Evidence-Based Recommendations on the Use of Immunotherapies and Monoclonal Antibodies in the Treatment of Male Reproductive Cancers
Abstract
:1. Introduction
1.1. Prostate Cancer
1.1.1. Introduction and Overview of Prostate Cancer
1.1.2. Epidemiology of Prostate Cancer
1.1.3. Etiology and Risk Factors
1.2. Treatment Modalities for Prostate Cancer
1.2.1. Localized Prostate Cancer
1.2.2. Androgen Deprivation Therapy (ADT)
1.2.3. Advances in Systemic Therapies for CRPC
1.3. Immunotherapy in Prostate Cancer
1.3.1. Introduction to Immunotherapy
1.3.2. Immune Checkpoint Inhibitors (ICIs)
1.3.3. Specific Immunotherapies for Prostate Cancer
Sipuleucel-T Immunotherapy
1.4. Clinical Trials and Evidence for Sipuleucel-T
1.4.1. Overview of Sipuleucel-T Trials
1.4.2. Phase III Trials
D9901 Trial
D9902A Trial
Combined Analysis of D9901 and D9902A
IMPACT Trial (D9902B)
1.4.3. Phase I and II Studies
1.5. Immune Checkpoint Inhibitors in Prostate Cancer
1.5.1. Pembrolizumab
1.5.2. Ipilimumab
1.5.3. Atezolizumab and Nivolumab
1.5.4. Combination Therapies
Serial Number | Study | Management | Result |
---|---|---|---|
1 | Phase III IMbassador250 trial | Atezolizumab in combination with Enzalutamide versus Enzalutamide treatment alone | Did not achieve the primary endpoint of increased overall survival. |
2 | Phase III KEYNOTE-641 trial | Pembrolizumab combined with enzalutamide and androgen deprivation therapy (ADT) in metastatic castration-resistant prostate cancer (mCRPC) patients. | After an interim investigation revealed no improvement in rPFS or OS, ceased. |
3 | Phase II CheckMate 9KD trial | Utility of nivolumab and docetaxel on ADT in chemo-naive mCRPC patients | The PSA response was 46.3 percent, but the ORR in patients with detectable illness was 36.8 percent. |
4 | KEYNOTE-365 trial (cohort B) | Combination therapy with Pembrolizumab plus Docetaxel and Prednisone in chemotherapy-naive mCRPC patients | Among the 104 patients who received treatment, a PSA response was observed in 28% of the cases, accompanied by an overall response rate of 18%. |
5 | Phase III KEYNOTE-921 trial | Pembrolizumab and Docetaxel and Prednisone in chemotherapy-naive mCRPC patients | Primary endpoints of rPFS and OS were not met. |
6 | Phase II CheckMate 650 trial | Significance of ipilimumab and nivolumab in mCRPC patients previously undergoing docetaxel treatment. | Treatment discontinuation occurred due to early toxicity. |
1.6. Advanced Cellular Therapies in Prostate Cancer
1.6.1. Chimeric Antigen Receptor (CAR) T-Cell Therapy
1.6.2. PSMA-Targeted CAR T-Cell Therapy
1.6.3. Prostate Stem Cell Antigen (PSCA) Targeted CAR T-Cell Therapy
1.6.4. Prostate-Specific Antigen (PSA) and Other TAAs
1.7. Bispecific T-Cell Engager (BiTE) Therapy
1.7.1. Overview and Mechanism of BiTE Therapy
1.7.2. Key Clinical Trials and Outcomes
1.8. Summary and Future Directions in Immunotherapy for Prostate Cancer
2. Penile Cancer
2.1. Overview of Penile Cancer
2.2. Current and Emerging Therapeutic Approaches
2.2.1. Targeted Therapy
Anti-EGFR Agents
- Cetuximab
- Panitumumab
- Nimotuzumab and Dacomitinib
2.2.2. Immunotherapy
PD-1 and PD-L1 Inhibitors
- Pembrolizumab
- Durvalumab
- Atezolizumab
- Nivolumab
- Tislelzimumab
- Cemiplimab
- Sintilimab
- Toripalimab
- Erlotinib and Geftinib
- Sunitinib and Sorafenib
- Entinostat and Bintrafusp Alfa
2.3. Combination Therapy Approaches
2.3.1. Ipilimumab and Nivolumab
2.3.2. Cabozantinib and Immune Checkpoint Inhibitors
2.3.3. Ongoing Clinical Trials
2.4. Adoptive T-Cell Therapy in Penile Cancer
2.4.1. Overview of Adoptive T-Cell Therapy
2.4.2. Clinical Trials in Adoptive T-Cell Therapy
3. Testicular Cancer
3.1. Introduction to Testicular Cancer
3.2. Immunotherapy in Testicular Cancer
3.2.1. Anti-CD30 Therapy
Brentuximab Vedotin
Case Studies and Clinical Trials
3.2.2. PD-1 and PD-L1 Inhibitors
Pembrolizumab
Durvalumab and Tremelimumab
Nivolumab
Avelumab
3.3. Targeted Therapy in Testicular Cancer
3.3.1. Tyrosine Kinase Inhibitors (TKIs)
3.3.2. Anti-CTLA-4
3.4. Future Therapies and Clinical Trials
