Cognitive Decline in Glioblastoma (GB) Patients with Different Treatment Modalities and Insights on Untreated Cases
Abstract
:1. Introduction
1.1. Pathophysiology
1.2. Prognosis and Survival Rates
1.3. Aim and Objectives
2. Materials and Methods
3. Cognitive Deficits
3.1. Prevalence and Nature of Cognitive Deficits
3.2. Impact of Tumor Location on Cognition
3.3. Factors Influencing Cognitive Function
- •
- Tumor Characteristics: Tumor size, histology, WHO grade, and location correlate strongly with cognitive function [22,31,32]. Larger, more infiltrative tumors worsen outcomes for untreated patients due to a greater mass effect and disruption of surrounding tissue. In contrast, patients with smaller residual tumors post-resection tend to perform better cognitively [24]. Also, IDH-mutant, WHO grade 4 astrocytoma (formerly called secondary GB) often portends longer survival and better cognitive outcomes, irrespective of treatment [33].
- •
- •
- •
- Radiotherapy is standard adjuvant therapy but can cause delayed neurotoxicity, including hippocampus damage that impairs memory [13,39]. Chemotherapy (particularly Temozolomide) boosts survival but may also cause executive and memory deficits [13]. Combination therapy often yields the best survival gains, although cumulative neurotoxic effects may undermine cognition [40,41].
- •
- Medication Use: Some medications improve cognition by reducing tumor-related symptoms; others can exacerbate deficits [42,43]. Antiepileptic drugs (AEDs) and corticosteroids can help manage edema and seizures, temporarily improving cognition. Older AEDs (e.g., phenytoin) cause sedation and memory problems, while long-term corticosteroid use can produce mood changes and memory impairment [44,45].
- •
4. Cognitive Impairment and Survival
5. Follow-Up Timing for Patients with GB After Treatment Options
6. Treatment Options and Their Cognitive Effects
6.1. Surgical Interventions
6.1.1. Benefits and Risks
6.1.2. Techniques to Preserve Cognition
6.2. Chemotherapy
6.2.1. Common Agents Used
6.2.2. Neurotoxic Effects
6.3. Radiotherapy
6.3.1. Radiotherapy Approaches
6.3.2. Cognitive Side Effects
6.4. Combination Therapies
6.5. Immunotherapy
Treatment Modality | Potential Cognitive Benefits | Potential Cognitive Risks | Strategies to Mitigate Risks | References |
---|---|---|---|---|
SURGICAL RESECTION | Reduces mass effect, alleviates symptoms | Risk of damage to eloquent brain areas | Awake craniotomy, intraoperative mapping | [34] |
RADIOTHERAPY | Controls residual tumor growth | White matter damage, neuroinflammation | Fractionation schedules, hippocampal-sparing techniques | [69,70] |
CHEMOTHERAPY (TEMOZOLOMIDE) | Crosses BBB, prolongs survival | Fatigue, concentration difficulties | Dose management, supportive care | [64] |
COMBINED MODALITY THERAPY | Increased efficacy against tumor cells | Compounded neurotoxicity | Personalized treatment plans | [36,77] |
EXPERIMENTAL THERAPIES | Potential for targeted treatment | Unknown long-term cognitive effects | Clinical trials, close monitoring | [79] |
COGNITIVE REHABILITATION | Improves specific cognitive deficits | Requires sustained patient engagement | Personalized rehabilitation programs | [84] |
7. Comparative Analysis of Cognitive Outcomes
7.1. Treated vs. Untreated Patients
7.2. Factors Influencing Outcomes
7.3. Importance of Neuropsychological Evaluation
8. Mitigation Strategies for Cognitive Decline
8.1. Advanced Surgical Techniques
- •
- •
- Functional Brain Mapping: Guides surgical planning to minimize cognitive risks [59].
