Evaluating Postoperative Morbidity and Outcomes of Robotic-Assisted Esophagectomy in Esophageal Cancer Treatment—A Comprehensive Review on Behalf of TROGSS (The Robotic Global Surgical Society) and EFISDS (European Federation International Society for Digestive Surgery) Joint Working Group
Abstract
:1. Introduction
2. Materials and Methods
3. Postoperative Outcomes of Robotic Esophagectomy
3.1. Clinical Recovery Metrics
3.1.1. Length of Hospital Stay
3.1.2. Functional Recovery
3.1.3. Postoperative Pain Management
3.2. Complications
3.2.1. Pulmonary Complications
3.2.2. Cardiac Complications
3.2.3. Anastomotic Leak
3.2.4. Gastric Conduit Necrosis
3.2.5. Thoracic Duct
3.2.6. Chyle Leak
3.2.7. Recurrent Laryngeal Nerve (RLN) Injury
3.2.8. Para-Conduit Diaphragmatic Herniations
3.3. Postoperative Mortality
4. Fluorescence-Guided Technologies in Robotic Esophageal Cancer Surgery
4.1. Angiography
4.2. Near-Infrared Fluorescent-Guided Lymphadenectomy and Sentinel Node Biopsy
5. Postoperative Outcomes of Newer Robotic Approaches
5.1. Robotic-Assisted Cervical Esophagectomy (RACE)
5.2. Future Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Der Sluis, P.C.; Van Der Horst, S.; May, A.M.; Schippers, C.; Brosens, L.A.A.; Joore, H.C.A.; Kroese, C.C.; Haj Mohammad, N.; Mook, S.; Vleggaar, F.P.; et al. Robot-Assisted Minimally Invasive Thoracolaparoscopic Esophagectomy Versus Open Transthoracic Esophagectomy for Resectable Esophageal Cancer: A Randomized Controlled Trial. Ann. Surg. 2019, 269, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Al-Batran, S.-E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.-G.; Mayer, F.; Haag, G.M.; Luley, K.; et al. Perioperative Chemotherapy with Fluorouracil plus Leucovorin, Oxaliplatin, and Docetaxel versus Fluorouracil or Capecitabine plus Cisplatin and Epirubicin for Locally Advanced, Resectable Gastric or Gastro-Oesophageal Junction Adenocarcinoma (FLOT4): A Randomised, Phase 2/3 Trial. Lancet 2019, 393, 1948–1957. [Google Scholar] [CrossRef]
- Serizawa, A.; Shibasaki, S.; Nakauchi, M.; Suzuki, K.; Akimoto, S.; Tanaka, T.; Inaba, K.; Uyama, I.; Suda, K. Standardized Procedure for Preventing Late Intestinal Complications Following Minimally Invasive Total Gastrectomy for Gastric Cancer: A Single-Center Retrospective Cohort Study. Surg. Endosc. 2024, 38, 4067–4084. [Google Scholar] [CrossRef] [PubMed]
- Kolani, H. Esophageal Cancer Surgery: Akiyama Procedure; CRC Press: Boca Raton, FL, USA, 2024; ISBN 978-1-04-009638-3. [Google Scholar]
- Biere, S.S.; Van Berge Henegouwen, M.I.; Maas, K.W.; Bonavina, L.; Rosman, C.; Garcia, J.R.; Gisbertz, S.S.; Klinkenbijl, J.H.; Hollmann, M.W.; De Lange, E.S.; et al. Minimally Invasive versus Open Oesophagectomy for Patients with Oesophageal Cancer: A Multicentre, Open-Label, Randomised Controlled Trial. Lancet 2012, 379, 1887–1892. [Google Scholar] [CrossRef]
- Brierley, R.C.; Gaunt, D.; Metcalfe, C.; Blazeby, J.M.; Blencowe, N.S.; Jepson, M.; Berrisford, R.G.; Avery, K.N.L.; Hollingworth, W.; Rice, C.T.; et al. Laparoscopically Assisted versus Open Oesophagectomy for Patients with Oesophageal Cancer—The Randomised Oesophagectomy: Minimally Invasive or Open (ROMIO) Study: Protocol for a Randomised Controlled Trial (RCT). BMJ Open 2019, 9, e030907. [Google Scholar] [CrossRef] [PubMed]
