Germline Mutations in DNA Repair Genes in Patients with Pancreatic Neuroendocrine Neoplasms: Diagnostic and Therapeutic Implications
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Data Assessment and Patient Selection
2.3. Informed Consent and Ethical Approval
2.4. Inclusion Criteria
- Histologically or cytologically confirmed diagnosis of pNEN between 2021 and 2024, verified at the reference center (National Research Institute of Oncology). Only well-differentiated tumors (G1–G2) were included.
- Signed informed consent form for participation.
- Availability of a detailed family cancer history.
2.5. Exclusion Criteria
- Lack of histological confirmation of pNEN upon consultation.
- Medical conditions or abnormalities deemed by the study team to interfere with interpretation or compromise patient safety.
- Refusal to provide informed consent.
2.6. Molecular Analysis
2.6.1. DNA Isolation
2.6.2. Next-Generation Sequencing
- Enzymatic DNA fragmentation (50–100 ng at 37 °C);
- End repair and A-tailing;
- Adapter ligation;
- Library amplification and purification;
- Target hybridization;
- Post-capture amplification.
2.6.3. Equipment Used
- NextSeq® 550Dx sequencer (Illumina Inc.);
- Maxwell® RSC Instrument (Promega GmbH);
- NanoDrop® ND-1000 spectrophotometer (Thermo Fisher Scientific);
- Qubit® 2.0 Fluorometer (Thermo Fisher Scientific);
- 4200 TapeStation system (Agilent Technologies).
2.7. Bioinformatics Analysis
2.8. Statistical Analysis
3. Results
3.1. Study Group Characteristics
3.2. Genetic Findings
- CHEK2 c.(908+1_909-1)_(1095+1_1096-1)del (del5395)
- BRCA2 c.8165C>G p.(Thr2722Arg)
- PMS2 c.2003T>C p.(Ile668Thr)
- APC c.3436C>T p.(Arg1146Cys)
- MSH6 c.3242T>G p.(Leu1081Trp)
- PALB2 c.3122A>C p.(Lys1041Thr)
- MSH2 c.2178G>C p.(Met726Ile)
- CHEK2 c.470T>C p.(Ile157Thr) (identified in four patients)
3.3. Interpretation of Genetic Variants
3.3.1. Pathogenic Variants
3.3.2. Variants of Uncertain Significance (VUS)
- PALB2 c.3122A>C p.(Lys1041Thr): This variant has been previously observed in breast cancer and pediatric acute myeloid leukemia, though functional studies suggest limited impact [42].
- MSH2 c.2178G>C p.(Met726Ile): This conservative change has been reported in various cancers, but its clinical significance remains unclear.
- MSH6 c.3242T>G p.(Leu1081Trp) and PMS2 c.2003T>C p.(Ile668Thr): These are rare variants with limited evidence, and no functional data are available.
- EPCAM c.577A>G p.(Ile193Val): Although EPCAM inactivation can lead to MSH2 silencing, this variant is not considered pathogenic based on current evidence.
- APC c.3436C>T p.(Arg1146Cys): This variant remains unclassified due to insufficient evidence.