- •
8.2. Pharmacological Interventions
8.3. Rehabilitation Programs
8.3.1. Cognitive Rehabilitation
8.3.2. Multidisciplinary Support
9. Quality-of-Life Considerations
9.1. Psychological Impact
9.2. Caregiver Burden
10. Future Directions and Research Opportunities
10.1. Novel Therapies
10.1.1. Targeted Molecular Therapies
10.1.2. Gene Therapy
10.2. Personalized Medicine
10.3. Neuroprotective Strategies
10.4. Rehabilitation Innovations
10.5. Clinical Trials and Collaborative Research
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GB | Glioblastoma |
WHO | World Health Organization |
MSR | Maximal safe surgical resection |
BBB | Blood–brain barrier |
CSF | Cerebrospinal fluid |
QoL | Quality of life |
References
- Grochans, S.; Cybulska, A.M.; Simińska, D.; Korbecki, J.; Kojder, K.; Chlubek, D.; Baranowska-Bosiacka, I. Epidemiology of Glioblastoma Multiforme–Literature Review. Cancers 2022, 14, 2412. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, J.P.; Peruzzi, P.P.; Prabhu, V.C. Glioblastoma Multiforme; AANS: Rolling Meadows, IL, USA, 2021. [Google Scholar]
- Ostrom, Q.T.; Gittleman, H.; Truitt, G.; Boscia, A.; Kruchko, C.; Barnholtz-Sloan, J.S. Cbtrus Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011–2015. Neuro-Oncology 2018, 20, iv1–iv86. [Google Scholar] [CrossRef] [PubMed]
- Torp, S.H.; Solheim, O.; Skjulsvik, A.J. The WHO 2021 Classification of Central Nervous System Tumours: A Practical Update on What Neurosurgeons Need to Know-a Minireview. Acta Neurochir. 2022, 164, 2453–2464. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Reifenberger, G.; Von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed]
- Omuro, A.; DeAngelis, L.M. Glioblastoma and Other Malignant Gliomas: A Clinical Review. JAMA 2013, 310, 1842–1850. [Google Scholar] [CrossRef]
- Thakkar, J.P.; Dolecek, T.A.; Horbinski, C.; Ostrom, Q.T.; Lightner, D.D.; Barnholtz-Sloan, J.S.; Villano, J.L. Epidemiologic and Molecular Prognostic Review of Glioblastoma. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1985–1996. [Google Scholar] [CrossRef]
- Brennan, C.W.; Verhaak, R.G.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S.R.; Zheng, S.; Chakravarty, D.; Sanborn, J.Z.; Berman, S.H. The Somatic Genomic Landscape of Glioblastoma. Cell 2013, 155, 462–477. [Google Scholar] [CrossRef]
- Ohgaki, H.; Kleihues, P. The Definition of Primary and Secondary Glioblastoma. Clin. Cancer Res. 2013, 19, 764–772. [Google Scholar] [CrossRef]
- Furnari, F.B.; Fenton, T.; Bachoo, R.M.; Mukasa, A.; Stommel, J.M.; Stegh, A.; Hahn, W.C.; Ligon, K.L.; Louis, D.N.; Brennan, C. Malignant Astrocytic Glioma: Genetics, Biology, and Paths to Treatment. Genes Dev. 2007, 21, 2683–2710. [Google Scholar] [CrossRef]
- Umphlett, M.; Bilal, K.H.; Martini, M.L.; Suwala, A.K.; Ahuja, S.; Rashidipour, O.; Germano, I.; Snuderl, M.; Morgenstern, P.; Tsankova, N.M. Idh-Mutant Astrocytoma with Egfr Amplification-Genomic Profiling in Four Cases and Review of Literature. Neurooncol. Adv. 2022, 4, vdac067. [Google Scholar] [CrossRef]
- DeAngelis, L.M. Brain Tumors. N. Engl. J. Med. 2001, 344, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Mason, W.P.; Van Den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U. Radiotherapy Plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Johnson, D.R.; O’Neill, B.P. Glioblastoma Survival in the United States before and During the Temozolomide Era. J. Neuro-Oncol. 2012, 107, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.; Van Den Bent, M.; Hopkins, K.; Tonn, J.C.; Stupp, R.; Falini, A.; Cohen-Jonathan-Moyal, E.; Frappaz, D.; Henriksson, R.; Balana, C. EANO Guideline for the Diagnosis and Treatment of Anaplastic Gliomas and Glioblastoma. Lancet Oncol. 2014, 15, e395–e403. [Google Scholar] [CrossRef]
- Reardon, D.A.; Wen, P.Y. Therapeutic Advances in the Treatment of Glioblastoma: Rationale and Potential Role of Targeted Agents. Oncology 2006, 11, 152–164. [Google Scholar] [CrossRef]
- Acevedo-Vergara, K.; Perez-Florez, M.; Ramirez, A.; Torres-Bayona, S.; Dau, A.; Salva, S.; Maloof, D.; Garcia, C.; Luque, M.; Guillen-Burgos, H.F. Cognitive Deficits in Adult Patients with High-Grade Glioma: A Systematic Review. Clin. Neurol. Neurosurg. 2022, 219, 107296. [Google Scholar] [CrossRef]