- Briez, N.; Piessen, G.; Bonnetain, F.; Brigand, C.; Carrere, N.; Collet, D.; Doddoli, C.; Flamein, R.; Mabrut, J.-Y.; Meunier, B.; et al. Open versus Laparoscopically-Assisted Oesophagectomy for Cancer: A Multicentre Randomised Controlled Phase III Trial—The MIRO Trial. BMC Cancer 2011, 11, 310. [Google Scholar] [CrossRef] [PubMed]
- Pennathur, A.; Luketich, J.D. Resection for Esophageal Cancer: Strategies for Optimal Management. Ann. Thorac. Surg. 2008, 85, S751–S756. [Google Scholar] [CrossRef] [PubMed]
- Mariette, C.; Markar, S.R.; Dabakuyo-Yonli, T.S.; Meunier, B.; Pezet, D.; Collet, D.; D’Journo, X.B.; Brigand, C.; Perniceni, T.; Carrère, N.; et al. Hybrid Minimally Invasive Esophagectomy for Esophageal Cancer. N. Engl. J. Med. 2019, 380, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Nuytens, F.; Dabakuyo-Yonli, T.S.; Meunier, B.; Gagnière, J.; Collet, D.; D’Journo, X.B.; Brigand, C.; Perniceni, T.; Carrère, N.; Mabrut, J.-Y.; et al. Five-Year Survival Outcomes of Hybrid Minimally Invasive Esophagectomy in Esophageal Cancer: Results of the MIRO Randomized Clinical Trial. JAMA Surg. 2021, 156, 323. [Google Scholar] [CrossRef] [PubMed]
- Oesophago-Gastric Anastomosis Study Group; Fergusson, J.; Beenen, E.; Mosse, C.; Salim, J.; Cheah, S.; Wright, T.; Cerdeira, M.; McQuillan, P.; Richardson, M.; et al. Comparison of Short-Term Outcomes from the International Oesophago-Gastric Anastomosis Audit (OGAA), the Esophagectomy Complications Consensus Group (ECCG), and the Dutch Upper Gastrointestinal Cancer Audit (DUCA). BJS Open 2021, 5, zrab010. [Google Scholar] [CrossRef]
- Yibulayin, W.; Abulizi, S.; Lv, H.; Sun, W. Minimally Invasive Oesophagectomy versus Open Esophagectomy for Resectable Esophageal Cancer: A Meta-Analysis. World J. Surg. Oncol. 2016, 14, 304. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.; Vyas, A.; Vyas, D. The History of Robotics in Surgical Specialties. Am. J. Robot. Surg. 2014, 1, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Kernstine, K.H.; DeArmond, D.T.; Shamoun, D.M.; Campos, J.H. The First Series of Completely Robotic Esophagectomies with Three-Field Lymphadenectomy: Initial Experience. Surg. Endosc. 2007, 21, 2285–2292. [Google Scholar] [CrossRef] [PubMed]
- Salkowski, M.; Checcucci, E.; Chow, A.K.; Rogers, C.C.; Adbollah, F.; Liatsikos, E.; Dasgupta, P.; Guimaraes, G.C.; Rassweiler, J.; Mottrie, A.; et al. New Multiport Robotic Surgical Systems: A Comprehensive Literature Review of Clinical Outcomes in Urology. Ther. Adv. Urol. 2023, 15, 17562872231177781. [Google Scholar] [CrossRef]
- Lawrie, L.; Gillies, K.; Duncan, E.; Davies, L.; Beard, D.; Campbell, M.K. Barriers and Enablers to the Effective Implementation of Robotic Assisted Surgery. PLoS ONE 2022, 17, e0273696. [Google Scholar] [CrossRef]
- Sibio, S.; La Rovere, F.; Di Carlo, S. Benefits of Minimally Invasive Surgery in the Treatment of Gastric Cancer. World J. Gastroenterol. 2022, 28, 4227–4230. [Google Scholar] [CrossRef]
- D’Amico, T.A. Outcomes after Surgery for Esophageal Cancer. Gastrointest. Cancer Res. GCR 2007, 1, 188–196. [Google Scholar] [PubMed]
- SEER*Explorer Application. Available online: https://seer.cancer.gov/statistics-network/explorer/application.html?site=1&data_type=1&graph_type=2&compareBy=sex&chk_sex_3=3&chk_sex_2=2&rate_type=2&race=1&age_range=1&hdn_stage=101&advopt_precision=1&advopt_show_ci=on&hdn_view=0&advopt_show_apc=on&advopt_display=2#resultsRegion0 (accessed on 20 December 2024).