3.3.3. Benign Variants
3.4. Oncoplot: Genetic Alterations and Clinical Features Analysis
4. Discussion
4.1. Clinical Translational Outlook
4.2. Clinical Significance
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| pNENs | Pancreatic neuroendocrine neoplasms |
| PDAC | Pancreatic ductal adenocarcinoma |
| NGS | Next-generation sequencing |
| ACMG | American College of Medical Genetics and Genomics |
| AMP | Association for Molecular Pathology |
| VUS | Variant of uncertain significance |
| MMR | Mismatch repair |
| DSB | Double-strand break |
| PARP | Poly(ADP-ribose) polymerase |
| NEC | Neuroendocrine carcinoma |
Appendix A
| Population | CHEK2 del5395 | BRCA2 c.8165C>G | PMS2 c.2003T>C | APC c.3436C>T | PALB2 c.3122A>C | MSH2 c.2178G>C | CHEK2 c.470T>C | EPCAM c.577A>G |
|---|---|---|---|---|---|---|---|---|
| Admixed American | 0.0100% | 0.0000% | 0.0000% | 0.0000% | 0.0000% | 0.0000% | 0.0100% | 0.0100% |
| African/African American | 0.0040% | 0.0000% | 0.0000% | 0.0000% | 0.0000% | 0.0000% | 0.0040% | 0.0122% |
| Ashkenazi Jewish | 0.1115% | 0.0000% | 0.0000% | 0.0034% | 0.0000% | 0.0000% | 0.1115% | 0.0000% |
| East Asian | 0.0022% | 0.0022% | 0.0022% | 0.0000% | 0.0000% | 0.0000% | 0.0022% | 0.0000% |
| European Finnish | 2.5760% | 0.0000% | 0.0000% | 0.0000% | 0.0000% | 0.0000% | 2.5760% | 0.0000% |
| European non-Finnish | 0.2215% | 0.0000% | 0.0000% | 0.0000% | 0.0000% | 0.0000% | 0.2215% | 0.0000% |
| Polish (from study) | 2.0000% | 2.0000% | 2.0000% | 2.0000% | 2.0000% | 2.0000% | 7.0000% | 2.0000% |
| Chromosome | Position | refGene | Transcript | HGVSc |
| 13 | 32363367 | BRCA2 | NM_000059.4 | c.8165C>G |
| 22 | 28695874-28703504 | CHEK2 | NC_000022.11 | c.(908+1_909-1)_(1095+1_1096-1)del |
| 7 | 5986762 | PMS2 | NM_000535.7 | c.2003T>C |
| 2 | 47476539 | MSH2 | NM_000251.3 | c.2178G>C |
| 2 | 47803489 | MSH6 | NM_000179.3 | c.3242T>G |
| 5 | 112839030 | APC | NM_000038.6 | c.3436C>T |
| 16 | 23614083 | PALB2 | NM_024675.4 | c.3122A>C |
| 22 | 28725099 | CHEK2 | NM_007194.4 | c.470T>C |
| HGVSp | ACMG Classification | Met ACMG Classification Rules | dbSNP Number | |
| p.(Thr2722Arg) | Pathogenic | PP3, PM2, PM5, PM1, PP5, PS3, PP1, PS4 | rs80359062 | |
| - | Pathogenic | 1A, 2B, 2E, 3A, 4O | - | |
| p.(Ile668Thr) | VUS | PM2, PM5 | - | |
| p.(Met726Ile) | VUS | PP3, PM2, BP6 | rs587782396 | |
| p.(Leu1081Trp) | VUS | PP3, PM2 | rs1553331349 | |
| p.(Arg1146Cys) | VUS | PP3, PM2 | rs202168805 | |
| p.(Lys1041Thr) | VUS | PM2, BP4 | rs781663559 | |
| p.(Ile157Thr) | VUS | PM2, PM5, PP5 | rs17879961 | |
References
- Das, S.; Dasari, A. Epidemiology, incidence, and prevalence of neuroendocrine neoplasms: Are there global differences? Curr. Oncol. Rep. 2021, 23, 43. [Google Scholar] [CrossRef]
- Fraenkel, M.; Kim, M.; Faggiano, A.; de Herder, W.W.; Valk, G.D.; Knowledge Network. Incidence of gastroenteropancreatic neuroendocrine tumours: A systematic review of the literature. Endocr. Relat. Cancer 2014, 21, R153–R163. [Google Scholar] [CrossRef]
- Hofland, J.; Kaltsas, G.; de Herder, W.W. Advances in the diagnosis and management of well-differentiated neuroendocrine neoplasms. Endocr. Rev. 2020, 41, 371–403. [Google Scholar] [CrossRef]
