease-Specific Survival Between Rural and Urban Osteosarcoma Patients: A Retrospective Analysis of the SEER Database
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Resource
2.2. Population Selection
2.3. Variables and Outcomes
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DSS | Disease-specific survival |
SEER | Surveillance, Epidemiology, and End Results |
References
- Lindsey, B.A.; Markel, J.E.; Kleinerman, E.S. Osteosarcoma overview. Rheumatol. Ther. 2017, 4, 25–43. [Google Scholar] [CrossRef] [PubMed]
- Arora, R.D.; Shaikh, H. Osteosarcoma (Osteogenic Sarcoma). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Jafari, F.; Javdansirat, S.; Sanaie, S.; Naseri, A.; Shamekh, A.; Rostamzadeh, D.; Dolati, S. Osteosarcoma: A comprehensive review of management and treatment strategies. Ann. Diagn. Pathol. 2020, 49, 151654. [Google Scholar] [CrossRef] [PubMed]
- Longhi, A.; Errani, C.; De Paolis, M.; Mercuri, M.; Bacci, G. Primary bone osteosarcoma in the pediatric age: State of the art. Cancer Treat. Rev. 2006, 32, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Xu, S.F.; Yu, X.C. Clinical Analysis of Osteosarcoma Patients Treated with High-Dose Methotrexate-Free Neoadjuvant Chemotherapy. Curr. Oncol. 2014, 21, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Duchman, K.R.; Gao, Y.; Miller, B.J. Prognostic factors for survival in patients with high-grade osteosarcoma using the surveillance, epidemiology, and end results (SEER) program database. Cancer Epidemiol. 2015, 39, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Spreafico, M.; Hazewinkel, A.-D.; Gelderblom, H.; Fiocco, M. Dynamic Prediction of Overall Survival for Patients with Osteosarcoma: A Retrospective Analysis of the EURAMOS-1 Clinical Trial Data. Curr. Oncol. 2024, 31, 3630–3642. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wang, Q.; Li, Y. Prediction and evaluation of neoadjuvant chemotherapy using the dual mechanisms of 99mTc-MIBI scintigraphy in patients with osteosarcoma. J. Bone Oncol. 2019, 17, 100250. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.; D’Agostino, D.; Gregory, P. Addressing rural health challenges head on. Mo. Med. 2017, 114, 363–366. [Google Scholar] [PubMed]
- Wendt, R.; Gao, Y.; Miller, B.J. Rural patients are at risk for increased stage at presentation and diminished overall survival in osteosarcoma. Cancer Epidemiol. 2019, 61, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.A.; Thomas, S.I.; Swedek, M.; Sharma, D.; Wysong, A. Rural patients with melanoma exhibit primary tumors in high-risk locations and reduced disease-specific survival: A retrospective cohort analysis of the 2000 to 2020 SEER database. Dermatol Surg. 2025, 51, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Cascone, J.; Ituarte, B.; Patel, V.; Mompoint, A.; Taylor, M.; Daon, E. The contribution of rural/urban residence to incidence and survival in thymoma and thymic carcinoma, a retrospective cohort study of the SEER 2000-2020 database. Cancer Epidemiol. 2024, 92, 102645. [Google Scholar] [CrossRef] [PubMed]
- Huston-Paterson, H.H.; Mao, Y.; Tseng, C.; Kim, J.; Bobanga, I.; Wu, J.; Yeh, M. Rural-urban disparities in the continuum of thyroid cancer care: Analysis of 92,794 cases. Thyroid. 2024, 34, 635–645. [Google Scholar] [CrossRef] [PubMed]
- US Department of Agriculture, Economic Research Service. Rural-Urban Continuum Codes. January 2024. Available online: https://www.ers.usda.gov/data-products/rural-urban-continuum-codes (accessed on 12 February 2025).