- Low, D.E.; Alderson, D.; Cecconello, I.; Chang, A.C.; Darling, G.E.; D’Journo, X.B.; Griffin, S.M.; Hölscher, A.H.; Hofstetter, W.L.; Jobe, B.A.; et al. International Consensus on Standardization of Data Collection for Complications Associated With Esophagectomy: Esophagectomy Complications Consensus Group (ECCG). Ann. Surg. 2015, 262, 286–294. [Google Scholar] [CrossRef]
- Busweiler, L.A.D.; Schouwenburg, M.G.; Van Berge Henegouwen, M.I.; Kolfschoten, N.E.; De Jong, P.C.; Rozema, T.; Wijnhoven, B.P.L.; Van Hillegersberg, R.; Wouters, M.W.J.M.; Van Sandick, J.W.; et al. Textbook Outcome as a Composite Measure in Oesophagogastric Cancer Surgery. Br. J. Surg. 2017, 104, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Dindo, D.; Demartines, N.; Clavien, P.-A. Classification of Surgical Complications: A New Proposal With Evaluation in a Cohort of 6336 Patients and Results of a Survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Yang, Y.; Li, B.; Yi, J.; Hua, R.; Chen, H.; Tan, L.; Li, H.; He, Y.; Guo, X.; Sun, Y.; et al. Robot-Assisted Versus Conventional Minimally Invasive Esophagectomy for Resectable Esophageal Squamous Cell Carcinoma: Early Results of a Multicenter Randomized Controlled Trial: The RAMIE Trial. Ann. Surg. 2022, 275, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Esagian, S.M.; Ziogas, I.A.; Skarentzos, K.; Katsaros, I.; Tsoulfas, G.; Molena, D.; Karamouzis, M.V.; Rouvelas, I.; Nilsson, M.; Schizas, D. Robot-Assisted Minimally Invasive Esophagectomy versus Open Esophagectomy for Esophageal Cancer: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 3177. [Google Scholar] [CrossRef] [PubMed]
- Perry, R.; Barbosa, J.P.; Perry, I.; Barbosa, J. Short-Term Outcomes of Robot-Assisted versus Conventional Minimally Invasive Esophagectomy for Esophageal Cancer: A Systematic Review and Meta-Analysis of 18,187 Patients. J. Robot. Surg. 2024, 18, 125. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Xu, J.; Chen, L.; Hu, J.; Shu, Y. McKeown Esophagectomy: Robot-Assisted versus Conventional Minimally Invasive Technique—Systematic Review and Meta-Analysis. Dis. Esophagus 2022, 35, doac011. [Google Scholar] [CrossRef]
- Angeramo, C.A.; Bras Harriott, C.; Casas, M.A.; Schlottmann, F. Minimally Invasive Ivor Lewis Esophagectomy: Robot-Assisted versus Laparoscopic–Thoracoscopic Technique. Systematic Review and Meta-Analysis. Surgery 2021, 170, 1692–1701. [Google Scholar] [CrossRef] [PubMed]
- Weijs, T.J.; Ruurda, J.P.; Luyer, M.D.P.; Nieuwenhuijzen, G.A.P.; Van Der Horst, S.; Bleys, R.L.A.W.; Van Hillegersberg, R. Preserving the Pulmonary Vagus Nerve Branches during Thoracoscopic Esophagectomy. Surg. Endosc. 2016, 30, 3816–3822. [Google Scholar] [CrossRef]
- Seesing, M.F.J.; Borggreve, A.S.; Ruurda, J.P.; Van Hillegersberg, R. New-Onset Atrial Fibrillation after Esophagectomy for Cancer. J. Thorac. Dis. 2019, 11, S831–S834. [Google Scholar] [CrossRef]