3.4.1. Emerging Immunotherapies
3.4.2. Monoclonal Antibodies in Clinical Trials
4. Evaluating the Role and Clinical Potential of Immunotherapies and Monoclonal Antibodies in Male Reproductive Cancers
4.1. Immunotherapies and Monoclonal Antibodies
4.2. Probability of Clinical Success in Male Reproductive Tumors
4.3. Integration with Standard Therapies
4.4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gilliland, F.D.; Key, C.R. Male genital cancers. Cancer 1995, 75 (Suppl. S1), 295–315. [Google Scholar]
- Bahlinger, V.; Hartmann, A.; Eckstein, M. Immunotherapy in Genitourinary Cancers: Role of Surgical Pathologist for Detection of Immunooncologic Predictive Factors. Adv. Anat. Pathol. 2023, 30, 203–210. [Google Scholar] [CrossRef]
- Yang, P.; Meng, M.; Zhou, Q. Oncogenic cancer/testis antigens are a hallmarker of cancer and a sensible target for cancer immunotherapy. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188558. [Google Scholar] [CrossRef]
- Mar, N.; Uchio, E.; Kalebasty, A.R. Use of immunotherapy in clinical management of genitourinary cancers—A review. Cancer Treat. Res. Commun. 2022, 31, 100564. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012, 366, 2455–2465. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, K.M.; Atkins, M.B. Prognostic and predictive markers for the new immunotherapies. Oncology 2014, 28 (Suppl. S3), 39–48. [Google Scholar]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef]
- Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 2010, 363, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Seer Cancer Statistics. Available online: https://seer.cancer.gov/statfacts/html/prost.html (accessed on 20 November 2023).
- Mitsogiannis, I.; Tzelves, L.; Dellis, A.; Issa, H.; Papatsoris, A.; Moussa, M. Prostate Cancer Immunotherapy. Expert Opin. Biol. Ther. 2022, 22, 577–590. [Google Scholar] [CrossRef] [PubMed]
- Harsini, S.; Wilson, D.; Saprunoff, H.; Allan, H.; Gleave, M.; Goldenberg, L.; Chi, K.N.; Kim-Sing, C.; Tyldesley, S.; Bénard, F. Outcome of Patients with Biochemical Recurrence of Prostate Cancer After PSMA PET/CT-Directed Radiotherapy or Surgery Without Systemic Therapy. Cancer Imaging 2023, 23, 27. [Google Scholar] [CrossRef] [PubMed]
- Leslie, S.W.; Soon-Sutton, T.L.; Sajjad, H.; Siref, L.E. Prostate Cancer. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar] [PubMed]
- Denmeade, S.R.; Isaacs, J.T. Overview of Regulation of Systemic Androgen Levels. In Holland-Frei Cancer Medicine; PMPH: Beijing, China, 2003. [Google Scholar]
- Schaeffer, E.M.; Srinivas, S.; Barocas, D. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) Prostate Cancer. Available online: https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (accessed on 20 November 2023).
- Parker, C.; Nilsson, S.; Heinrich, D.; Helle, S.I.; O’Sullivan, J.M.; Fosså, S.D.; Chodacki, A.; Wiechno, P.; Logue, J.; Seke, M.; et al. Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer. N. Engl. J. Med. 2013, 369, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177–PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- de Bono, J.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2020, 382, 2091–2102. [Google Scholar] [CrossRef] [PubMed]
- Pachynski, R.K.; Morishima, C.; Szmulewitz, R.; Harshman, L.; Appleman, L.; Monk, P.; Bitting, R.L.; Kucuk, O.; Millard, F.; Seigne, J.D.; et al. IL-7 expands lymphocyte populations and enhances immune responses to sipuleucel-T in patients with metastatic castration-resistant prostate cancer (mCRPC). J. Immunother. Cancer 2021, 9, e002903. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Small, E.J.; Schellhammer, P.F.; Higano, C.S.; Redfern, C.H.; Nemunaitis, J.J.; Valone, F.H.; Verjee, S.S.; Jones, L.A.; Hershberg, R.M. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J. Clin. Oncol. 2006, 24, 3089–3094. [Google Scholar] [CrossRef] [PubMed]
- Higano, C.S.; Schellhammer, P.F.; Small, E.J.; Burch, P.A.; Nemunaitis, J.; Yuh, L.; Provost, N.; Frohlich, M.W. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 2009, 115, 3670–3679. [Google Scholar] [CrossRef] [PubMed]
