Obesity and Risk of Pre- and Postmenopausal Breast Cancer in Africa: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Data Sources and Search Strategy
2.3. Inclusion and Exclusion Criteria
2.4. Study Selection and Data Collection Process
2.5. Data Extraction and Items
2.6. Quality Assessment
Author, Year and Country | EnrollmentPeriod | Study Type | Sampling Size of Case/ ControlParticipants | Materials/Method of Data Collection | Outcomes | Statistical Methods | Results | Adjustment Variables | Limitations |
---|---|---|---|---|---|---|---|---|---|
Laamiri FZ et al., 2016, Morocco [38] | 2008–2010 | Case–control | 124/148 | -Basic questionnaire -Method of measuring outcome was not mentioned | BMI | Univariate logistic regression | -BMI: preM BC (OR = 0.994; 95%CI = 0.937–1.05; p = 0.849). | Age | |
Adebamowo CA et al., 2003, Nigeria [39] | 1998–2000 | Case–control | 234/273 | -Face-to-face interviews by trained nurse -Method of measuring outcomes was not mentioned | BMI, height, weight, WC, WHR, HC | Multivariable logistic regression | -WHR: postM BC (aOR = 2.67; 95% CI = 1.05–6.80; p = 0.04), and preM BC (aOR = 1.80; 95%CI = 0.85–3.81; p = 0.13). | Age, height | Selection and recall bias, absence of information about breastfeeding and the features of a “Western lifestyle” |
Adebamowo CA et al., 2003, Nigeria [40] | 1998–2000 | Case–control | 234/273 | -Questionnaire -Outcomes were measured directly by trained nurse | BMI, height, weight | Multivariable logistic regression | -BMI ≥ 30 kg/m2: preM (aOR = 1.21; 95%CI = 0.56–2.60; p > 0.05), and postM BC (aOR = 1.82; 95%CI = 0.78–4.31; p > 0.05). -Increasing height: preM (aOR = 1.05; 95%CI = 1.01–1.10; p = 0.05), and postM BC (aOR = 1.07; 95%CI = 1.01–1.13, p = 0.05). | Age, age at onset of menarche, regularity of periods, social status, later age at first full-term pregnancy | |
Okobia MN et al., 2006, Nigeria [41] | 2002–2004 | Case–control | 250/250 | Unknown | WHR, BMI, height | Conditional logistic regression | -WHR:preM (aOR = 2.56; 95%CI = 1.48–4.41; p < 0.05), and postM BC (aOR = 2.00; 95%CI = 1.04–2.53; p < 0.05). -Increasing height: preM BC (aOR = 1.59; 95% CI = 0.98–2.58), and postM BC (aOR = 1.08; 95%CI = 0.62–1.89). -BMI and weight: not associated with risk of BC in preM and postM BC; WC and HC were not significant predictors of BC risk in preM women. | Age | Recall bias, use of hospital controls, and recruitment of both prevalent and incident cases |
Ogundiran TO et al., 2010, Nigeria [42] | 1998–2009 | Case–control | 1233/1101 | -Structured questionnaire administered -Outcomes were measured directly by research nurses | Height, weight, BMI | Logistic regression | -Height: preM BC (OR = 2.11; 95%CI = 1.46–3.05; p < 0.001), postM BC (OR = 1.75; 95%CI = 1.06–2.88; p < 0.002). -BMI ≥ 28 kg/m2: preM BC (OR = 0.70; 95%CI = 0.50–0.98; p = 0.027), and postM BC (OR = 0.76; 95% CI = 0.48–1.21; p = 0.15). -Weight: preM (OR = 0.78; 95% CI = 0.55–1.12; p = 0.27) and postMBC (OR = 0.90; 95% CI = 0.57–1.44; p = 0.48). | Age at diagnosis, age at menarche, menopause, ethnicity, education, number of live births, age at first live birth, duration of breastfeeding, menopausal status, family history of BC, benign breast disease, hormonal contraceptives, alcohol and height | Cases were older than controls, weight was not recorded in early life such as at the age 18 years, the majority of subjects are preM BC women, limited power to assess the relation of weight and postM BC risk |
Ogundiran TO et al.,2012, Nigeria [43] | 1998–2009 | Case–control | 1233/1101 | -Structured questionnaire -Outcomes were measured directly by research nurses | BMI, height, weight, WHR, WC, HC | Logistic regression models | -WC: preM BC (aOR = 2.40; 95%CI = 1.52–3.78; p < 0.001), and postM BC (OR = 2.21; 95%CI = 1.25–3.91; p < 0.001). -WHR: preM BC (aOR = 2.12; 95% CI = 1.49–2.99; p < 0.001), postM BC (aOR = 2.26; 95% CI = 1.39–3.68; p < 0.001). -HC: inverse association with preM BC (aOR = 0.35; 95%CI = 0.22–0.56; p < 0.001), and postM BC (aOR = 0.38; 95%CI = 0.22–0.66; p < 0.001). | Age at diagnosis or interview, ethnicity, education, age at menarche, number of live births, age at first live birth, duration of breastfeeding, first-degree family history of BC, benign breast disease, hormonal contraceptives, alcohol, menopausal status, height, HC, BMI, WC | Cases were significantly older than controls, residual biases and confounding from variables that we did not collect, inaccurate recall, WC, HC and WHR are indirect measures of abdominal visceral fat |