- De Silva, I.; Wee, M.; Cabalag, C.S.; Fong, R.; Tran, K.; Wu, M.; Schloithe, A.; Bright, T.; Duong, C.P.; Watson, D.I. Para-Conduit Diaphragmatic Hernia Following Esophagectomy—The New Price of Minimally Invasive Surgery? Dis. Esophagus 2023, 36, doad011. [Google Scholar] [CrossRef]
- Egberts, J.-H.; Stein, H.; Aselmann, H.; Hendricks, A.; Becker, T. Fully Robotic Da Vinci Ivor–Lewis Esophagectomy in Four-Arm Technique—Problems and Solutions. Dis. Esophagus 2017, 30, 1–9. [Google Scholar] [CrossRef] [PubMed]
- De Groot, E.M.; Bronzwaer, S.F.C.; Goense, L.; Kingma, B.F.; Van Der Horst, S.; Van Den Berg, J.W.; Ruurda, J.P.; Van Hillegersberg, R. Management of Anastomotic Leakage after Robot-Assisted Minimally Invasive Esophagectomy with an Intrathoracic Anastomosis. Dis. Esophagus 2023, 36, doac094. [Google Scholar] [CrossRef] [PubMed]
- Khaitan, P.G.; Vekstein, A.M.; Thibault, D.; Kosinski, A.; Hartwig, M.G.; Block, M.; Gaissert, H.; Wolf, A.S. Robotic Esophagectomy Trends and Early Surgical Outcomes: The US Experience. Ann. Thorac. Surg. 2023, 115, 710–717. [Google Scholar] [CrossRef]
- Ekman, M.; Girnyi, S.; Marano, L.; Roviello, F.; Chand, M.; Diana, M.; Polom, K. Near-Infrared Fluorescence Image-Guided Surgery in Esophageal and Gastric Cancer Operations. Surg. Innov. 2022, 29, 540–549. [Google Scholar] [CrossRef]
- Vecchiato, M.; Martino, A.; Sponza, M.; Uzzau, A.; Ziccarelli, A.; Marchesi, F.; Petri, R. Thoracic Duct Identification with Indocyanine Green Fluorescence during Minimally Invasive Esophagectomy with Patient in Prone Position. Dis. Esophagus 2020, 33, doaa030. [Google Scholar] [CrossRef] [PubMed]
- Jardinet, T.; Niekel, M.C.; Ruppert, M.; Hubens, G.; Valk, J.W.; Van Schil, P.E.; De Maat, M.F. Fluorescence-Guided Thoracic Duct Dissection in Robotic En Bloc Esophagectomy. Ann. Thorac. Surg. 2022, 113, e465–e467. [Google Scholar] [CrossRef]
- Dezube, A.R.; Kucukak, S.; De León, L.E.; Kostopanagiotou, K.; Jaklitsch, M.T.; Wee, J.O. Risk of Chyle Leak after Robotic versus Video-Assisted Thoracoscopic Esophagectomy. Surg. Endosc. 2022, 36, 1332–1338. [Google Scholar] [CrossRef]
- Tagkalos, E.; Van Der Sluis, P.C.; Berlth, F.; Poplawski, A.; Hadzijusufovic, E.; Lang, H.; Van Berge Henegouwen, M.I.; Gisbertz, S.S.; Müller-Stich, B.P.; Ruurda, J.P.; et al. Robot-Assisted Minimally Invasive Thoraco-Laparoscopic Esophagectomy versus Minimally Invasive Esophagectomy for Resectable Esophageal Adenocarcinoma, a Randomized Controlled Trial (ROBOT-2 Trial). BMC Cancer 2021, 21, 1060. [Google Scholar] [CrossRef] [PubMed]
- Van Boxel, G.; Van Hillegersberg, R.; Ruurda, J. Outcomes and Complications after Robot-Assisted Minimally Invasive Esophagectomy. J. Vis. Surg. 2019, 5, 21. [Google Scholar] [CrossRef]