- Zucchella, C.; Bartolo, M.; Di Lorenzo, C.; Villani, V.; Pace, A. Cognitive Impairment in Primary Brain Tumors Outpatients: A Prospective Cross-Sectional Survey. J. Neuro-Oncol. 2013, 112, 455–460. [Google Scholar] [CrossRef]
- Johnson, D.R.; Wefel, J.S. Relationship between Cognitive Function and Prognosis in Glioblastoma. CNS Oncol. 2013, 2, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Noll, K.R.; Bradshaw, M.E.; Weinberg, J.S.; Wefel, J.S. Neurocognitive Functioning Is Associated with Functional Independence in Newly Diagnosed Patients with Temporal Lobe Glioma. Neuro-Oncol. Pract. 2018, 5, 184–193. [Google Scholar] [CrossRef]
- Guariglia, L.; Ieraci, S.; Villani, V.; Tanzilli, A.; Benincasa, D.; Sperati, F.; Terrenato, I.; Pace, A. Coping Style in Glioma Patients and Their Caregiver: Evaluation During Disease Trajectory. Front. Neurol. 2021, 12, 709132. [Google Scholar] [CrossRef]
- Rijnen, S.J.M.; Kaya, G.; Gehring, K.; Verheul, J.B.; Wallis, O.C.; Sitskoorn, M.M.; Rutten, G.-J.M. Cognitive Functioning in Patients with Low-Grade Glioma: Effects of Hemispheric Tumor Location and Surgical Procedure. J. Neurosurg. 2019, 133, 1671–1682. [Google Scholar] [CrossRef] [PubMed]
- Barzilai, O.; Moshe, S.B.; Sitt, R.; Sela, G.; Shofty, B.; Ram, Z. Improvement in Cogitive Function after Surgery for Low-Grade Glioma. J. Neurosurg. 2018, 130, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Tucha, O.; Smely, C.; Preier, M.; Lange, K.W. Cognitive Deficits before Treatment among Patients with Brain Tumors. Neurosurgery 2000, 47, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Aabedi, A.A.; Lipkin, B.; Kaur, J.; Kakaizada, S.; Valdivia, C.; Reihl, S.; Young, J.S.; Lee, A.T.; Krishna, S.; Berger, M.S. Functional Alterations in Cortical Processing of Speech in Glioma-Infiltrated Cortex. Proc. Natl. Acad. Sci. USA 2021, 118, e2108959118. [Google Scholar] [CrossRef]
- Armstrong, C.L.; Goldstein, B.; Shera, D.; Ledakis, G.E.; Tallent, E.M. The Predictive Value of Longitudinal Neuropsychologic Assessment in the Early Detection of Brain Tumor Recurrence. Cancer Interdiscip. Int. J. Am. Cancer Soc. 2003, 97, 649–656. [Google Scholar] [CrossRef]
- Duffau, H. A New Concept of Diffuse (Low-Grade) Glioma Surgery. Adv. Tech. Stand. Neurosurg. 2012, 38, 3–27. [Google Scholar]
- Duffau, H. Brain Plasticity: From Pathophysiological Mechanisms to Therapeutic Applications. J. Clin. Neurosci. 2006, 13, 885–897. [Google Scholar] [CrossRef]
- Hart, M.G.; Romero-Garcia, R.; Price, S.J.; Suckling, J. Global Effects of Focal Brain Tumors on Functional Complexity and Network Robustness: A Prospective Cohort Study. Neurosurgery 2019, 84, 1201–1213. [Google Scholar] [CrossRef]
- van Kessel, E.; Baumfalk, A.E.; van Zandvoort, M.J.; Robe, P.A.; Snijders, T.J. Tumor-Related Neurocognitive Dysfunction in Patients with Diffuse Glioma: A Systematic Review of Neurocognitive Functioning Prior to Anti-Tumor Treatment. J. Neuro-Oncol. 2017, 134, 9–18. [Google Scholar] [CrossRef]
- Wang, Q.; Xiao, F.; Qi, F.; Song, X.; Yu, Y. Risk Factors for Cognitive Impairment in High-Grade Glioma Patients Treated with Postoperative Radiochemotherapy. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2020, 52, 586–593. [Google Scholar] [CrossRef]
- Coomans, M.B.; Dirven, L.; Taphoorn, M.J. Quality of Life and Cognition. In Oncology of CNS Tumors; Springer: Berlin/Heidelberg, Germany, 2019; pp. 769–786. [Google Scholar]
- Liu, Y.; Gao, D.; Chen, H.; Zhang, J.; Yao, K.; Wu, C.; Li, S.; Yan, W.; Qiu, X. Idh-Mutant Grade 4 Astrocytoma: A Comparison Integrating the Clinical, Pathological, and Survival Features between Primary and Secondary Patients. J. Neurosurg. 2024, 140, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Duffau, H. Surgery of Low-Grade Gliomas: Towards a ‘Functional Neurooncology’. Curr. Opin. Oncol. 2009, 21, 543–549. [Google Scholar] [CrossRef]