JordanI et al., 2013, Tanzania [44] | 2004–2007 | Case–control | 115/230 | -Interview by standardized and pre-tested questionnaire -Outcomes were measured directly by trained nurse | BMI at 20 years, BMI at interview | Logistic regression models | -Higher BMI at age 20 years:preM BC (aOR = 1.41; 95%CI = 1.10–1.81; p = 0.01), and postM BC (aOR = 1.38; 95%CI = 1.06–1.80; p = 0.02). -Higher BMI at interview: no association with preM and postM BC. | Age, place of living | |
Wang S et al., 2018, Nigeria [45] | 1998–2015 | Case–control | 1811/2225 | -Structured questionnaire administered -Outcomes were measured directly by research nurses | BMI | Multivariable logistic regression | -BMI ≥ 30 kg/m2: preMBC (aOR = 0.71; 95%CI = 0.57–0.89; p = 0.001), postM BC (aOR = 0.68; 95%CI = 0.52–0.89; p < 0.001). | Age | Model developed and validated in same population, model may not perform well in other African populations, lack of information on other predictors, incompleteness in case reporting in the Ibadan Cancer Registry, same incidence and mortality |
Khalis M et al., 2020, Morocco [46] | 2016–2017 | Case–control | 300/300 | -Face-to-face depth questionnaire -Outcomes were measured directly and through self-reporting | BMI, height, weight, WHR, WC, HC, young-adult BMI, weight gain since the age of 20, body silhouettes, trajectories | Unconditional logistic regression | -Higher WC and HC: preM (aOR = 2.92; 95%CI = 1.33–6.42; p < 0.01), (aOR = 3.00; 95%CI:1.42–6.33; p = 0.01), and post M BC (aOR = 4.46; 95%CI = 1.86–10.66; p < 0.01), (aOR = 4.08; 95%CI:1.76–9.42; p < 0.01). -Body shape at younger ages (6–11 years) was inversely associated with preM BC (aOR = 0.31; 95%CI = 0.12–0.80; p = 0.01), and postM BC; (aOR = 0.40; 95%CI = 0.15–1.07; p = 0.05). -Greatest increase in body shape trajectory had higher risk for both preM (aOR = 2.74; 95%CI = 1.03–7.26; p < 0.01), and postM BC (aOR = 3.56; 95%CI = 1.34–9.44; p < 0.01). -BMI > 30 kg/m2, height, weight, WHR, young-adult BMI (kg/m2), and weight gain since the age of 20 were not significantly associated with BC risk in either preM or postM BC. | Age, area of residence, wealth score number of live births, history of oral contraceptives, history of breastfeeding, age at first full-term pregnancy, physical activity, current BMI | Small sample size, self-report, current body size of our cases may have been affected by the disease, or its symptoms, prior to BC diagnosis |
Brandão M et al., 2021, Mozambique, Sub- SaharanAfrica [47] | 2014–2017 | Case–control | 138/638 | -Face-to-face interviews -Outcomes were measured directly | Height, weight, and BMI | Multivariable logistic regression | -Higher weight and BMI: postM BC (per 1 kg increase: aOR = 1.05; 95%CI, 1.02–1.08; p ≤ 0.001), (per 1 kg/m2 increase: aOR = 1.11; 95%CI = 1.04–1.18; p ≤ 0.001), preM BC (aOR = 0.98; 95%CI = 0.96–0.99; p < 0.001), (aOR = 0.95; 95%CI = 0.91–0.99; p < 0.001). -Height: postM (aOR = 1.87; 95%CI = 1.13–3.10; p = 0.101). | Province, age, education, BMI, menopausal status, height, number of live births | Some missing data, smaller sample size, 3/4 cases had advanced BC at the time of diagnosis |
Akinyemiju T et al., 2021, Nigeria [48] | 2015–2017 | Case–control | 419/286 | -Questionnaire -Outcomes were measured directly by trainedresearchstaff | Height, weight, and BMI | Logistic regression models | In preM/perimenopausal, but not postM women, both higher BMI and weight were significantly associated with reduced risk of BC. | Age, age at menarche, number of pregnancies and births, menopausal status, and prior hypertension diagnosis, BMI, height, weight | Recall bias, BMI, height and weight were recorded at the time of diagnosis: unable to rule out the possibility of reverse causality |
Kamal RM et al., 2022, Egypt [49] | Case–control | 275/30,168 | -Face-to-face interview -Outcomes were measured directly by administration staff and technologists | BMI | Logistic regression model | -BMI (≥25): negative insignificant difference with preM BC (aOR = 0.877; 95%CI = 0.354–2.170; p = 0.776), and statistically significant positive difference with postM BC (aOR = 2.280; 95%CI = 1.071–4.862; p = 0.028). | |||