- Hopper, A.D.; Jalal, M.; Munir, A. Recent advances in the diagnosis and management of pancreatic neuroendocrine tumours. Frontline Gastroenterol. 2019, 10, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Reccia, I.; Pai, M.; Kumar, J.; Spalding, D.; Frilling, A. Tumour Heterogeneity and the Consequent Practical Challenges in the Management of Gastroenteropancreatic Neuroendocrine Neoplasms. Cancers 2023, 15, 1861. [Google Scholar] [CrossRef]
- Ye, Z.; Zhou, Y.; Hu, Y.; Li, Q.; Xu, Z.; Lou, X.; Zhang, W.; Zhu, D.; Xie, C.; Zhou, Q.; et al. Single-cell sequencing reveals the heterogeneity of pancreatic neuroendocrine tumors under genomic instability and histological grading. iScience 2024, 5, 101234. [Google Scholar] [CrossRef] [PubMed]
- Sonbol, M.B.; Mazza, G.L.; Mi, L.; Oliver, T.; Starr, J.; Gudmundsdottir, H.; Cleary, S.P.; Hobday, T.; Halfdanarson, T.R. Survival and Incidence Patterns of Pancreatic Neuroendocrine Tumors over the Last 2 Decades: A SEER Database Analysis. Oncologist 2022, 27, 573–578. [Google Scholar] [CrossRef]
- Klein, A.P. Genetic susceptibility to pancreatic cancer. Mol. Carcinog. 2012, 51, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Miki, Y.; Swensen, J.; Shattuck-Eidens, D.; Futreal, P.A.; Harshman, K.; Tavtigian, S.; Liu, Q.; Cochran, C.; Bennett, L.M.; Ding, W.; et al. A strong candidate for the breast cancer and ovarian cancer susceptibility gene BRCA1. Science 1994, 266, 66–71. [Google Scholar] [CrossRef]
- Wooster, R.; Bignell, G.; Lancaster, J.; Swift, S.; Seal, S.; Mangion, J.; Collins, N.; Gregory, S.; Gumbs, C.; Micklem, G. Identification of the breast cancer susceptibility gene BRCA2. Nature 1995, 378, 789–792. [Google Scholar] [CrossRef]
- Lord, C.J.; Ashworth, A. PARP inhibitors: Synthetic lethality in the clinic. Science 2017, 355, 1152–1158. [Google Scholar] [CrossRef]
- Hu, C.; Hart, S.N.; Polley, E.C.; Gnanaolivu, R.; Shimelis, H.; Lee, K.Y.; Lilyquist, J.; Na, J.; Moore, R.; Antwi, S.O.; et al. Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer. JAMA 2018, 319, 2401–2409. [Google Scholar] [CrossRef]
- Furlan, D.; Monti, M.; Romualdi, C.; Vanoli, A.; Vicari, E.; Solcia, E.; Capella, C.; Sessa, F.; La Rosa, S. Microsatellite unstable gastrointestinal neuroendocrine carcinomas: A new clinicopathologic entity. Endocr. Relat. Cancer. 2015, 22, 35–45. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Neuroendocrine and Adrenal Tumors. Version 1.2025; NCCN: Plymouth Meeting, PA, USA, 2025; Available online: https://www.nccn.org (accessed on 16 June 2025).
- Mohindroo, C.; De-De Jesus-Acosta, A.; Yurgelun, M.B.; Maitra, A.; Mork, M.; McAllister, F. The evolving paradigm of germline testing in pancreatic ductal adenocarcinoma and implications for clinical practice. Surg. Pathol. Clin. 2022, 15, 491–502. [Google Scholar] [CrossRef]
- Shindo, K.; Yu, J.; Suenaga, M.; Fesharakizadeh, S.; Cho, C.; Macgregor-Das, A.; Siddiqui, A.; Witmer, P.D.; Tamura, K.; Song, T.J.; et al. Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. J. Clin. Oncol. 2017, 35, 3382–3390. [Google Scholar] [CrossRef] [PubMed]
- Capdevila, J.; Casanovas, O.; Salazar, R.; Castellano, D.; Segura, A.; Fuster, P.; Aller, J.; García-Carbonero, R.; Jimenez-Fonseca, P.; Grande, E.; et al. Translational research in neuroendocrine tumors: Pitfalls and opportunities. Oncogene 2017, 36, 1899–1907. [Google Scholar] [CrossRef] [PubMed]
- Mafficini, A.; Scarpa, A. Genomic landscape of pancreatic neuroendocrine tumours: The International Cancer Genome Consortium. J. Endocrinol. 2018, 236, R161–R167. [Google Scholar] [CrossRef]