- Sarkaria, I.S.; Bains, M.S.; Finley, D.J.; Adusumilli, P.S.; Huang, J.; Rusch, V.W.; Jones, D.R.; Rizk, N.P. Intraoperative Near-Infrared Fluorescence Imaging as an Adjunct to Robotic-Assisted Minimally Invasive Esophagectomy. Innov. Technol. Tech. Cardiothorac. Vasc. Surg. 2014, 9, 391–393. [Google Scholar] [CrossRef]
- Hodari, A.; Park, K.U.; Lace, B.; Tsiouris, A.; Hammoud, Z. Robot-Assisted Minimally Invasive Ivor Lewis Esophagectomy With Real-Time Perfusion Assessment. Ann. Thorac. Surg. 2015, 100, 947–952. [Google Scholar] [CrossRef] [PubMed]
- Pötscher, A.; Bittermann, C.; Längle, F. Robot-Assisted Esophageal Surgery Using the Da Vinci® Xi System: Operative Technique and Initial Experiences. J. Robot. Surg. 2019, 13, 469–474. [Google Scholar] [CrossRef] [PubMed]
- DeLong, J.C.; Kelly, K.J.; Jacobsen, G.R.; Sandler, B.J.; Horgan, S.; Bouvet, M. The Benefits and Limitations of Robotic Assisted Transhiatal Esophagectomy for Esophageal Cancer. J. Vis. Surg. 2016, 2, 156. [Google Scholar] [CrossRef]
- Slooter, M.D.; De Bruin, D.M.; Eshuis, W.J.; Veelo, D.P.; Van Dieren, S.; Gisbertz, S.S.; Van Berge Henegouwen, M.I. Quantitative Fluorescence-Guided Perfusion Assessment of the Gastric Conduit to Predict Anastomotic Complications after Esophagectomy. Dis. Esophagus 2021, 34, doaa100. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Breuler, C.; Chang, A.C.; Lin, J.; Orringer, M.B.; Lynch, W.R.; Lagisetty, K.H.; Wakeam, E.; Reddy, R.M. Quantitative Perfusion Assessment of Gastric Conduit with Indocyanine Green Dye to Predict Anastomotic Leak after Esophagectomy. Dis. Esophagus 2022, 35, doab079. [Google Scholar] [CrossRef]
- Schlottmann, F.; Barbetta, A.; Mungo, B.; Lidor, A.O.; Molena, D. Identification of the Lymphatic Drainage Pattern of Esophageal Cancer with Near-Infrared Fluorescent Imaging. J. Laparoendosc. Adv. Surg. Tech. 2017, 27, 268–271. [Google Scholar] [CrossRef]
- Helminen, O.; Mrena, J.; Sihvo, E. Near-Infrared Image-Guided Lymphatic Mapping in Minimally Invasive Oesophagectomy of Distal Oesophageal Cancer. Eur. J. Cardiothorac. Surg. 2017, 52, 952–957. [Google Scholar] [CrossRef]
- Hosogi, H.; Yagi, D.; Sakaguchi, M.; Akagawa, S.; Tokoro, Y.; Kanaya, S. Upper Mediastinal Lymph Node Dissection Based on Mesenteric Excision in Esophageal Cancer Surgery: Confirmation by near-Infrared Image-Guided Lymphatic Mapping and the Impact on Locoregional Control. Esophagus 2021, 18, 219–227. [Google Scholar] [CrossRef]
- Osterkamp, J.; Strandby, R.; Nerup, N.; Svendsen, M.-B.; Svendsen, L.-B.; Achiam, M. Intraoperative Near-Infrared Lymphography with Indocyanine Green May Aid Lymph Node Dissection during Robot-Assisted Resection of Gastroesophageal Junction Cancer. Surg. Endosc. 2023, 37, 1985–1993. [Google Scholar] [CrossRef]
- Shiomi, S.; Yagi, K.; Iwata, R.; Yajima, S.; Okumura, Y.; Aikou, S.; Yamashita, H.; Nomura, S.; Seto, Y. Lymphatic Flow Mapping Using Near-Infrared Fluorescence Imaging with Indocyanine Green Helps to Predict Lymph Node Metastasis Intraoperatively in Patients with Esophageal or Esophagogastric Junction Cancer Not Treated with Neoadjuvant Chemotherapy. Surg. Endosc. 2023, 37, 8214–8226. [Google Scholar] [CrossRef]