Jacobs I et al., 2022, South Africa [50] | 2014–2017 | Case–control | 396/396 | -Face-to-face interviews -Outcomes were measured directly | BMI, weight, height, WC | Multivariate logistic regression | -Smaller WC: postM BC(aOR = 1.69; 95% CI = 1.08–2.63; p = 0.020), and preM BC (aOR = 1.30; 95%CI = 0.69–2.44; p = 0.406). -BMI: preM (aOR = 1.01; 95%CI = 0.56–1.81; p = 0.978), postM BC (aOR = 1.18; 95%CI = 0.76–1.83; p = 0.454). | Total energy intake, individual income/month, ethnicity, level of education, physical activity, WC, alcohol, breastfeeding, menopausal status | Limited sample size, no physical examination for control participants, information bias, homogeneity of the study population for some of the individual WCRF/AICR |
Mohammed AM et al., 2023, Egypt [51] | 2020–2021 | Case–control | 112/112 | -Face-to-face interview -Medical records -Outcomes were Measured directly | BMI, WC, weight | Logistic regression | -BMI: preM BC (aOR = 1.406; 95%CI = 1.194–1.656; p < 0.001). -WC: preMBC by 8.6% (aOR = 0.914; 95%CI = 0.868–0.963; p = 0.001). | ||
Oyamienlen CS et al., 2019, Nigeria [52] | 2014–2016 | Case–control | 347/334 | -Structured questionnaire -Method of measuring outcome was not mentioned | BMI, height, weight | Logistic regression | BMI ≥ 30 kg/m2: preM BC (OR = 2.210; 95%CI = 1.246–5.970; p = 0.120), and postM BC (OR = 2.720; 95% CI = 1.204–4.054; p = 0.010). | Resultscannot be generalized to all women in Nigeria, did not explore stagingof BC |
3. Results
3.1. Study Characteristics
3.2. Reported Outcomes
3.3. Obesity and Breast Cancer Risk in Premenopausal Women
3.4. Obesity and the Risk of Breast Cancer in Postmenopausal Women
3.5. Quality Assessment and Risk of Bias
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
IARC Disclaimer
Abbreviations
AICR | American Institute for Cancer Research |
AMP-activated protein kinase | Adenosine monophosphate active protein kinase |
aOR | Adjusted odds ratio |
BC | Breast cancer |
BMI | Body mass index |
ER | Estrogen receptor |
HC | Hip circumference |
IGF-1 | Insulin-like growth factor1 |
CIs | Confidence intervals |
MeSH | Medical Subject Headings |
NIH | National Institute of Health |
OR | Odds ratio |
PRISMA | Preferred Reporting Items for Systematic Review and Meta-Analysis |
RR | Relative risk |
WC | Waist circumference |
WHR | Waist-to-hip ratio |
WHO | World Health Organization |
WCRF | World Cancer Research Fund |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Joko-Fru, W.Y.; Jedy-Agba, E.; Korir, A.; Ogunbiyi, O.; Dzamalala, C.P.; Chokunonga, E.; Wabinga, H.; Manraj, S.; Finesse, A.; Somdyala, N.; et al. The evolving epidemic of breast cancer in sub-Saharan Africa: Results from the African Cancer Registry Network. Int. J. Cancer 2020, 147, 2131–2141. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Lei, L.; Zheng, R.; Zhang, S.; Zeng, H.; Wang, S.; Li, L.; Chen, R.; Han, B.; Peng, J.; et al. Trends in Incidence Rates, Mortality Rates, and Age-Period-Cohort Effects of Female Breast Cancer—China, 2003–2017. China CDC Wkly. 2023, 5, 340–346. [Google Scholar] [CrossRef]
- Amadou, A.; Ferrari, P.; Muwonge, R.; Moskal, A.; Biessy, C.; Romieu, I.; Hainaut, P. Overweight, obesity and risk of premenopausal breast cancer according to ethnicity: A systematic review and dose-response meta-analysis. Obes. Rev. 2013, 14, 665–678. [Google Scholar] [CrossRef]
- Renehan, A.G.; Tyson, M.; Egger, M.; Heller, R.F.; Zwahlen, M. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet 2008, 371, 569–578. [Google Scholar] [CrossRef]
- Nindrea, R.D.; Aryandono, T.; Lazuardi, L. Breast Cancer Risk From Modifiable and Non-Modifiable Risk Factors among Women in Southeast Asia: A Meta-Analysis. Asian Pac. J. Cancer Prev. 2017, 18, 3201. [Google Scholar] [CrossRef]
- Lauby-Secretan, B.; Scoccianti, C.; Loomis, D.; Grosse, Y.; Bianchini, F.; Straif, K. Body Fatness and Cancer—Viewpoint of the IARC Working Group. N. Engl. J. Med. 2016, 375, 794–798. [Google Scholar] [CrossRef]
- Chen, G.-C.; Chen, S.-J.; Zhang, R.; Hidayat, K.; Qin, J.-B.; Zhang, Y.-S.; Qin, L.-Q. Central obesity and risks of pre- and postmenopausal breast cancer: A dose–response meta-analysis of prospective studies. Obes. Rev. 2016, 17, 1167–1177. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 16 December 2024).
- NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef]
- WHO. Regional Office for Africa. Obesity Rising in Africa, WHO Analysis Finds. Available online: https://www.afro.who.int/news/obesity-rising-africa-who-analysis-finds (accessed on 16 December 2024).
- Amadou, A.; Hainaut, P.; Romieu, I. Role of Obesity in the Risk of Breast Cancer: Lessons from Anthropometry. J. Oncol. 2013, 2013, 906495. [Google Scholar] [CrossRef] [PubMed]
- Al-Rubean, K.; Youssef, A.M.; Al, F.Y.; Al-Sharqawi Ahmad, H.; Bawazeer, N.; Al, O.M.T.; AlRumaih, F.I.; Zaidi, M.S. Anthropometric cutoff values for predicting metabolic syndrome in a Saudi community: From the SAUDI-DM study. Ann. Saudi Med. 2017, 37, 21–30. [Google Scholar] [CrossRef]
- Park, J.W.; Han, K.; Shin, D.W.; Yeo, Y.; Chang, J.W.; Yoo, J.E.; Jeong, S.-M.; Lee, S.-K.; Ryu, J.M.; Park, Y.-M. Obesity and breast cancer risk for pre- and postmenopausal women among over 6 million Korean women. Breast Cancer Res. Treat. 2021, 185, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Gravena, A.A.F.; Romeiro Lopes, T.; Demitto, M.d.O.; Borghesan, D.H.P.; Dell’ Agnolo, C.M.; Brischiliari, S.C.R.; de Barros Carvalho, M.D.; Pelloso, S.M. The Obesity and the Risk of Breast Cancer among Pre and Postmenopausal Women. Asian Pac. J. Cancer Prev. 2018, 19, 2429. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, L.; Zhou, Q.; Imam, M.U.; Cai, J.; Wang, Y.; Qi, M.; Sun, P.; Ping, Z.; Fu, X. Body mass index had different effects on premenopausal and postmenopausal breast cancer risks: A dose-response meta-analysis with 3,318,796 subjects from 31 cohort studies. BMC Public. Health 2017, 17, 936. [Google Scholar] [CrossRef]
- Reeves, G.K.; Pirie, K.; Beral, V.; Green, J.; Spencer, E.; Bull, D. Cancer incidence and mortality in relation to body mass index in the Million Women Study: Cohort study. BMJ 2007, 335, 1134. [Google Scholar] [CrossRef]
- Neuhouser, M.L.; Aragaki, A.K.; Prentice, R.L.; Manson, J.E.; Chlebowski, R.; Carty, C.L.; Ochs-Balcom, H.M.; Thomson, C.A.; Caan, B.J.; Tinker, L.F.; et al. Overweight, Obesity, and Postmenopausal Invasive Breast Cancer Risk: A Secondary Analysis of the Women’s Health Initiative Randomized Clinical Trials. JAMA Oncol. 2015, 1, 611–621. [Google Scholar] [CrossRef]
- Wada, K.; Kuboyama, K.; Abe, S.K.; Rahman, M.S.; Islam, M.R.; Saito, E.; Nagata, C.; Sawada, N.; Tamakoshi, A.; Shu, X.-O.; et al. Body mass index and breast cancer risk in premenopausal and postmenopausal East Asian women: A pooled analysis of 13 cohort studies. Breast Cancer Res. 2024, 26, 158. [Google Scholar] [CrossRef]
- Slattery, M.L.; Sweeney, C.; Edwards, S.; Herrick, J.; Baumgartner, K.; Wolff, R.; Murtaugh, M.; Baumgartner, R.; Giuliano, A.; Byers, T. Body size, weight change, fat distribution and breast cancer risk in Hispanic and non-Hispanic white women. Breast Cancer Res. Treat. 2007, 102, 85–101. [Google Scholar] [CrossRef]
- van den Brandt, P.A.; Spiegelman, D.; Yaun, S.-S.; Adami, H.-O.; Beeson, L.; Folsom, A.R.; Fraser, G.; Goldbohm, R.A.; Graham, S.; Kushi, L.; et al. Pooled Analysis of Prospective Cohort Studies on Height, Weight, and Breast Cancer Risk. Am. J. Epidemiol. 2000, 152, 514–527. [Google Scholar] [CrossRef]
- World Cancer Research Fund/American Institute for Cancer Research. Continuous Update Project Expert Report 2018 Diet, Nutrition, Physical Activity and Breast Cancer; American Institute for Cancer Research: Washington, DC, USA, 2018. [Google Scholar]