- Scarpa, A. The landscape of molecular alterations in pancreatic and small interstinal neuroendocrine tumours. Ann. Endocrinol. 2019, 80, 153–158. [Google Scholar] [CrossRef]
- Batukbhai, B.D.O.; De Jesus-Acosta, A. The molecular and clinical landscape of pancreatic neuroendocrine tumors. Pancreas 2019, 48, 9–21. [Google Scholar] [CrossRef]
- Ji, S.; Yang, W.; Lju, J.; Zhao, J.; Chen, L.; Ni, Q.; Long, J.; Yu, X. High throughput gene sequencing reveals altered landscape in DNA damage responses and chromatin remodeling in sporadic pancreatic neuroendocrine tumors. Pancreatology 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Scarpa, A.; Chang, D.K.; Nones, K.; Corbo, V.; Patch, A.M.; Bailey, P.; Lawlor, R.T.; Johns, A.L.; Miller, D.K.; Mafficini, A.; et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 2017, 543, 65–71. [Google Scholar] [CrossRef]
- Jensen, R.T.; Berna, M.J.; Bingham, D.B.; Norton, J.A. Inherited pancreatic endocrine tumor syndromes: Advances in molecular pathogenesis, diagnosis, management, and controversies. Cancer 2008, 113, 1807–1843. [Google Scholar] [CrossRef] [PubMed]
- Soczomski, P.; Jurecka-Lubieniecka, B.; Krzywon, A.; Cortez, A.J.; Zgliczynski, S.; Rogozik, N.; Oczko-Wojciechowska, M.; Pawlaczek, A.; Bednarczuk, T.; Jarzab, B. A direct comparison of patients with hereditary and sporadic pancreatic neuroendocrine tumors: Evaluation of clinical course, prognostic factors and genotype-phenotype correlations. Front. Endocrinol. 2021, 12, 681013. [Google Scholar] [CrossRef] [PubMed]
- Mohindroo, C.; Baydogan, S.; Agarwal, P.; Wright, R.D.; Prakash, L.R.; Mork, M.E.; Klein, A.P.; Laheru, D.A.; Maxwell, J.E.; Katz, M.H.G.; et al. Germline testing identifies pathogenic/likely pathogenic variants in patients with pancreatic neuroendocrine tumors. Cancer Prev. Res. 2024, 17, 335–342. [Google Scholar] [CrossRef]
- Andersen, K.Ø.; Detlefsen, S.; Brusgaard, K.; Christesen, H.T. Well-differentiated G1 and G2 pancreatic neuroendocrine tumors: A meta-analysis of published expanded DNA sequencing data. Front. Endocrinol. 2024, 15, 1351624. [Google Scholar] [CrossRef]
- Riechelmann, R.P.; Donadio, M.D.S.; Jesus, V.H.F.; de Carvalho, N.A.; Santiago, K.M.; Barros, M.J.; Lopes, L.; Oliveira Dos Santos, G.; Nirvana Formiga, M.; Carraro, D.M.; et al. Germline pathogenic variants in patients with early-onset neuroendocrine neoplasms. Endocr. Relat. Cancer 2023, 30, e220258. [Google Scholar] [CrossRef]
- Venizelos, A.; Sorbye, H.; Elvebakken, H.; Perren, A.; Lothe, I.M.B.; Couvelard, A.; Hjortland, G.O.; Sundlöv, A.; Svensson, J.; Garresori, H.; et al. Germline pathogenic variants in patients with high-grade gastroenteropancreatic neuroendocrine neoplasms. Endocr. Relat. Cancer 2023, 30, e230057. [Google Scholar] [CrossRef] [PubMed]
- Aversa, J.G.; De Abreu, F.B.; Yano, S.; Xi, L.; Hadley, D.W.; Manoli, I.; Raffeld, M.; Sadowski, S.M.; Nilubol, N. The first pancreatic neuroendocrine tumor in Li-Fraumeni syndrome: A case report. BMC Cancer 2020, 20, 256. [Google Scholar] [CrossRef]
- Greidinger, A.; Miller-Samuel, S.; Giri, V.N.; Woo, M.S.; Akumalla, S.; Zeigler-Johnson, C.; Keith, S.W.; Silver, D.P. Neuroendocrine Tumors Are Enriched in Cowden Syndrome. JCO Precis. Oncol. 2020, 4, PO.19.00241. [Google Scholar] [CrossRef]
- Neychev, V.; Sadowski, S.M.; Zhu, J.; Allgaeuer, M.; Kilian, K.; Meltzer, P.; Kebebew, E. Neuroendocrine tumor of the pancreas as a manifestation of Cowden syndrome: A case report. J. Clin. Endocrinol. Metab. 2016, 101, 353–358. [Google Scholar] [CrossRef]