- Johnson, D.R.; Sawyer, A.M.; Meyers, C.A.; O’Neill, B.P.; Wefel, J.S. Early Measures of Cognitive Function Predict Survival in Patients with Newly Diagnosed Glioblastoma. Neuro-Oncology 2012, 14, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Taphoorn, M.J.; Klein, M. Cognitive Deficits in Adult Patients with Brain Tumours. Lancet Neurol. 2004, 3, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Sanai, N.; Berger, M.S. Surgical Oncology for Gliomas: The State of the Art. Nat. Rev. Clin. Oncol. 2018, 15, 112–125. [Google Scholar] [CrossRef]
- Hardesty, D.A.; Sanai, N. The Value of Glioma Extent of Resection in the Modern Neurosurgical Era. Front. Neurol. 2012, 3, 140. [Google Scholar] [CrossRef]
- Brown, P.D.; Gondi, V.; Pugh, S.; Tome, W.A.; Wefel, J.S.; Armstrong, T.S.; Bovi, J.A.; Robinson, C.; Konski, A.; Khuntia, D. Hippocampal Avoidance During Whole-Brain Radiotherapy Plus Memantine for Patients with Brain Metastases: Phase III Trial Nrg Oncology CC001. J. Clin. Oncol. 2020, 38, 1019–1029. [Google Scholar] [CrossRef]
- Cavers, D.; Hacking, B.; Erridge, S.E.; Kendall, M.; Morris, P.G.; Murray, S.A. Social, Psychological and Existential Well-Being in Patients with Glioma and Their Caregivers: A Qualitative Study. CMAJ 2012, 184, E373–E382. [Google Scholar] [CrossRef]
- Weller, M.; Wick, W.; Aldape, K.; Brada, M.; Berger, M.; Pfister, S.M.; Nishikawa, R.; Rosenthal, M.; Wen, P.Y.; Stupp, R. Glioma. Nat. Rev. Dis. Primers 2015, 1, 15017. [Google Scholar] [CrossRef]
- Wefel, J.S.; Noll, K.R.; Scheurer, M.E. Neurocognitive Functioning and Genetic Variation in Patients with Primary Brain Tumours. Lancet Oncol. 2016, 17, e97–e108. [Google Scholar] [CrossRef]
- Klein, M.; Engelberts, N.H.; van der Ploeg, H.M.; Kasteleijn-Nolst Trenité, D.G.; Aaronson, N.K.; Taphoorn, M.J.B.; Baaijen, H.; Vandertop, W.P.; Muller, M.; Postma, T.J. Epilepsy in Low-Grade Gliomas: The Impact on Cognitive Function and Quality of Life. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 2003, 54, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Bootsma, H.P.R.; Aldenkamp, A.P.; Diepman, L.; Hulsman, J.; Lambrechts, D.; Leenen, L.; Majoie, M.; Schellekens, A.; De Krom, M. The Effect of Antiepileptic Drugs on Cognition: Patient Perceived Cognitive Problems of Topiramate Versus Levetiracetam in Clinical Practice. Epilepsia 2006, 47, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.; Cloughesy, T.; Perry, J.R.; Wick, W. Standards of Care for Treatment of Recurrent Glioblastoma—Are We There Yet? Neuro-Oncology 2013, 15, 4–27. [Google Scholar] [CrossRef]
- Boele, F.W.; Klein, M.; Reijneveld, J.C.; Verdonck-de Leeuw, I.M.; Heimans, J.J. Symptom Management and Quality of Life in Glioma Patients. CNS Oncol. 2014, 3, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Renovanz, M.; Maurer, D.; Lahr, H.; Weimann, E.; Deininger, M.; Wirtz, C.R.; Ringel, F.; Singer, S.; Coburger, J. Supportive Care Needs in Glioma Patients and Their Caregivers in Clinical Practice: Results of a Multicenter Cross-Sectional Study. Front. Neurol. 2018, 9, 763. [Google Scholar] [CrossRef]
- Meyers, C.A.; Hess, K.R.; Yung, W.A.; Levin, V.A. Cognitive Function as a Predictor of Survival in Patients with Recurrent Malignant Glioma. J. Clin. Oncol. 2000, 18, 646. [Google Scholar] [CrossRef]
- Gorlia, T.; van den Bent, M.J.; Hegi, M.E.; Mirimanoff, R.O.; Weller, M.; Cairncross, J.G.; Eisenhauer, E.; Belanger, K.; Brandes, A.A.; Allgeier, A. Nomograms for Predicting Survival of Patients with Newly Diagnosed Glioblastoma: Prognostic Factor Analysis of Eortc and Ncic trial 26981-22981/CE. 3. Lancet Oncol. 2008, 9, 29–38. [Google Scholar] [CrossRef]
- Klein, M.; Postma, T.; Taphoorn, M.; Aaronson, N.; Vandertop, W.; Muller, M.; Van der Ploeg, H.; Heimans, J. The Prognostic Value of Cognitive Functioning in the Survival of Patients with High-Grade Glioma. Neurology 2003, 61, 1796–1798. [Google Scholar] [CrossRef]
- Li, J.; Bentzen, S.M.; Li, J.; Renschler, M.; Mehta, M.P. Relationship between Neurocognitive Function and Quality of Life after Whole-Brain Radiotherapy in Patients with Brain Metastasis. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 64–70. [Google Scholar] [CrossRef]