- Tran, T.X.M.; Chang, Y.; Choi, H.R.; Kwon, R.; Lim, G.-Y.; Kim, E.Y.; Ryu, S.; Park, B. Adiposity, Body Composition Measures, and Breast Cancer Risk in Korean Premenopausal Women. JAMA Netw. Open 2024, 7, e245423. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Marrero, F.A.; Nazario, C.M.; Rosario-Rosado, R.V.; Schelske-Santos, M.; Mansilla-Rivera, I.; Nie, J.; Hernández-Santiago, J.; Freudenheim, J.L. Anthropometric measures and breast cancer risk among Hispanic women in Puerto Rico. Cancer Causes Control 2022, 33, 971–981. [Google Scholar] [CrossRef] [PubMed]
- Lahmann, P.H.; Hoffmann, K.; Allen, N.; van Gils, C.H.; Khaw, K.-T.; Tehard, B.; Berrino, F.; Tjønneland, A.; Bigaard, J.; Olsen, A.; et al. Body size and breast cancer risk: Findings from the European prospective investigation into cancer and nutrition (EPIC). Int. J. Cancer 2004, 111, 762–771. [Google Scholar] [CrossRef] [PubMed]
- His, M.; Biessy, C.; Torres-Mejía, G.; Ángeles-Llerenas, A.; Alvarado-Cabrero, I.; Sánchez, G.I.; Borrero, M.; Porras, C.; Rodriguez, A.C.; Garmendia, M.L.; et al. Anthropometry, body shape in early-life and risk of premenopausal breast cancer among Latin American women: Results from the PRECAMA study. Sci. Rep. 2020, 10, 2294. [Google Scholar] [CrossRef]
- Cecchini, R.S.; Costantino, J.P.; Cauley, J.A.; Cronin, W.M.; Wickerham, D.L.; Land, S.R.; Weissfeld, J.L.; Wolmark, N. Body Mass Index and the Risk for Developing Invasive Breast Cancer among High-Risk Women in NSABP P-1 and STAR Breast Cancer Prevention Trials. Cancer Prev. Res. 2012, 5, 583–592. [Google Scholar] [CrossRef]
- Nindrea, R.; Aryandono, T.; Lazuardi, L.; Dwiprahasto, I. Association of overweight and obesity with breast cancer during premenopausal period in Asia: A meta-analysis. Int. J. Prev. Med. 2019, 10, 192. [Google Scholar] [CrossRef]
- Lee, K.R.; Hwang, I.C.; Han, K.D.; Jung, J.; Seo, M.H. Waist circumference and risk of breast cancer in Korean women: A nationwide cohort study. Int. J. Cancer 2018, 142, 1554–1559. [Google Scholar] [CrossRef]
- Houghton, S.C.; Eliassen, H.; Tamimi, R.M.; Willett, W.C.; Rosner, B.A.; Hankinson, S.E. Central Adiposity and Subsequent Risk of Breast Cancer by Menopause Status. JNCI J. Natl. Cancer Inst. 2021, 113, 900–908. [Google Scholar] [CrossRef]
- Harris, H.R.; Willett, W.C.; Terry, K.L.; Michels, K.B. Body Fat Distribution and Risk of Premenopausal Breast Cancer in the Nurses’ Health Study II. JNCI J. Natl. Cancer Inst. 2011, 103, 273–278. [Google Scholar] [CrossRef]
- Chen, H.; Yuan, M.; Quan, X.; Chen, D.; Yang, J.; Zhang, C.; Nan, Y.; Luo, F.; Wan, D.; Yang, G.; et al. The relationship between central obesity and risk of breast cancer: A dose–response meta-analysis of 7,989,315 women. Front. Nutr. 2023, 10, 1236393. [Google Scholar] [CrossRef]
- Soerjomataram, I.; Cabasag, C.; Bardot, A.; Fidler-Benaoudia, M.M.; Miranda-Filho, A.; Ferlay, J.; Parkin, D.M.; Ranganathan, R.; Piñeros, M.; Znaor, A.; et al. Cancer survival in Africa, central and south America, and Asia (SURVCAN-3): A population-based benchmarking study in 32 countries. Lancet Oncol. 2023, 24, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Adeboye, B.; Bermano, G.; Rolland, C. Obesity and its health impact in Africa: A systematic review. Cardiovasc. J. Afr. 2012, 23, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- National Heart, Lung, and Blood Institute (NHLBI). Study Quality Assessment Tools. NIH. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 27 February 2025).