- Anassi, E.; Ndefo, U.A. Sipuleucel-T (Provenge) injection the first immunotherapy agent (Vaccine) for hormone-refractory prostate cancer. P & T: A peer-reviewed journal for formulary management. Pharm. Ther. 2011, 36, 197–202. [Google Scholar] [PubMed]
- Lanka, S.M.; Zorko, N.A.; Antonarakis, E.S.; Barata, P.C. Metastatic Castration-Resistant Prostate Cancer, Immune Checkpoint Inhibitors, and Beyond. Curr. Oncol. 2023, 30, 4246–4256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.-P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sena, L.A.; Fountain, J.; Isaacsson Velho, P.; Lim, S.J.; Wang, H.; Nizialek, E.; Rathi, N.; Nussenzveig, R.; Maughan, B.L.; Velez, M.G.; et al. Tumor Frameshift Mutation Proportion Predicts Response to Immunotherapy in Mismatch Repair-Deficient Prostate Cancer. Oncologist 2021, 26, e270–e278. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Antonarakis, E.S.; Piulats, J.M.; Gross-Goupil, M.; Goh, J.; Ojamaa, K.; Hoimes, C.J.; Vaishampayan, U.; Berger, R.; Sezer, A.; Alanko, T.; et al. Pembrolizumab for Treatment-Refractory Metastatic Castration-Resistant Prostate Cancer: Multicohort, Open-Label Phase II KEYNOTE-199 Study. J. Clin. Oncol. 2020, 38, 395–405. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kwon, E.D.; Drake, C.G.; Scher, H.I.; Fizazi, K.; Bossi, A.; van den Eertwegh, A.J.M.; Krainer, M.; Houede, N.; Santos, R.; Mahammedi, H.; et al. Ipilimumab versus Placebo after Radiotherapy in Patients with Metastatic Castration-Resistant Prostate Cancer That Had Progressed after Docetaxel Chemotherapy (CA184-043): A Multicentre, Randomised, Double-Blind, Phase 3 Trial. Lancet Oncol. 2014, 15, 700–712. [Google Scholar] [CrossRef] [PubMed]
- Beer, T.M.; Kwon, E.D.; Drake, C.G.; Fizazi, K.; Logothetis, C.; Gravis, G.; Ganju, V.; Polikoff, J.; Saad, F.; Humanski, P.; et al. Randomized, Double-Blind, Phase III Trial of Ipilimumab Versus Placebo in Asymptomatic or Minimally Symptomatic Patients with Metastatic Chemotherapy-Naive Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2017, 35, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Petrylak, D.P.; Loriot, Y.; Shaffer, D.R.; Braiteh, F.; Powderly, J.; Harshman, L.C.; Conkling, P.; Delord, J.-P.; Gordon, M.; Kim, J.W.; et al. Safety and Clinical Activity of Atezolizumab in Patients with Metastatic Castration-Resistant Prostate Cancer: A Phase I Study. Clin. Cancer Res. 2021, 27, 3360–3369. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Yuen, K.C.; Gillessen, S.; Kadel, E.E.; Rathkopf, D.; Matsubara, N.; Drake, C.G.; Fizazi, K.; Piulats, J.M.; Wysocki, P.J.; et al. Atezolizumab with enzalutamide versus enzalutamide alone in metastatic castration-resistant prostate cancer: A randomized phase 3 trial. Nat. Med. 2022, 28, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Merck News Release. Available online: https://www.merck.com/news/merck-provides-update-on-phase-3-trials-keynote-641-and-keynote-789/ (accessed on 18 March 2023).
- Fizazi, K.; González Mella, P.; Castellano, D.; Minatta, J.N.; Rezazadeh Kalebasty, A.; Shaffer, D.; Vázquez Limón, J.C.; Sánchez López, H.M.; Armstrong, A.J.; Horvath, L.; et al. Nivolumab Plus Docetaxel in Patients with Chemotherapy-Naïve Metastatic Castration-Resistant Prostate Cancer: Results from the Phase II CheckMate 9KD Trial. Eur. J. Cancer 2022, 160, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.Y.; Kolinsky, M.P.; Berry, W.R.; Retz, M.; Mourey, L.; Piulats, J.M.; Appleman, L.J.; Romano, E.; Gravis, G.; Gurney, H.; et al. Pembrolizumab Plus Docetaxel and Prednisone in Patients with Metastatic Castration-Resistant Prostate Cancer: Long-Term Results from the Phase 1b/2 KEYNOTE-365 Cohort B Study. Eur. Urol. 2022, 82, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Petrylak, D.P.; Li, B.; Schloss, C.; Fizazi, K. KEYNOTE-921: Phase III Study of Pembrolizumab (Pembro) Plus Docetaxel and Prednisone for Enzalutamide (Enza)- or Abiraterone (Abi)-Pretreated Patients (Pts) with Metastatic Castration-Resistant Prostate Cancer (MCRPC). Ann. Oncol. 