- Young, J.L., Jr.; Roffers, S.D.; Ries, L.A.G.; Fritz, A.G.; Hurlbut, A.A. (Eds.) SEER Summary Staging Manual—2000: Codes and Coding Instructions; NIH Pub. No. 01-4969; National Cancer Institute: Bethesda, MD, USA, 2001. [Google Scholar]
- Anzalone, A.J.; Horswell, R.; Hendricks, B.M.; Chu, S.; Hillegass, W.B.; Beasley, W.H.; Harper, J.R.; Kimble, W.; Rosen, C.J.; Miele, L.; et al. Higher hospitalization and mortality rates among SARS-CoV-2-infected persons in rural america. J. Rural. Health 2023, 39, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Denslow, S.; Wingert, J.R.; Hanchate, A.D.; Rote, A.; Westreich, D.; Sexton, L.; Cheng, K.; Curtis, J.; Jones, W.S.; Lanou, A.J.; et al. Rural-urban outcome differences associated with COVID-19 hospitalizations in north carolina. PLoS ONE 2022, 17, e0271755. [Google Scholar] [CrossRef]
- Thomas, K.L.; Dobis, E.A.; McGranahan, D. The Nature of the Rural-Urban Mortality Gap (Report No. EIB-265); U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2024. [CrossRef]
- Blackwell, D.L.; Lucas, J.W.; Clarke, T.C. Summary health statistics for U.S. adults: National health interview survey, 2012. Vital Health Stat 10 2014, 260, 1–161. [Google Scholar]
- Khullar, D.; Chokshi, D. Health, income, & poverty: Where we are & what could help. Health Aff. 2018, 10, 2–3. [Google Scholar] [CrossRef]
- Wang, Z.; Goodman, M.; Saba, N.; El-Rayes, B.F. Incidence and prognosis of gastroesophageal cancer in rural, urban, and metropolitan areas of the united states. Cancer 2013, 119, 4020–4027. [Google Scholar] [CrossRef] [PubMed]
- Brungardt, J.G.; Almoghrabi, O.A.; Moore, C.B.; Chen, G.J.; Nagji, A.S. Rural-urban differences in esophagectomy for cancer. Kans. J. Med. 2021, 14, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.; Landier, W.; Paskett, E.D.; Peters, K.B.; Merrill, J.K.; Phillips, J.; Osarogiagbon, R.U. Rural-urban disparities in cancer outcomes: Opportunities for future research. J. Natl. Cancer Inst. 2022, 114, 940–952. [Google Scholar] [CrossRef] [PubMed]
- Leider, J.P.; Meit, M.; McCullough, J.M.; Resnick, B.; Dekker, D.; Alfonso, Y.N.; Bishai, D. The state of rural public health: Enduring needs in a new decade. Am. J. Public Health 2020, 110, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
Total n = 5343 | Urban (n = 4845) | Rural (n = 498) | p-Value |
---|---|---|---|
Age at diagnosis (years) | 0.016 | ||
<40 | 3442 (71.0%) | 325 (65.3%) | |
40–49 | 398 (8.2%) | 36 (7.2%) | |
50–59 | 332 (6.9%) | 41 (8.2%) | |
60–69 | 304 (6.3%) | 44 (8.8%) | |
70–79 | 229 (4.7%) | 29 (5.8%) | |
80+ | 140 (2.9%) | 23 (4.6%) | |
Sex | 0.507 | ||
Male | 2684 (55.4%) | 284 (57.0%) | |
Female | 2161 (44.6%) | 214 (43.0%) | |
Race and ethnicity | <0.001 | ||
NH White | 2282 (47.2%) | 375 (75.5%) | |
NH Black | 708 (14.7%) | 57 (11.5%) | |
NH API | 460 (9.5%) | 11 (2.2%) | |
NH AIAN | 25 (0.5%) | 9 (1.8%) | |
Hispanic (Any Race) | 1355 (28.1%) | 45 (9.1%) | |
Annual income ∞ | <0.001 | ||
<$74,999 | 1959 (40.4%) | 455 (91.4%) | |
$75,000+ | 2886 (59.6%) | 43 (8.6%) | |
Primary tumor location | 0.094 | ||
Limbs | 3534 (74.1%) | 337 (69.2%) | |
Cranial | 516 (10.8%) | 55 (11.3%) | |
Spine | 124 (2.6%) | 19 (3.9%) | |
Thoracic | 141 (3.0%) | 16 (3.3%) | |
Pelvic | 455 (9.5%) | 60 (12.3%) | |
Disease stage | 0.694 | ||
Localized | 1421 (37.0%) | 148 (38.5%) | |
Regional | 1498 (39.0%) | 151 (39.3%) | |
Distant | 921 (24.0%) | 85 (22.1%) | |
Histologic subtype | 0.645 | ||
Fibroblastic | 198 (4.1%) | 20 (4.0%) | |
Osteosarcoma, NOS | 3279 (67.6%) | 341 (68.5%) | |
Chondroblastic | 696 (14.4%) | 64 (12.9%) | |
Telangiectatic | 147 (3.0%) | 13 (2.6%) | |
Osteosarcoma in Paget Disease of Bone | 47 (1.0%) | 2 (0.4%) | |