- Butterbrod, E.; Synhaeve, N.; Rutten, G.-J.; Schwabe, I.; Gehring, K.; Sitskoorn, M. Cognitive Impairment Three Months after Surgery Is an Independent Predictor of Survival Time in Glioblastoma Patients. J. Neuro-Oncol. 2020, 149, 103–111. [Google Scholar] [CrossRef]
- Sharma, P.; Medhi, P.P.; Kalita, A.K.; Bhattacharyya, M.; Nath, J.; Sarma, G.; Yanthan, Y. Factors Associated with Neurocognitive Impairment Following Chemoradiotherapy in Patients with High-Grade Glioma: Results of a Prospective Trial. Brain Tumor Res. Treat. 2023, 11, 183–190. [Google Scholar] [CrossRef]
- Schagen, S.B.; Wefel, J.S. Chemotherapy-Related Changes in Cognitive Functioning. Eur. J. Cancer Suppl. 2013, 11, 225–232. [Google Scholar] [CrossRef]
- Douw, L.; Klein, M.; Fagel, S.S.; van den Heuvel, J.; Taphoorn, M.J.; Aaronson, N.K.; Postma, T.J.; Vandertop, W.P.; Mooij, J.J.; Boerman, R.H. Cognitive and Radiological Effects of Radiotherapy in Patients with Low-Grade Glioma: Long-Term Follow-Up. Lancet Neurol. 2009, 8, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Sanai, N.; Berger, M.S. Glioma Extent of Resection and Its Impact on Patient Outcome. Neurosurgery 2008, 62, 753–766. [Google Scholar] [CrossRef]
- Meskal, I.; Gehring, K.; Rutten, G.-J.M.; Sitskoorn, M.M. Cognitive Functioning in Meningioma Patients: A Systematic Review. J. Neuro-Oncol. 2016, 128, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Gempt, J.; Förschler, A.; Buchmann, N.; Pape, H.; Ryang, Y.-M.; Krieg, S.M.; Zimmer, C.; Meyer, B.; Ringel, F. Postoperative Ischemic Changes Following Resection of Newly Diagnosed and Recurrent Gliomas and Their Clinical Relevance. J. Neurosurg. 2013, 118, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.S.; Hadjipanayis, C.G. Surgery of Intrinsic Cerebral Tumors. Neurosurgery 2007, 61, 305. [Google Scholar] [CrossRef]
- Duffau, H. Awake Surgery for Nonlanguage Mapping. Neurosurgery 2010, 66, 523–529. [Google Scholar] [CrossRef]
- De Witt Hamer, P.C.; Robles, S.G.; Zwinderman, A.H.; Duffau, H.; Berger, M.S. Impact of Intraoperative Stimulation Brain Mapping on Glioma Surgery Outcome: A Meta-Analysis. J. Clin. Oncol. 2012, 30, 2559–2565. [Google Scholar] [CrossRef]
- Nimsky, C.; Ganslandt, O.; Buchfelder, M.; Fahlbusch, R. Intraoperative Visualization for Resection of Gliomas: The Role of Functional Neuronavigation and Intraoperative 1.5 T MRI. Neurol. Res. 2006, 28, 482–487. [Google Scholar] [CrossRef]
- Stupp, R.; Hegi, M.E.; Mason, W.P.; Van Den Bent, M.J.; Taphoorn, M.J.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K. Effects of Radiotherapy with Concomitant and Adjuvant Temozolomide Versus Radiotherapy Alone on Survival in Glioblastoma in a Randomised Phase III Study: 5-year Analysis of the Eortc-Ncic Trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Hegi, M.E.; Diserens, A.-C.; Gorlia, T.; Hamou, M.-F.; De Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L. MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Aygun, C.; Altınok, A.Y.; Çakır, A.; Agan, A.F.; Balaban, Y. Acute Temozolomide Induced Liver Injury: Mixed Type Hepatocellular and Cholestatic Toxicity. Acta Gastro-Enterol. Belg. 2016, 79, 363–365. [Google Scholar]
- Batchelor, T.T.; Betensky, R.A.; Esposito, J.M.; Pham, L.-D.D.; Dorfman, M.V.; Piscatelli, N.; Jhung, S.; Rhee, D.; Louis, D.N. Age-Dependent Prognostic Effects of Genetic Alterations in Glioblastoma. Clin. Cancer Res. 2004, 10, 228–233. [Google Scholar] [CrossRef]
- Chamberlain, M.C.; Kormanik, P.A. Practical Guidelines for the Treatment of Malignant Gliomas. West. J. Med. 1998, 168, 114. [Google Scholar]
- Walker, M.D.; Green, S.B.; Byar, D.P.; Alexander, E., Jr.; Batzdorf, U.; Brooks, W.H.; Hunt, W.E.; MacCarty, C.S.; Mahaley, M.S., Jr.; Mealey, J., Jr. Randomized Comparisons of Radiotherapy and Nitrosoureas for the Treatment of Malignant Glioma after Surgery. N. Engl. J. Med. 1980, 303, 1323–1329. [Google Scholar] [CrossRef]
- Brown, P.D.; Buckner, J.C.; O’Fallon, J.R.; Iturria, N.L.; Brown, C.A.; O’Neill, B.P.; Scheithauer, B.W.; Dinapoli, R.P.; Arusell, R.M.; Curran, W.J. Effects of Radiotherapy on Cognitive Function in Patients with low-Grade Glioma Measured by the Folstein Mini-Mental State Examination. J. Clin. Oncol. 2003, 21, 2519–2524. [Google Scholar] [CrossRef]