2019, 30, v351. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Pachynski, R.K.; Narayan, V.; Fléchon, A.; Gravis, G.; Galsky, M.D.; Mahammedi, H.; Patnaik, A.; Subudhi, S.K.; Ciprotti, M.; et al. Nivolumab Plus Ipilimumab for Metastatic Castration-Resistant Prostate Cancer: Preliminary Analysis of Patients in the CheckMate 650 Trial. Cancer Cell 2020, 38, 489–499.e3. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Krainer, M.; Saad, F.; Castellano, D.; Bedke, J.; Kwiatkowski, M.; Patnaik, A.; Procopio, G.; Wiechno, P.; Kochuparambil, S.T.; et al. Nivolumab plus Ipilimumab for the Treatment of Post-Chemotherapy Metastatic Castration-Resistant Prostate Cancer (MCRPC): Additional Results from the Randomized Phase 2 CheckMate 650 Trial. J. Clin. Oncol. 2023, 41 (Suppl. S6), 22. [Google Scholar] [CrossRef]
- He, M.; Zhang, D.; Cao, Y.; Chi, C.; Zeng, Z.; Yang, X.; Yang, G.; Sharma, K.; Hu, K.; Enikeev, M. Chimeric antigen receptor-modified T cells therapy in prostate cancer: A comprehensive review on the current state and prospects. Heliyon 2023, 9, e19147. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schepisi, G.; Cursano, M.C.; Casadei, C.; Menna, C.; Altavilla, A.; Lolli, C.; Cerchione, C.; Paganelli, G.; Santini, D.; Tonini, G.; et al. CAR-T cell therapy: A potential new strategy against prostate cancer. J. Immunother. Cancer 2019, 7, 258. [Google Scholar] [CrossRef]
- Zuccolotto, G.; Fracasso, G.; Merlo, A.; Montagner, I.M.; Rondina, M.; Bobisse, S.; Figini, M.; Cingarlini, S.; Colombatti, M.; Zanovello, P.; et al. PSMA-specific CAR-engineered T cells eradicate disseminated prostate cancer in preclinical models. PLoS ONE 2014, 10, e109427. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Shao, Y.; Zhang, X.; Lu, G.; Liu, B. IL-23 and PSMA-targeted duo-CAR T cells in Prostate Cancer Eradication in a preclinical model. J. Transl. Med. 2020, 18, 23. [Google Scholar] [CrossRef] [PubMed]
- Narayan, V.; Barber-Rotenberg, J.S.; Jung, I.-Y.; Lacey, S.F.; Rech, A.J.; Davis, M.M.; Hwang, W.-T.; Lal, P.; Carpenter, E.L.; Maude, S.L.; et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: A phase 1 trial. Nat. Med. 2022, 28, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Rosa, K. P-PSMA-101 Elicits Encouraging Responses in Metastatic Castration-Resistant Prostate Cancer. Available online: https://www.onclive.com/view/p-psma-101-elicits-encouraging-responses-in-metastatic-castration-resistant-prostate-cancer (accessed on 20 November 2023).
- Priceman, S.J.; Gerdts, E.A.; Tilakawardane, D.; Kennewick, K.T.; Murad, J.P.; Park, A.K.; Jeang, B.; Yamaguchi, Y.; Yang, X.; Urak, R.; et al. Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer. OncoImmunology 2018, 7, e1380764. [Google Scholar] [CrossRef]
- Moradi, A.; Srinivasan, S.; Clements, J.; Batra, J. Beyond the biomarker role: Prostate-specific antigen (PSA) in the prostate cancer microenvironment. Cancer Metastasis Rev. 2019, 38, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Lee, S.W.; Song, G.; Kang, T.W.; Jung, J.H.; Chung, H.C.; Kim, S.J.; Park, C.-H.; Park, J.Y.; Shin, T.Y.; et al. Diagnostic performance of %[-2]proPSA and prostate Health Index for prostate cancer: Prospective, multi-institutional study. J. Korean Med. Sci. 2018, 33, e94. [Google Scholar] [CrossRef] [PubMed]
- Zarrabi, K.K.; Narayan, V.; Mille, P.J.; Zibelman, M.R.; Miron, B.; Bashir, B.; Kelly, W.K. Bispecific PSMA antibodies and CAR-T in metastatic castration-resistant prostate cancer. Ther. Adv. Urol. 2023, 15, 17562872231182219. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Slovin, S.F.; Dorff, T.B.; Falchook, G.S.; Wei, X.X.; Gao, X.; McKay, R.R.; Oh, D.Y.; Wibmer, A.G.; Spear, M.A.; McCaigue, J. Phase 1 study of P-PSMA-101 CAR-T cells in patients with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2022, 40 (Suppl. S6), 98. [Google Scholar] [CrossRef]