Small Cell | 40 (0.8%) | 6 (1.2%) | |
Central Osteosarcoma | 137 (2.8%) | 18 (3.6%) | |
Intraosseous Well-Differentiated | 14 (0.3%) | 2 (0.4%) | |
Parosteal | 205 (4.2%) | 22 (4.4%) | |
Periosteal | 53 (1.1%) | 9 (1.8%) | |
High-Grade Surface Osteosarcoma | 29 (0.6%) | 1 (0.2%) | |
Tumor size, mm (IQR) | 86.0 (60.0–122.0) | 87.0 (60.0–121.5) | 0.692 |
Tumor Grade | 0.601 | ||
Well-Differentiated (I) | 146 (5.1%) | 19 (6.1%) | |
Moderately-Differentiated (II) | 224 (7.8%) | 26 (8.4%) | |
Poorly Differentiated (III) | 858 (29.9%) | 99 (32.0%) | |
Undifferentiated (IV) | 1641 (57.2%) | 165 (53.4%) | |
Chemotherapy * | 3810 (78.6%) | 359 (72.1%) | 0.001 |
Radiation therapy * | 486 (10.1%) | 54 (10.9%) | 0.585 |
Total n = 5343 | aHR ‡ | 95% CI | p-Value |
---|---|---|---|
Age at diagnosis (years) | |||
<40 | Reference | ||
40–49 | 1.63 | 1.34–1.98 | <0.001 |
50–59 | 2.44 | 2.01–2.95 | <0.001 |
60–69 | 2.93 | 2.41–3.54 | <0.001 |
70–79 | 4.01 | 3.24–4.97 | <0.001 |
80+ | 8.50 | 6.60–10.95 | <0.001 |
Sex | |||
Male | Reference | ||
Female | 0.86 | 0.77–0.95 | 0.003 |
Race and ethnicity | |||
NH White | Reference | ||
NH Black | 1.17 | 1.00–1.36 | 0.044 |
NH API | 1.01 | 0.83–1.23 | 0.920 |
NH AIAN | 2.21 | 1.31–3.72 | 0.003 |
Hispanic (any race) | 1.04 | 0.91–1.18 | 0.575 |
Annual income | |||
<$74,999 | Reference | ||
$75,000+ | 0.84 | 0.75–0.94 | 0.002 |
Rural-urban living | |||
Urban | Reference | ||
Rural | 1.03 | 0.86–1.24 | 0.757 |
Primary tumor location | |||
Limbs | Reference | ||
Cranial | 1.06 | 0.88–1.27 | 0.545 |
Spine | 1.79 | 1.36–2.36 | <0.001 |
Thoracic | 0.93 | 0.69–1.26 | 0.646 |
Pelvic | 2.12 | 1.82–2.46 | <0.001 |
Histologic subtype | |||
Fibroblastic | Reference | ||
Osteosarcoma, NOS | 1.39 | 1.04–1.86 | 0.028 |
Chondroblastic | 1.35 | 0.98–1.86 | 0.062 |
Telangiectatic | 1.03 | 0.67–1.59 | 0.905 |
Osteosarcoma in Paget Disease of Bone | 1.16 | 0.64–2.09 | 0.632 |
Small Cell | 1.18 | 0.66–2.12 | 0.574 |
Central Osteosarcoma | 0.91 | 0.59–1.42 | 0.691 |
Intraosseous Well-Differentiated | 0.18 | 0.02–1.28 | 0.086 |
Parosteal | 0.28 | 0.16–0.51 | <0.001 |
Periosteal | 0.65 | 0.32–1.32 | 0.233 |
High-Grade Surface Osteosarcoma | 1.47 | 0.72–3.02 | 0.295 |
Disease stage | |||
Localized | Reference | ||
Regional | 1.45 | 1.27–1.66 | <0.001 |
Distant | 4.67 | 4.07–5.36 | <0.001 |
Tumor grade | |||
Well-Differentiated (I) | Reference | ||
Moderately-Differentiated (II) | 1.06 | 0.57–1.99 | 0.851 |
Poorly Differentiated (III) | 3.12 | 1.84–5.29 | <0.001 |
Undifferentiated (IV) | 2.99 | 1.77–5.03 | <0.001 |
Tumor size (cm) | 1.00 | 1.00–1.00 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woods, K.S.; Taylor, M.A.; Silberstein, P.T. Equivalent Disease-Specific Survival Between Rural and Urban Osteosarcoma Patients: A Retrospective Analysis of the SEER Database. Curr. Oncol. 2025, 32, 199. https://doi.org/10.3390/curroncol32040199
Woods KS, Taylor MA, Silberstein PT. Equivalent Disease-Specific Survival Between Rural and Urban Osteosarcoma Patients: A Retrospective Analysis of the SEER Database. Current Oncology. 2025; 32(4):199. https://doi.org/10.3390/curroncol32040199
Chicago/Turabian StyleWoods, Kate S., Mitchell A. Taylor, and Peter T. Silberstein. 2025. "Equivalent Disease-Specific Survival Between Rural and Urban Osteosarcoma Patients: A Retrospective Analysis of the SEER Database" Current Oncology 32, no. 4: 199. https://doi.org/10.3390/curroncol32040199
APA StyleWoods, K. S., Taylor, M. A., & Silberstein, P. T. (2025). Equivalent Disease-Specific Survival Between Rural and Urban Osteosarcoma Patients: A Retrospective Analysis of the SEER Database. Current Oncology, 32(4), 199. https://doi.org/10.3390/curroncol32040199