- Frederiks, C.N.; Overwater, A.; Bergman, J.J.G.H.M.; Pouw, R.E.; De Keizer, B.; Bennink, R.J.; Brosens, L.A.A.; Meijer, S.L.; Van Hillegersberg, R.; Van Berge Henegouwen, M.I.; et al. Feasibility and Safety of Tailored Lymphadenectomy Using Sentinel Node-Navigated Surgery in Patients with High-Risk T1 Esophageal Adenocarcinoma. Ann. Surg. Oncol. 2023, 30, 4002–4011. [Google Scholar] [CrossRef]
- Overwater, A.; Weusten, B.L.A.M.; Ruurda, J.P.; Van Hillegersberg, R.; Bennink, R.J.; De Keizer, B.; Meijer, S.L.; Brosens, L.A.A.; Pouw, R.E.; Bergman, J.J.G.H.M.; et al. Feasibility of Sentinel Node Navigated Surgery in High-Risk T1b Esophageal Adenocarcinoma Patients Using a Hybrid Tracer of Technetium-99 m and Indocyanine Green. Surg. Endosc. 2022, 36, 2671–2679. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.M.; Kathawate, R.G.; Zhao, L.; Grenda, T.R.; Bergquist, C.S.; Brescia, A.A.; Kilbane, K.; Barrett, E.; Chang, A.C.; Lynch, W.; et al. Similar Quality of Life After Conventional and Robotic Transhiatal Esophagectomy. Ann. Thorac. Surg. 2022, 113, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Egberts, J.-H.; Schlemminger, M.; Hauser, C.; Beckmann, J.-H.; Becker, T. Robot-Assisted Cervical Esophagectomy (RACE Procedure) Using a Single Port Combined with a Transhiatal Approach in a Rendezvous Technique: A Case Series. Langenbecks Arch. Surg. 2019, 404, 353–358. [Google Scholar] [CrossRef]
- Chao, Y.-K.; Li, Z.-G.; Wen, Y.-W.; Kim, D.-J.; Park, S.-Y.; Chang, Y.-L.; Van Der Sluis, P.C.; Ruurda, J.P.; Van Hillegersberg, R. Robotic-Assisted Esophagectomy vs Video-Assisted Thoracoscopic Esophagectomy (REVATE): Study Protocol for a Randomized Controlled Trial. Trials 2019, 20, 346. [Google Scholar] [CrossRef]
Author(s) | Study Type | Sample Size | Procedure/Comparison | Anastomotic Leak Rate (%) | p-Value | Key Findings |
---|---|---|---|---|---|---|
De Groot et al., 2023 [32] | Retrospective Analysis | 152 patients | RAMIE with Intrathoracic Anastomosis | 26 | Not reported | High leak rate, particularly with esophagobronchial fistula. |
Khaitan et al., 2023 [33] | Database Analysis | Society Database: 1320 RAMIE vs. 3524 cMIE vs. 5763 OTE | RAMIE vs. CMIE vs. OTE | Higher in RAMIE (Adjusted OR: 1.53) | p = 0.045 | Higher leak rate in RAMIE linked to learning curve and lower volumes. |
Van der Sluis et al., 2019 [1] | Randomized Controlled Trial (RCT) | 54 RAMIE vs. 55 OTE | RAMIE vs. OTE | 22 (RAMIE), 20 (OTE) | p = 0.57 | No significant difference in leak rates between RAMIE and OTE. |
Esagian et al., 2022 [24] | Meta-Analysis | 674 RAMIE vs. 1303 OTE | RAMIE vs. OTE | 6.82 (RAMIE), 6.06 (OTE) | p = 0.76 | No statistical significance in leak rates between groups. |