- White, J.; Mason, R.; Lawen, T.; Spooner, J.; Faria, K.V.; Rahman, F.; Ramasamy, R. Therapeutic approaches to penile cancer: Standards of care and recent developments. Research and Reports in Urology. Res. Rep. Urol. 2023, 15, 165–174. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, H.; Yao, X.-D.; Zhang, S.-L.; Zhang, H.-L.; Shi, G.-H.; Yang, L.-F.; Yang, Z.-Y.; Wang, C.-F.; Ye, D.-W. Feasibility and activity of sorafenib and sunitinib in advanced penile cancer: A preliminary report. Urol. Int. 2010, 85, 334–340. [Google Scholar] [CrossRef]
- Giona, S. The epidemiology of penile cancer. In Urologic Cancers; Barber, N., Ali, A., Eds.; Exon Publications: Brisbane, Australia, 2022. [Google Scholar]
- Minhas, S.; Manseck, A.; Watya, S.; Hegarty, P.K. Penile cancer–prevention and premalignant conditions. Urology 2010, 76, S24–S35. [Google Scholar] [CrossRef] [PubMed]
- Chaux, A.; Munari, E.; Katz, B.; Sharma, R.; Lecksell, K.; Cubilla, A.L.; Burnett, A.L.; Netto, G.J. The Epidermal Growth Factor Receptor Is Frequently Overexpressed in Penile Squamous Cell Carcinomas: A Tissue Microarray and Digital Image Analysis Study of 112 Cases. Hum. Pathol. 2013, 44, 2690–2695. [Google Scholar] [CrossRef]
- Necchi, A.; Giannatempo, P.; Vullo, S.L.; Raggi, D.; Nicolai, N.; Colecchia, M.; Perrone, F.; Mariani, L.; Salvioni, R. Panitumumab treatment for advanced penile squamous cell carcinoma when surgery and chemotherapy have failed. Clin. Genitourin. Cancer 2016, 14, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Carthon, B.C.; Ng, C.S.; Pettaway, C.A.; Pagliaro, L.C. Epidermal Growth Factor Receptor-Targeted Therapy in Locally Advanced or Metastatic Squamous Cell Carcinoma of the Penis. BJU Int. 2014, 113, 871–877. [Google Scholar] [CrossRef]
- Vermorken, J.B.; Trigo, J.; Hitt, R.; Koralewski, P.; Diaz-Rubio, E.; Rolland, F.; Knecht, R.; Amellal, N.; Schueler, A.; Baselga, J. Open-label, uncon-trolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J. Clin. Oncol. 2007, 25, 2171–2177. [Google Scholar] [PubMed]
- Dai, S.; Liu, Y.; Liu, T.; Zhang, Y.; Luo, D. Case report of penile cancer recurrence treated with cetuximab combined with anlotinib. Clin. Case Rep. 2022, 10, e05443. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Luo, W.-X.; He, J.-P.; Li, X. Neoadjuvant chemotherapy with cetuximab for locally advanced penile cancer. J. Cancer Res. Ther. 2015, 11, 1041. Available online: http://www.cancerjournal.net/preprintarticle.asp?id1/4151945 (accessed on 7 November 2015). [CrossRef] [PubMed]
- Wu, J.; Cheng, K.; Yuan, L.; Du, Y.; Li, C.; Chen, Y.; Yu, Y.; Gou, H.; Xu, F.; Liu, J. Recurrent Penile Squamous Cell Carcinoma Successfully Treated with Cetuximab, Chemotherapy, and Radiotherapy. Clin. Genitourin. Cancer 2016, 14, e135–e137. [Google Scholar] [CrossRef]
- Brown, A.; Ma, Y.; Danenberg, K.; Schuckman, A.K.; Pinski, J.K.; Pagliaro, L.C.; Quinn, D.I.; Dorff, T.B. Epidermal growth factor receptor-targeted therapy in squamous cell carcinoma of the penis: A report of 3 cases. Urology 2014, 83, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Men, H.-T.; Gou, H.-F.; Qiu, M.; He, J.-P.; Cheng, K.; Chen, Y.; Ge, J.; Liu, J.-Y. A case of penile squamous cell carcinoma treated with a combination of antiepidermal growth factor receptor antibody and chemotherapy. Anticancer. Drugs 2014, 2, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Peyraud, F.; Allenet, C.; Gross-Goupil, M.; Domblides, C.; Lefort, F.; Daste, A.; Yacoub, M.; Haaser, T.; Ferretti, L.; Robert, G.; et al. Current management and future perspectives of penile cancer: An updated review. Cancer Treat. Rev. 2020, 90, 102087. [Google Scholar] [CrossRef] [PubMed]
- Junker, K.; Eckstein, M.; Fiorentino, M.; Montironi, R. PD1/PD-L1 axis in uro-oncology. Curr. Drug Targets 2020, 21, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Seliger, B. Basis of PD1/PD-L1 therapies. J. Clin. Med. 2019, 8, 2168. [Google Scholar] [CrossRef]