- Laamiri, F.Z.; Hasswane, N.; Kerbach, A.; Aguenaou, H.; Taboz, Y.; Benkirane, H.; Mrabet, M.; Amina, B. Risk factors associated with a breast cancer in a population of Moroccan women whose age is less than 40 years: A case control study. Pan Afr. Med. J. 2016, 24, 19. [Google Scholar] [CrossRef]
- Adebamowo, C.A.; Ogundiran, T.O.; Adenipekun, A.A.; Oyesegun, R.A.; Campbell, O.B.; Akang, E.E.; Rotimi, C.N.; Olopade, O.I. Waist–hip ratio and breast cancer risk in urbanized Nigerian women. Breast Cancer Res. 2003, 5, R18–R24. [Google Scholar] [CrossRef]
- Adebamowo, C.A.; Ogundiran, T.O.; Adenipekun, A.A.; Oyesegun, R.A.; Campbell, O.B.; Akang, E.U.; Rotimi, C.N.; Olopade, O.I. Obesity and Height in Urban Nigerian Women with Breast Cancer. Ann. Epidemiol. 2003, 13, 455–461. [Google Scholar] [CrossRef]
- Okobia, M.N.; Bunker, C.H.; Zmuda, J.M.; Osime, U.; Ezeome, E.R.; Anyanwu, S.N.C.; Uche, E.E.O.; Ojukwu, J.; Kuller, L.H. Anthropometry and Breast Cancer Risk in Nigerian Women. Breast J. 2006, 12, 462–466. [Google Scholar] [CrossRef]
- Ogundiran, T.O.; Huo, D.; Adenipekun, A.; Campbell, O.; Oyesegun, R.; Akang, E.; Adebamowo, C.; Olopade, O.I. Case-Control Study of Body Size and Breast Cancer Risk in Nigerian Women. Am. J. Epidemiol. 2010, 172, 682–690. [Google Scholar] [CrossRef]
- Ogundiran, T.O.; Huo, D.; Adenipekun, A.; Campbell, O.; Oyesegun, R.; Akang, E.; Adebamowo, C.; Olopade, O.I. Body fat distribution and breast cancer risk: Findings from the Nigerian breast cancer study. Cancer Causes Control 2012, 23, 565–574. [Google Scholar] [CrossRef]
- Jordan, I.; Hebestreit, A.; Swai, B.; Krawinkel, M.B. Breast cancer risk among women with long-standing lactation and reproductive parameters at low risk level: A case–control study in Northern Tanzania. Breast Cancer Res. Treat. 2013, 142, 133–141. [Google Scholar] [CrossRef]
- Wang, S.; Ogundiran, T.; Ademola, A.; Olayiwola, O.A.; Adeoye, A.; Sofoluwe, A.; Morhason-Bello, I.; Odedina, S.; Agwai, I.; Adebamowo, C.; et al. Development of a Breast Cancer Risk Prediction Model for Women in Nigeria. Cancer Epidemiol. Biomark. Prev. 2018, 27, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Khalis, M.; Dossus, L.; Rinaldi, S.; Biessy, C.; Moskal, A.; Charaka, H.; Fort, E.; His, M.; Mellas, N.; Nejjari, C.; et al. Body size, silhouette trajectory and the risk of breast cancer in a Moroccan case–control study. Breast Cancer 2020, 27, 748–758. [Google Scholar] [CrossRef] [PubMed]
- Brandão, M.; Guisseve, A.; Damasceno, A.; Bata, G.; Silva-Matos, C.; Alberto, M.; Ferro, J.; Garcia, C.; Zaqueu, C.; Lorenzoni, C.; et al. Risk Factors for Breast Cancer, Overall and by Tumor Subtype, among Women from Mozambique, Sub-Saharan Africa. Cancer Epidemiol. Biomark. Prev. 2021, 30, 1250–1259. [Google Scholar] [CrossRef]
- Akinyemiju, T.; Jones, K.; Gupta, A.; Oyekunle, T.; Saraiya, V.; Deveaux, A.; Salako, O.; Hall, A.; Alatise, O.; Ogun, G.; et al. Association of body composition with odds of breast cancer by molecular subtype: Analysis of the Mechanisms for Established and Novel Risk Factors for Breast Cancer in Nigerian Women (MEND) study. BMC Cancer 2021, 21, 1051. [Google Scholar] [CrossRef] [PubMed]
- Kamal, R.M.; Mostafa, S.; Salem, D.; ElHatw, A.M.; Mokhtar, S.M.; Wessam, R.; Fakhry, S. Body mass index, breast density, and the risk of breast cancer development in relation to the menopausal status; results from a population-based screening program in a native African-Arab country. Acta Radiol. Open 2022, 11, 20584601221111704. [Google Scholar] [CrossRef]
- Jacobs, I.; Taljaard-Krugell, C.; Wicks, M.; Cubasch, H.; Joffe, M.; Laubscher, R.; Romieu, I.; Biessy, C.; Gunter, M.J.; Huybrechts, I.; et al. Adherence to cancer prevention recommendations is associated with a lower breast cancer risk in black urban South African women. Br. J. Nutr. 2022, 127, 927–938. [Google Scholar] [CrossRef]
- Mohammed, A.M.; Hamed, H.B.; Noaman, M.K.; Alieldin, N. Metabolic syndrome and breast cancer risk. J. Egypt. Nat. Cancer Inst. 2023, 35, 42. [Google Scholar] [CrossRef]