- Giordano, F.A.; Brehmer, S.; Abo-Madyan, Y.; Welzel, G.; Sperk, E.; Keller, A.; Schneider, F.; Clausen, S.; Herskind, C.; Schmiedek, P. Intrago: Intraoperative Radiotherapy in Glioblastoma Multiforme–A Phase I/II Dose Escalation Study. BMC Cancer 2014, 14, 992. [Google Scholar] [CrossRef]
- Monje, M.L.; Palmer, T. Radiation Injury and Neurogenesis. Curr. Opin. Neurol. 2003, 16, 129–134. [Google Scholar] [CrossRef]
- Greene-Schloesser, D.; Robbins, M.E. Radiation-Induced Cognitive Impairment-from Bench to Bedside. Neuro-Oncol. 2012, 14, iv37–iv44. [Google Scholar] [CrossRef]
- Makale, M.T.; McDonald, C.R.; Hattangadi-Gluth, J.A.; Kesari, S. Mechanisms of Radiotherapy-Associated Cognitive Disability in Patients with Brain Tumours. Nat. Rev. Neurol. 2017, 13, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Crossen, J.R.; Garwood, D.; Glatstein, E.; Neuwelt, E.A. Neurobehavioral Sequelae of Cranial Irradiation in Adults: A Review of Radiation-Induced Encephalopathy. J. Clin. Oncol. 1994, 12, 627–642. [Google Scholar] [CrossRef] [PubMed]
- Gondi, V.; Pugh, S.L.; Tome, W.A.; Caine, C.; Corn, B.; Kanner, A.; Rowley, H.; Kundapur, V.; DeNittis, A.; Greenspoon, J.N. Preservation of Memory with Conformal Avoidance of the Hippocampal Neural Stem-Cell Compartment During Whole-Brain Radiotherapy for Brain Metastases (Rtog 0933): A Phase Ii Multi-Institutional Trial. J. Clin. Oncol. 2014, 32, 3810–3816. [Google Scholar] [CrossRef]
- Redmond, K.J.; Mehta, M. Stereotactic Radiosurgery for Glioblastoma. Cureus 2015, 7, e413. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.H.; Park, M.-J.; Lee, M.M.; Kim, T.M.; Lee, S.-H.; Cho, S.Y.; Kim, Y.-H.; Kim, Y.J.; Park, C.-K.; Kim, C.-Y. Toxicity Profile of Temozolomide in the Treatment of 300 Malignant Glioma Patients in Korea. J. Korean Med. Sci. 2014, 29, 980–984. [Google Scholar] [CrossRef]
- Armstrong, T.S.; Wefel, J.S.; Wang, M.; Gilbert, M.R.; Won, M.; Bottomley, A.; Mendoza, T.R.; Coens, C.; Werner-Wasik, M.; Brachman, D.G. Net Clinical Benefit Analysis of Radiation Therapy Oncology Group 0525: A Phase III Trial Comparing Conventional Adjuvant Temozolomide with Dose-Intensive Temozolomide in Patients with Newly Diagnosed Glioblastoma. J. Clin. Oncol. 2013, 31, 4076–4084. [Google Scholar] [CrossRef]
- Reardon, D.A.; Brandes, A.A.; Omuro, A.; Mulholland, P.; Lim, M.; Wick, A.; Baehring, J.; Ahluwalia, M.S.; Roth, P.; Bähr, O. Effect of Nivolumab vs Bevacizumab in Patients with Recurrent Glioblastoma: The Checkmate 143 phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1003–1010. [Google Scholar] [CrossRef]
- Jackson, C.M.; Lim, M.; Drake, C.G. Immunotherapy for Brain Cancer: Recent Progress and Future Promise. Clin. Cancer Res. 2014, 20, 3651–3659. [Google Scholar] [CrossRef]
- Ruark, J.; Mullane, E.; Cleary, N.; Cordeiro, A.; Bezerra, E.D.; Wu, V.; Voutsinas, J.; Shaw, B.E.; Flynn, K.E.; Lee, S.J. Patient-Reported Neuropsychiatric Outcomes of Long-Term Survivors after Chimeric Antigen Receptor T Cell Therapy. Biol. Blood Marrow Transplant. 2020, 26, 34–43. [Google Scholar] [CrossRef]
- Barata, A.; Hoogland, A.I.; Kommalapati, A.; Logue, J.; Welniak, T.; Hyland, K.A.; Eisel, S.L.; Small, B.J.; Jayani, R.V.; Booth-Jones, M. Change in Patients’ Perceived Cognition Following Chimeric Antigen Receptor T-Cell Therapy for Lymphoma. Transplant. Cell Ther. 2022, 28, e401–e407. [Google Scholar] [CrossRef]
- Kazzi, C.; Kuznetsova, V.; Siriratnam, P.; Griffith, S.; Wong, S.; Tam, C.S.; Alpitsis, R.; Spencer, A.; O’Brien, T.J.; Malpas, C.B. Cognition Following Chimeric Antigen Receptor T-Cell Therapy: A Systematic Review. J. Autoimmun. 2023, 140, 103126. [Google Scholar] [CrossRef] [PubMed]
- Gehring, K.; Sitskoorn, M.M.; Aaronson, N.K.; Taphoorn, M.J. Interventions for Cognitive Deficits in Adults with Brain Tumours. Lancet Neurol. 2008, 7, 548–560. [Google Scholar] [CrossRef]
- Deutsch, M.B.; DeAngelis, L.M. Neurologic Complications of Chemotherapy and Radiation Therapy. Aminoff’s Neurol. Gen. Med. 2014, 21, 591–609. [Google Scholar]