- Davidsson, S.; Carlsson, J.; Giunchi, F.; Harlow, A.; Kirrander, P.; Rider, J.; Fiorentino, M.; Andrén, O. PD-L1 Expression in Men with Penile Cancer and Its Association with Clinical Outcomes. Eur. Urol. Oncol. 2019, 2, 214–221. [Google Scholar] [CrossRef] [PubMed]
- De Bacco, M.W.; Carvalhal, G.F.; MacGregor, B.; Marçal, J.M.; Wagner, M.B.; Sonpavde, G.P.; Fay, A.P. PD-L1 and P16 Expression in Penile Squamous Cell Carcinoma From an Endemic Region. Clin. Genitourin. Cancer 2020, 18, e254–e259. [Google Scholar] [CrossRef] [PubMed]
- Udager, A.M.; Liu, T.-Y.; Skala, S.L.; Magers, M.J.; McDaniel, A.S.; Spratt, D.E.; Feng, F.Y.; Siddiqui, J.; Cao, X.; Fields, K.L.; et al. Frequent PD-L1 expression in primary and metastatic penile squamous cell carcinoma: Potential opportunities for immunotherapeutic approaches. Ann. Oncol. 2016, 27, 1706–1712. [Google Scholar] [CrossRef]
- Fessas, P.; Lee, H.; Ikemizu, S.; Janowitz, T. A molecular and preclinical comparison of the PD-1–targeted T-cell check-point inhibitors nivolumab and pembrolizumab. Semin. Oncol. 2017, 44, 136–140. [Google Scholar] [CrossRef]
- Chahoud, J.; Skelton, W.P.; Spiess, P.E.; Walko, C.; Dhillon, J.; Gage, K.L.; Johnstone, P.A.S.; Jain, R.K. Case report: Two cases of chemotherapy refractory metastatic penile squamous cell carcinoma with extreme durable response to pembrolizumab. Front. Oncol. 2020, 10, 615298. [Google Scholar] [CrossRef]
- Kaakour, D.; Seyedin, S.; Houshyar, R.; Mar, N. Combination of Pembrolizumab and Stereotactic Body Radiation Therapy in Recurrent Metastatic Penile Squamous Cell Carcinoma: A Case Study. Biomedicines 2022, 10, 3033. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hahn, A.W.; Chahoud, J.; Campbell, M.T.; Karp, D.D.; Wang, J.; Stephen, B.; Tu, S.-M.; Pettaway, C.A.; Naing, A. Pembrolizumab for advanced penile cancer: A case series from a phase II basket trial. Investig. New Drugs 2021, 39, 1405–1410. [Google Scholar] [CrossRef]
- Chen, H.X.; Lin, C.; Lin, C.C.; Yang, C. Combination of durvalumab and chemotherapy to potentially convert unresectable stage IV penile squamous cell carcinoma to resectable disease: A case report. Curr. Oncol. 2022, 30, 326–332. [Google Scholar] [CrossRef]
- Hui, G.; Ghafouri, S.N.; Shen, J.; Liu, S.; Drakaki, A. Treating penile cancer in the immunotherapy and targeted therapy era. Case Rep. Oncol. Med. 2019, 8349793. [Google Scholar] [CrossRef]
- Trafalis, D.T.; Alifieris, C.E.; Kalantzis, A.; Verigos, K.E.; Vergadis, C.; Sauvage, S. Evidence for efficacy of treatment with the anti-PD-1 mab nivolumab in radiation and multichemorefractory advanced penile squamous cell carcinoma. J. Immunother. 1997, 2018, 300–305. [Google Scholar] [CrossRef]
- Long, X.Y.; Zhang, S.; Tang, L.S.; Li, X.; Liu, J.Y. Conversion therapy for advanced penile cancer with tislelizumab combined with chemotherapy: A case report and review of literature. World J. Clin. Cases 2022, 10, 12305–12312. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Xu, T.; Zhou, Z.; Li, P.; Jia, G.; Li, X. Immunotherapy Combined with Chemotherapy for Postoperative Recurrent Penile Squamous Cell Carcinoma: A Case Report and Literature Review. Front. Oncol. 2022, 12, 837547. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mei, X.; Zhao, Y.; Zhang, Y.; Liao, J.; Jiang, C.; Qian, H.; Du, Y. Efficacy and Biomarker Exploration of Sintilimab Combined with Chemotherapy in the Treatment of Advanced Penile Squamous Cell Carcinoma-A Report of Two Cases. Front. Oncol. 2022, 12, 823459. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, L.; Shan, X.; Han, D.; Guo, Z.; Wang, H.; Xiao, Z. Multimodal Treatment Combining Salvage Surgery-Assisted Chemotherapy and Checkpoints Blockade Immunotherapy Achieves Complete Remission on a Recurrent Penile Cancer Patient: A Case Report. OncoTargets Ther. 2021, 14, 4891–4896. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Zhang, X.; Zhang, Y.; Li, W.; Hu, W.; Zong, L.; Zhao, J. PD-1 inhibitor treatment in a penile cancer patient with MMR/MSI status heterogeneity: A case report. Hum. Vaccines Immunother. 2022, 18, 2121122. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Zhang, J.; Fu, C.; Xiao, M.; Wang, C. Recurrent Metastatic Penile Cancer Patient with Positive PD-L1 Expression Obtained Significant Benefit from Immunotherapy: A Case Report and Literature Review. OncoTargets Ther. 2020, 13, 3319–3324. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004, 64, 7099–7109. [Google Scholar] [CrossRef]