- Oyamienlen, C.S.; Adisa, C.A.; Dozie, I.N.S.; Oparaocha, E.T.; Anele, A.A.; Anochiwa, K.C. Body Mass Index and Breast Cancer Risks Among Igbo Women in Imo and Abia States, Nigeria: A Case Control Study. Int. J. Transl. Med. Res. Public. Health 2019, 3, 31–37. [Google Scholar] [CrossRef]
- Cheraghi, Z.; Poorolajal, J.; Hashem, T.; Esmailnasab, N.; Doosti Irani, A. Effect of Body Mass Index on Breast Cancer during Premenopausal and Postmenopausal Periods: A Meta-Analysis. PLoS ONE 2012, 7, e51446. [Google Scholar] [CrossRef]
- Suzuki, R.; Orsini, N.; Saji, S.; Key, T.J.; Wolk, A. Body weight and incidence of breast cancer defined by estrogen and progesterone receptor status—A meta-analysis. Int. J. Cancer 2009, 124, 698–712. [Google Scholar] [CrossRef]
- Pischon, T.; Nimptsch, K. Obesity and Risk of Cancer: An Introductory Overview. In Obesity and Cancer; Pischon, T., Nimptsch, K., Eds.; Recent Results in Cancer Research; Springer International Publishing: Cham, Szwitzerland, 2016; Volume 208, pp. 1–15. ISBN 978-3-319-42540-5. [Google Scholar]
- Van Den Brandt, P.A.; Ziegler, R.G.; Wang, M.; Hou, T.; Li, R.; Adami, H.-O.; Agnoli, C.; Bernstein, L.; Buring, J.E.; Chen, Y.; et al. Body size and weight change over adulthood and risk of breast cancer by menopausal and hormone receptor status: A pooled analysis of 20 prospective cohort studies. Eur. J. Epidemiol. 2021, 36, 37–55. [Google Scholar] [CrossRef] [PubMed]
- Baer, H.J.; Rich-Edwards, J.W.; Colditz, G.A.; Hunter, D.J.; Willett, W.C.; Michels, K.B. Adult height, age at attained height, and incidence of breast cancer in premenopausal women. Int. J. Cancer 2006, 119, 2231–2235. [Google Scholar] [CrossRef] [PubMed]
- Silventoinen, K. Determinants of Variation in Adult Body Height. J. Biosoc. Sci. 2003, 35, 263–285. [Google Scholar] [CrossRef]
- Endogenous Hormones and Breast Cancer Collaborative Group; Key, T.J.; Appleby, P.N.; Reeves, G.K.; Roddam, A.W. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: Pooled individual data analysis of 17 prospective studies. Lancet Oncol. 2010, 11, 530–542. [Google Scholar] [CrossRef]
- Harvie, M.; Hooper, L.; Howell, A.H. Central obesity and breast cancer risk: A systematic review. Obes. Rev. 2003, 4, 157–173. [Google Scholar] [CrossRef]
- Dehesh, T.; Fadaghi, S.; Seyedi, M.; Abolhadi, E.; Ilaghi, M.; Shams, P.; Ajam, F.; Mosleh-Shirazi, M.A.; Dehesh, P. The relation between obesity and breast cancer risk in women by considering menstruation status and geographical variations: A systematic review and meta-analysis. BMC Womens Health 2023, 23, 392. [Google Scholar] [CrossRef]
- Macciò, A.; Madeddu, C.; Gramignano, G.; Mulas, C.; Floris, C.; Massa, D.; Astara, G.; Chessa, P.; Mantovani, G. Correlation of body mass index and leptin with tumor size and stage of disease in hormone-dependent postmenopausal breast cancer: Preliminary results and therapeutic implications. J. Mol. Med. 2010, 88, 677–686. [Google Scholar] [CrossRef]
- Rose, D.P.; Vona-Davis, L. Interaction between menopausal status and obesity in affecting breast cancer risk. Maturitas 2010, 66, 33–38. [Google Scholar] [CrossRef]
- Kerlikowske, K.; Walker, R.; Miglioretti, D.L.; Desai, A.; Ballard-Barbash, R.; Buist, D.S.M. Obesity, Mammography Use and Accuracy, and Advanced Breast Cancer Risk. JNCI J. Natl. Cancer Inst. 2008, 100, 1724–1733. [Google Scholar] [CrossRef]
- Gaudet, M.M.; Carter, B.D.; Patel, A.V.; Teras, L.R.; Jacobs, E.J.; Gapstur, S.M. Waist circumference, body mass index, and postmenopausal breast cancer incidence in the Cancer Prevention Study-II Nutrition Cohort. Cancer Causes Control 2014, 25, 737–745. [Google Scholar] [CrossRef]
- MacLennan, M.; Ma, D.W. Role of dietary fatty acids in mammary gland development and breast cancer. Breast Cancer Res. 2010, 12, 211. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Kunnumakara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a Preventable Disease that Requires Major Lifestyle Changes. Pharm. Res. 2008, 25, 2097–2116. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Warren Andersen, S.; Wen, W.; Gao, Y.; Lan, Q.; Rothman, N.; Ji, B.; Yang, G.; Xiang, Y.; Shu, X.; et al. Prospective cohort study of general and central obesity, weight change trajectory and risk of major cancers among Chinese women. Int. J. Cancer 2016, 139, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Ursin, G.; Xu, X.; Lee, E.; Togawa, K.; Malone, K.E.; Marchbanks, P.A.; McDonald, J.A.; Simon, M.S.; Folger, S.G.; et al. Body mass index at age 18 years and recent body mass index in relation to risk of breast cancer overall and ER/PR/HER2-defined subtypes in white women and African-American women: A pooled analysis. Breast Cancer Res. 2018, 20, 1–14. [Google Scholar] [CrossRef]