- Brown, P.D.; Pugh, S.; Laack, N.N.; Wefel, J.S.; Khuntia, D.; Meyers, C.; Choucair, A.; Fox, S.; Suh, J.H.; Roberge, D. Memantine for the Prevention of Cognitive Dysfunction in Patients Receiving Whole-Brain Radiotherapy: A Randomized, Double-Blind, Placebo-Controlled Trial. Neuro-Oncology 2013, 15, 1429–1437. [Google Scholar] [CrossRef] [PubMed]
- Shaw, E.G.; Rosdhal, R.; D’Agostino, R.B., Jr.; Lovato, J.; Naughton, M.J.; Robbins, M.E.; Rapp, S.R. Phase II Study of Donepezil in Irradiated Brain Tumor Patients: Effect on Cognitive Function, Mood, and Quality of Life. J. Clin. Oncol. 2006, 24, 1415–1420. [Google Scholar] [CrossRef]
- Kirkman, M.A.; Ekert, J.O.; Hunn, B.H.; Thomas, M.S.; Tolmie, A.K. A Systematic Review of Cognitive Interventions for Adult Patients with Brain Tumours. Cancer Med. 2023, 12, 11191–11210. [Google Scholar] [CrossRef]
- Kesler, S.R.; Lacayo, N.J.; Jo, B. A Pilot Study of an Online Cognitive Rehabilitation Program for Executive Function Skills in Children with Cancer-Related Brain Injury. Brain Inj. 2011, 25, 101–112. [Google Scholar] [CrossRef]
- Locke, D.; Cerhan, J.H.; Wu, W.; Malec, J.F.; Clark, M.M.; Rummans, T.A.; Brown, P.D. Cognitive Rehabilitation and Problem-Solving to Improve Quality of Life of Patients with Primary Brain Tumors: A Pilot Study. J. Support Oncol. 2008, 6, 383–391. [Google Scholar]
- Bartolo, M.; Zucchella, C.; Pace, A.; Lanzetta, G.; Vecchione, C.; Bartolo, M.; Grillea, G.; Serrao, M.; Tassorelli, C.; Sandrini, G. Early Rehabilitation after Surgery Improves Functional Outcome in Inpatients with Brain Tumours. J. Neuro-Oncol. 2012, 107, 537–544. [Google Scholar] [CrossRef]
- Moore, G.; Collins, A.; Brand, C.; Gold, M.; Lethborg, C.; Murphy, M.; Sundararajan, V.; Philip, J. Palliative and Supportive Care Needs of Patients with High-Grade Glioma and Their Carers: A Systematic Review of Qualitative Literature. Patient Educ. Couns. 2013, 91, 141–153. [Google Scholar] [CrossRef]
- Aaronson, N.K.; Taphoorn, M.J.; Heimans, J.J.; Postma, T.J.; Gundy, C.M.; Beute, G.N.; Slotman, B.J.; Klein, M. Compromised Health-Related Quality of Life in Patients with Low-Grade Glioma. J. Clin. Oncol. 2011, 29, 4430–4435. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, T.; Mendoza, T.; Gring, I.; Coco, C.; Cohen, M.; Eriksen, L.; Hsu, M.-A.; Gilbert, M.; Cleeland, C. Validation of the Md Anderson Symptom Inventory Brain Tumor Module (Mdasi-Bt). J. Neuro-Oncol. 2006, 80, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Rooney, A.G.; Carson, A.; Grant, R. Depression in Cerebral Glioma Patients: A Systematic Review of Observational Studies. J. Natl. Cancer Inst. 2011, 103, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Sherwood, P.R.; Given, B.A.; Given, C.W.; Schiffman, R.F.; Murman, D.L.; Lovely, M.; Von Eye, A.; Rogers, L.R.; Remer, S. Predictors of Distress in Caregivers of Persons with a Primary Malignant Brain Tumor. Res. Nurs. Health 2006, 29, 105–120. [Google Scholar] [CrossRef]
- Peeters, M.; Ottenheijm, G.; Bienfait, P.; Eekers, D.; Gijtenbeek, A.; Hanse, M.; Koekkoek, J.; van Leeuwen, L.; Tijssen, C.; Dirven, L. Glioma Patient-Reported Outcomes: Patients and Clinicians. BMJ Support. Palliat. Care 2023, 13, e205–e212. [Google Scholar] [CrossRef]
- Cloughesy, T.; Finocchiaro, G.; Belda-Iniesta, C.; Recht, L.; Brandes, A.A.; Pineda, E.; Mikkelsen, T.; Chinot, O.L.; Balana, C.; Macdonald, D.R. Randomized, Double-Blind, Placebo-Controlled, Multicenter Phase Ii Study of Onartuzumab Plus Bevacizumab Versus Placebo Plus Bevacizumab in Patients with Recurrent Glioblastoma: Efficacy, Safety, and Hepatocyte Growth Factor and O6-Methylguanine–DNA Methyltransferase Biomarker Analyses. J. Clin. Oncol. 2017, 35, 343–351. [Google Scholar]
- Touat, M.; Idbaih, A.; Sanson, M.; Ligon, K. Glioblastoma Targeted Therapy: Updated Approaches from Recent Biological Insights. Ann. Oncol. 2017, 28, 1457–1472. [Google Scholar] [CrossRef]
- Friedman, H.S.; Prados, M.D.; Wen, P.Y.; Mikkelsen, T.; Schiff, D.; Abrey, L.E.; Yung, W.A.; Paleologos, N.; Nicholas, M.K.; Jensen, R. Bevacizumab Alone and in Combination with Irinotecan in Recurrent Glioblastoma. J. Clin. Oncol. 2009, 27, 4733–4740. [Google Scholar] [CrossRef]