- Baweja, A.; Mar, N. Metastatic penile squamous cell carcinoma with dramatic response to combined checkpoint blockade with ipilimumab and nivolumab. J. Oncol. Pharm. Pract. 2021, 27, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Apolo, A.B.; Nadal, R.; Girardi, D.M.; Niglio, S.A.; Ley, L.; Cordes, L.M.; Steinberg, S.M.; Ortiz, O.S.; Cadena, J.; Diaz, C.; et al. Phase I study of cabozantinib and nivolumab alone or with ipilimumab for advanced or metastatic urothelial carcinoma and other genitourinary tumors. J. Clin. Oncol. 2020, 38, 3672–3684. [Google Scholar] [CrossRef]
- Nadal, R.M.; Mortazavi, A.; Stein, M.; Pal, S.K.; Davarpanah, N.N.; Parnes, H.L.; Ning, Y.M.; Cordes, L.M.; Bagheri, M.H.; Lindenberg, L.; et al. Results of phase I plus expansion cohorts of cabozantinib (Cabo) plus nivolumab (Nivo) and CaboNivo plus ipilimumab (Ipi) in patients (pts) with with metastatic urothelial carcinoma (mUC) and other genitourinary (GU) malignancies. J. Clin. Oncol. 2018, 36, 515. [Google Scholar] [CrossRef]
- Perica, K.; Varela, J.C.; Oelke, M.; Schneck, J. Adoptive T cell immunotherapy for cancer. Rambam Maimonides Med. J. 2015, 6, e0004. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Doran, S.L.; Stevanović, S.; Adhikary, S.; Gartner, J.J.; Jia, L.; Kwong, M.L.M.; Faquin, W.C.; Hewitt, S.M.; Sherry, R.M.; Yang, J.C.; et al. T-Cell Receptor Gene Therapy for Human Papillomavirus-Associated Epithelial Cancers: A First-In-Human, Phase I/II Study. J. Clin. Oncol. 2019, 37, 2759–2768. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Albany, C.; Einhorn, L.; Garbo, L.; Boyd, T.; Josephson, N.; Feldman, D.R. Treatment of CD30-Expressing Germ Cell Tumors and Sex Cord Stromal Tumors with Brentuximab Vedotin: Identification and Report of Seven Cases. Oncologist 2018, 23, 316–323. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Necchi, A.; Magazzu, D.; Anichini, A.; Raggi, D.; Giannatempo, P.; Nicolai, N.; Colecchia, M.; Paolini, B.; Coradeschi, E.; Tassi, E.; et al. An open-label, single-group, phase 2 study of brentuximab vedotin as salvage therapy for males with relapsed germ cell tumors (GCT): Results at the end of first stage (FM12GCT01). J. Clin. Oncol. 2016, 34, 480. [Google Scholar] [CrossRef]
- Mayrhofer, K.; Strasser-Weippl KNiedersüß-Beke, D. Pembrolizumab plus brentuximab-vedotin in a patient with pretreated metastatic germ cell tumor. Ann. Hematol. Oncol. 2018, 5, 1196. [Google Scholar]
- Fankhauser, C.D.; Curioni-Fontecedro, A.; Allmann, V.; Beyer, J.; Tischler, V.; Sulser, T.; Moch, H.; Bode, P.K. Frequent PD-L1 expression in testicular germ cell tumors. Br. J. Cancer 2015, 113, 411–413. [Google Scholar] [CrossRef] [PubMed]
- Adra, N.; Einhorn, L.; Althouse, S.; Ammakkanavar, N.; Musapatika, D.; Albany, C.; Vaughn, D.; Hanna, N. Phase II trial of pembrolizumab in patients with platinum refractory germ-cell tumors: A Hoosier Cancer Research Network Study GU14-206. Ann. Oncol. 2018, 29, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Loh, K.P.; Fung, C. Novel therapies in platinum-refractory metastatic germ cell tumor: A case report with a focus on a PD-1 inhibitor. Rare Tumors 2017, 9, 47–49. [Google Scholar] [CrossRef]
- Kawai, K.; Tawada, A.; Onozawa, M.; Inoue, T.; Sakurai, H.; Mori, I.; Takiguchi, Y.; Miyazaki, J. Rapid Response to Pembrolizumab in a Chemo-Refractory Testicular Germ Cell Cancer with Microsatellite Instability-High. OncoTargets Ther. 2021, 14, 4853–4858. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Necchi, A.; Giannatempo, P.; Raggi, D.; Mariani, L.; Colecchia, M.; Farè, E.; Monopoli, F.; Calareso, G.; Ali, S.M.; Ross, J.S.; et al. An open-label randomized phase 2 study of Durvalumab alone or in combination with tremelimumab in patients with advanced germ cell tumors (APACHE): Results from the first planned interim analysis. Eur. Urol. 2019, 75, 201–223. [Google Scholar] [CrossRef]