Yang et al., 2022 [23] | Randomized Controlled Trial (RCT) | RAMIE Trial: 50 patients in each group | RAMIE vs. MIE | 12.2 (RAMIE), 11.3 (MIE) | p = 0.801 | Similar leak rates in RAMIE and MIE with low surgical interventions. |
Perry et al., 2024 [25] | Meta-Analysis | 3136 RAMIE vs. 6866 cMIE | RAMIE vs. cMIE | 12.47 (RAMIE), 11.43 (cMIE) | p = 0.005 | Higher leak rate in RAMIE group, favoring cMIE. |
Zhou et al., 2022 [26] | Meta-Analysis | Pooled Data: 7 studies, sample sizes not specified | Ivor Lewis RAMIE vs. cMIE | Comparable (7% each group) | p = 0.22 | Leak rates were comparable, no significant difference found. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vashist, Y.; Goyal, A.; Shetty, P.; Girnyi, S.; Cwalinski, T.; Skokowski, J.; Malerba, S.; Prete, F.P.; Mocarski, P.; Kania, M.K.; et al. Evaluating Postoperative Morbidity and Outcomes of Robotic-Assisted Esophagectomy in Esophageal Cancer Treatment—A Comprehensive Review on Behalf of TROGSS (The Robotic Global Surgical Society) and EFISDS (European Federation International Society for Digestive Surgery) Joint Working Group. Curr. Oncol. 2025, 32, 72. https://doi.org/10.3390/curroncol32020072
Vashist Y, Goyal A, Shetty P, Girnyi S, Cwalinski T, Skokowski J, Malerba S, Prete FP, Mocarski P, Kania MK, et al. Evaluating Postoperative Morbidity and Outcomes of Robotic-Assisted Esophagectomy in Esophageal Cancer Treatment—A Comprehensive Review on Behalf of TROGSS (The Robotic Global Surgical Society) and EFISDS (European Federation International Society for Digestive Surgery) Joint Working Group. Current Oncology. 2025; 32(2):72. https://doi.org/10.3390/curroncol32020072
Chicago/Turabian StyleVashist, Yogesh, Aman Goyal, Preethi Shetty, Sergii Girnyi, Tomasz Cwalinski, Jaroslaw Skokowski, Silvia Malerba, Francesco Paolo Prete, Piotr Mocarski, Magdalena Kamila Kania, and et al. 2025. "Evaluating Postoperative Morbidity and Outcomes of Robotic-Assisted Esophagectomy in Esophageal Cancer Treatment—A Comprehensive Review on Behalf of TROGSS (The Robotic Global Surgical Society) and EFISDS (European Federation International Society for Digestive Surgery) Joint Working Group" Current Oncology 32, no. 2: 72. https://doi.org/10.3390/curroncol32020072
APA StyleVashist, Y., Goyal, A., Shetty, P., Girnyi, S., Cwalinski, T., Skokowski, J., Malerba, S., Prete, F. P., Mocarski, P., Kania, M. K., Świerblewski, M., Strzemski, M., Suárez-Carreón, L. O., Kok, J. H. H., Calomino, N., Jain, V., Polom, K., Kycler, W., Calu, V., ... Oviedo, R. J. (2025). Evaluating Postoperative Morbidity and Outcomes of Robotic-Assisted Esophagectomy in Esophageal Cancer Treatment—A Comprehensive Review on Behalf of TROGSS (The Robotic Global Surgical Society) and EFISDS (European Federation International Society for Digestive Surgery) Joint Working Group. Current Oncology, 32(2), 72. https://doi.org/10.3390/curroncol32020072