- Zucchella, C.; Capone, A.; Codella, V.; De Nunzio, A.M.; Vecchione, C.; Sandrini, G.; Pace, A.; Pierelli, F.; Bartolo, M. Cognitive Rehabilitation for Early Post-Surgery Inpatients Affected by Primary Brain Tumor: A Randomized, Controlled Trial. J. Neuro-Oncol. 2013, 114, 93–100. [Google Scholar] [CrossRef]
- Verhaak, R.G.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Mesirov, J.P. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in Pdgfra, Idh1, Egfr, and Nf1. Cancer Cell 2010, 17, 98–110. [Google Scholar] [CrossRef]
- Beroukhim, R.; Mermel, C.H.; Porter, D.; Wei, G.; Raychaudhuri, S.; Donovan, J.; Barretina, J.; Boehm, J.S.; Dobson, J.; Urashima, M. The Landscape of Somatic Copy-Number Alteration across Human Cancers. Nature 2010, 463, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, J.; Rao, K.; Pastorino, S.; Kesari, S. Corticosteroids in Brain Cancer Patients: Benefits and Pitfalls. Expert Rev. Clin. Pharmacol. 2011, 4, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Greene-Schloesser, D.; Moore, E.; Robbins, M.E. Molecular Pathways: Radiation-Induced Cognitive Impairment. Clin. Cancer Res. 2013, 19, 2294–2300. [Google Scholar] [CrossRef]
- Willard, V.W.; Cox, L.E.; Russell, K.M.; Kenney, A.; Jurbergs, N.; Molnar, A.E., Jr.; Harman, J.L. Cognitive and Psychosocial Functioning of Preschool-Aged Children with Cancer. J. Dev. Behav. Pediatr. 2017, 38, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Kannan, S.; Murugan, A.K.; Balasubramanian, S.; Munirajan, A.K.; Alzahrani, A.S. Gliomas: Genetic Alterations, Mechanisms of Metastasis, Recurrence, Drug Resistance, and Recent Trends in Molecular Therapeutic Options. Biochem. Pharmacol. 2022, 201, 115090. [Google Scholar] [CrossRef]
- O’connor, J.; Rose, C.; Jackson, A.; Watson, Y.; Cheung, S.; Maders, F.; Whitcher, B.; Roberts, C.; Buonaccorsi, G.; Thompson, G. Dce-Mri Biomarkers of Tumour Heterogeneity Predict Crc Liver Metastasis Shrinkage Following Bevacizumab and Folfox-6. Br. J. Cancer 2011, 105, 139–145. [Google Scholar] [CrossRef]
Cognitive Domain | Common Impairments | Influencing Factors | References |
---|---|---|---|
MEMORY | Short-term memory loss, difficulty recalling | Temporal lobe involvement, tumor size | [24] |
ATTENTION | Reduced concentration, distractibility | Frontal and parietal lobe involvement | [22] |
EXECUTIVE FUNCTIONS | Impaired planning, decision-making, inhibitory control | Frontal lobe tumors, patient age, treatment effects | [25] |
LANGUAGE | Aphasia, word-finding difficulties | Left hemisphere tumors, surgical impact | [22] |
VISUOSPATIAL SKILLS | Difficulty with spatial orientation and perception | Parietal and occipital lobe involvement | [24] |
PROCESSING SPEED | Slowed cognitive processing | Treatment effects, overall disease burden | [24] |
EMOTIONAL PROCESSING | Depression, anxiety, altered affect | Tumor location, corticosteroid use | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghadimi, K.; Abbas, I.; Karandish, A.; Crisman, C.; Eskandar, E.N.; Kobets, A.J. Cognitive Decline in Glioblastoma (GB) Patients with Different Treatment Modalities and Insights on Untreated Cases. Curr. Oncol. 2025, 32, 152. https://doi.org/10.3390/curroncol32030152
Ghadimi K, Abbas I, Karandish A, Crisman C, Eskandar EN, Kobets AJ. Cognitive Decline in Glioblastoma (GB) Patients with Different Treatment Modalities and Insights on Untreated Cases. Current Oncology. 2025; 32(3):152. https://doi.org/10.3390/curroncol32030152
Chicago/Turabian StyleGhadimi, Keyvan, Imane Abbas, Alireza Karandish, Celina Crisman, Emad N. Eskandar, and Andrew J. Kobets. 2025. "Cognitive Decline in Glioblastoma (GB) Patients with Different Treatment Modalities and Insights on Untreated Cases" Current Oncology 32, no. 3: 152. https://doi.org/10.3390/curroncol32030152
APA StyleGhadimi, K., Abbas, I., Karandish, A., Crisman, C., Eskandar, E. N., & Kobets, A. J. (2025). Cognitive Decline in Glioblastoma (GB) Patients with Different Treatment Modalities and Insights on Untreated Cases. Current Oncology, 32(3), 152. https://doi.org/10.3390/curroncol32030152