- Zschäbitz, S.; Lasitschka, F.; Hadaschik, B.; Hofheinz, R.-D.; Jentsch-Ullrich, K.; Grüner, M.; Jäger, D.; Grüllich, C. Response to anti-programmed cell death protein-1 antibodies in men treated for platinum refractory germ cell cancer relapsed after high- dose chemotherapy and stem cell transplantation. Eur. J. Cancer 2017, 76, 1–7. [Google Scholar] [CrossRef]
- Chi, E.A.; Schweizer, M.T. Durable response to immune checkpoint blockade in a platinum-refractory patient with nonseminomatous germ cell tumor. Clin. Genitourin. Cancer 2017, 15, e855–e857. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Ward, J.E.; Bao, R.; Hall, C.R.; Brockstein, B.E.; Luke, J.J. Clinical response of a patient to Anti-PD-1 immunotherapy and the immune landscape of testicular germ cell tumors. Cancer Immunol. Res. 2016, 4, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Mego, M.; Svetlovska, D.; Chovanec, M.; Rečkova, M.; Rejlekova, K.; Obertova, J.; Palacka, P.; Sycova-Mila, Z.; De Giorgi, U.; Mardiak, J. Phase II study of avelumab in multiple relapsed/refractory germ cell cancer. Investig. New Drugs 2019, 37, 748–754. [Google Scholar] [CrossRef]
- Feldman, D.R.; Turkula, S.; Ginsberg, M.S.; Ishill, N.; Patil, S.; Carousso, M.; Bosl, G.J.; Motzer, R.J. Phase II trial of sunitinib in patients with relapsed or refractory germ cell tumors. Investig. New Drugs 2010, 28, 523–528. [Google Scholar] [CrossRef]
- Einhorn, L.H.; Brames, M.J.; Heinrich, M.C.; Corless, C.L.; Madani, A. Phase II study of imatinib mesylate in chemotherapy refractory germ cell tumors expressing KIT. Am. J. Clin. Oncol. 2006, 29, 12–13. [Google Scholar] [CrossRef]
- Kollmannsberger, C.; Pressler, H.; Mayer, F.; Kanz, L.; Bokemeyer, C. Cisplatin-refractory, HER2/neu-expressing germ-cell cancer: Induction of remission by the monoclonal antibody Trastuzumab. Ann. Oncol. 1999, 10, 1393–1394. [Google Scholar] [CrossRef] [PubMed]
Sr. No | PSMA CART Cell Clinical Trials |
---|---|
1. | NCT04227275 CART-PSMA-TGFβRDN |
2. | NCT01140373 Autologous anti-PSMA CAR T-cells |
3. | NCT03089203 CART-PSMA-TGFβRDN |
4. | NCT04249947 P-PSMA-101 CAR T-cells |
5. | NCT04429451 4SCAR-PSMA T-cells |
6. | NCT04633148 UniCAR02 T-cells (TMpPSMA) 39 |
7. | NCT04768608 non-viral PD1 integrated anti-PSMA chimeric antigen receptor T-cells |
8. | NCT03692663 Anti-PSMA CAR NK cell (TABP EIC) 9 |
9. | NCT05354375 PSMA-targeted CAR T-cells |
10. | NCT05656573 CART-PSMA cells |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalid, F.; Bodla, Z.H.; Gaddameedi, S.R.; Macasaet, R.; Yagnik, K.; Niaz, Z.; Fish, P.N.; Du, D.; Shah, S. Evidence-Based Recommendations on the Use of Immunotherapies and Monoclonal Antibodies in the Treatment of Male Reproductive Cancers. Curr. Oncol. 2025, 32, 108. https://doi.org/10.3390/curroncol32020108
Khalid F, Bodla ZH, Gaddameedi SR, Macasaet R, Yagnik K, Niaz Z, Fish PN, Du D, Shah S. Evidence-Based Recommendations on the Use of Immunotherapies and Monoclonal Antibodies in the Treatment of Male Reproductive Cancers. Current Oncology. 2025; 32(2):108. https://doi.org/10.3390/curroncol32020108
Chicago/Turabian StyleKhalid, Farhan, Zubair Hassan Bodla, Sai Rakshith Gaddameedi, Raymart Macasaet, Karan Yagnik, Zahra Niaz, Peter N. Fish, Doantrang Du, and Shazia Shah. 2025. "Evidence-Based Recommendations on the Use of Immunotherapies and Monoclonal Antibodies in the Treatment of Male Reproductive Cancers" Current Oncology 32, no. 2: 108. https://doi.org/10.3390/curroncol32020108
APA StyleKhalid, F., Bodla, Z. H., Gaddameedi, S. R., Macasaet, R., Yagnik, K., Niaz, Z., Fish, P. N., Du, D., & Shah, S. (2025). Evidence-Based Recommendations on the Use of Immunotherapies and Monoclonal Antibodies in the Treatment of Male Reproductive Cancers. Current Oncology, 32(2), 108. https://doi.org/10.3390/curroncol32020108