- Bandera, E.V.; Chandran, U.; Hong, C.-C.; Troester, M.A.; Bethea, T.N.; Adams-Campbell, L.L.; Haiman, C.A.; Park, S.-Y.; Olshan, A.F.; Ambrosone, C.B.; et al. Obesity, body fat distribution, and risk of breast cancer subtypes in African American women participating in the AMBER Consortium. Breast Cancer Res. Treat. 2015, 150, 655–666. [Google Scholar] [CrossRef]
- Rosner, B.; Eliassen, A.H.; Toriola, A.T.; Chen, W.Y.; Hankinson, S.E.; Willett, W.C.; Berkey, C.S.; Colditz, G.A. Weight and weight changes in early adulthood and later breast cancer risk. Int. J. Cancer 2017, 140, 2003–2014. [Google Scholar] [CrossRef]
- Engin, A. Obesity-Associated Breast Cancer: Analysis of Risk Factors and Current Clinical Evaluation. Adv. Exp. Med. Biol. 2024, 1460, 767–819. [Google Scholar] [CrossRef]
- Smith, L.A.; O’Flanagan, C.H.; Bowers, L.W.; Allott, E.H.; Hursting, S.D. Translating Mechanism-Based Strategies to Break the Obesity−Cancer Link: A Narrative Review. J. Acad. Nutr. Diet. 2018, 118, 652–667. [Google Scholar] [CrossRef]
- Sánchez-Jiménez, F.; Pérez-Pérez, A.; De La Cruz-Merino, L.; Sánchez-Margalet, V. Obesity and Breast Cancer: Role of Leptin. Front. Oncol. 2019, 9, 596. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, Q.; Shi, S.; Yen, Y.; Li, X.; Zhang, Y.; Zhou, K.; Le, A.D. Bisphosphonates suppress insulin-like growth factor 1-induced angiogenesis via the HIF-1α/VEGF signaling pathways in human breast cancer cells. Int. J. Cancer 2010, 126, 90–103. [Google Scholar] [CrossRef]
- Andò, S.; Gelsomino, L.; Panza, S.; Giordano, C.; Bonofiglio, D.; Barone, I.; Catalano, S. Obesity, Leptin and Breast Cancer: Epidemiological Evidence and Proposed Mechanisms. Cancers 2019, 11, 62. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.-W.; Lee, J.; Suh, S.-H.; Ligibel, J.; Courneya, K.S.; Jeon, J.Y. Effects of Exercise on Insulin, IGF Axis, Adipocytokines, and Inflammatory Markers in Breast Cancer Survivors: A Systematic Review and Meta-analysis. Cancer Epidemiol. Biomark. Prev. 2017, 26, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Laudisio, D.; Muscogiuri, G.; Barrea, L.; Savastano, S.; Colao, A. Obesity and breast cancer in premenopausal women: Current evidence and future perspectives. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 230, 217–221. [Google Scholar] [CrossRef]
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mane, N.; Fouqani, A.; Mrah, S.; Omari, M.; Bouaddi, O.; Faure, E.; El Fahime, E.M.; Lkhoyaali, S.; Boutayeb, S.; El Rhazi, K.; et al. Obesity and Risk of Pre- and Postmenopausal Breast Cancer in Africa: A Systematic Review. Curr. Oncol. 2025, 32, 167. https://doi.org/10.3390/curroncol32030167
Mane N, Fouqani A, Mrah S, Omari M, Bouaddi O, Faure E, El Fahime EM, Lkhoyaali S, Boutayeb S, El Rhazi K, et al. Obesity and Risk of Pre- and Postmenopausal Breast Cancer in Africa: A Systematic Review. Current Oncology. 2025; 32(3):167. https://doi.org/10.3390/curroncol32030167
Chicago/Turabian StyleMane, Najia, Aya Fouqani, Siham Mrah, Majid Omari, Oumnia Bouaddi, Elodie Faure, El Mostafa El Fahime, Sihame Lkhoyaali, Saber Boutayeb, Karima El Rhazi, and et al. 2025. "Obesity and Risk of Pre- and Postmenopausal Breast Cancer in Africa: A Systematic Review" Current Oncology 32, no. 3: 167. https://doi.org/10.3390/curroncol32030167
APA StyleMane, N., Fouqani, A., Mrah, S., Omari, M., Bouaddi, O., Faure, E., El Fahime, E. M., Lkhoyaali, S., Boutayeb, S., El Rhazi, K., Nejjari, C., Huybrechts, I., & Khalis, M. (2025). Obesity and Risk of Pre- and Postmenopausal Breast Cancer in Africa: A Systematic Review. Current Oncology, 32(3), 167. https://doi.org/10.3390/curroncol32030167