- Petignot, S.; Daly, A.F.; Castermans, E.; Korpershoek, E.; Scagnol, I.; Beckers, P.; Dideberg, V.; Rohmer, V.; Bours, V.; Beckers, A. Pancreatic neuroendocrine neoplasm associated with a familial MAX deletion. Horm. Metab. Res. 2020, 52, 784–787. [Google Scholar] [CrossRef]
- Kit, O.I.; Gwaldin, Y.U.; Trifanov, V.S.; Kolesnikov, E.N.; Timoshkina, N.N. Molecular-genetic features of pancreatic neuroendocrine tumors. Genetika 2020, 56, 142–160. [Google Scholar] [CrossRef]
- Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef]
- Cavanagh, H.; Rogers, K.M.A. The role of BRCA1 and BRCA2 mutations in prostate, pancreatic and stomach cancers. Hered. Cancer Clin. Pract. 2015, 13, 16. [Google Scholar] [CrossRef]
- Mersch, J.; Jackson, M.A.; Park, M.; Nebgen, D.; Peterson, S.K.; Singletary, C.; Arun, B.K.; Litton, J.K. Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer 2015, 121, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.; Casadei, S.; Coats, K.H.; Swisher, E.; Stray, S.M.; Higgins, J.; Roach, K.C.; Mandell, J.; Lee, M.K.; Ciernikova, S.; et al. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA 2006, 295, 1379–1388. [Google Scholar] [CrossRef]
- Cybulski, C.; Wokołorczyk, D.; Kładny, J.; Kurzawski, G.; Suchy, J.; Grabowska, E.; Gronwald, J.; Huzarski, T.; Byrski, T.; Górski, B.; et al. Germline CHEK2 mutations and colorectal cancer risk: Different effects of a missense and truncating mutations? Eur. J. Hum. Genet. 2007, 15, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Siołek, M.; Cybulski, C.; Gąsior-Perczak, D.; Kowalik, A.; Kozak-Klonowska, B.; Kowalska, A.; Chłopek, M.; Kluźniak, W.; Wokołorczyk, D.; Pałyga, I.; et al. CHEK2 mutations and the risk of papillary thyroid cancer. Int. J. Cancer 2015, 137, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Janiszewska, H.; Bak, A.; Pilarska, M.; Heise, M.; Junkiert-Czarnecka, A.; Kuliszkiewicz-Janus, M.; Całbecka, M.; Jaźwiec, B.; Wołowiec, D.; Kuliczkowski, K.; et al. A risk of essential thrombocythemia in carriers of constitutional CHEK2 gene mutations. Haematologica 2012, 97, 366–370. [Google Scholar] [CrossRef]
- Rodrigue, A.; Margaillan, G.; Torres Gomes, T.; Coulombe, Y.; Montalban, G.; da Costa E Silva Carvalho, S.; Milano, L.; Ducy, M.; De-Gregoriis, G.; Dellaire, G.; et al. A global functional analysis of missense mutations reveals two major hotspots in the PALB2 tumor suppressor. Nucleic Acids Res. 2019, 47, 10662–10677. [Google Scholar] [CrossRef]
- Falck, J.; Lukas, C.; Protopopova, M.; Lukas, J.; Selivanova, G.; Bartek, J. Functional impact of concomitant versus alternative defects in the Chk2-p53 tumour suppressor pathway. Oncogene 2001, 20, 5503–5510. [Google Scholar] [CrossRef]
- Myszka, A.; Karpinski, P.; Slezak, R.; Czemarmazowicz, H.; Stembalska, A.; Gil, J.; Laczmanska, I.; Bednarczyk, D.; Szmida, E.; Sasiadek, M.M. Irrelevance of CHEK2 variants to diagnosis of breast/ovarian cancer predisposition in Polish cohort. J. Appl. Genet. 2011, 52, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Raj, N.; Shah, R.; Stadler, Z.; Mukherjee, S.; Chou, J.; Untch, B.; Li, J.; Kelly, V.; Saltz, L.B.; Mandelker, D.; et al. Real-Time Genomic Characterization of Metastatic Pancreatic Neuroendocrine Tumors Has Prognostic Implications and Identifies Potential Germline Actionability. JCO Precis. Oncol. 2018, 2018, PO.17.00267. [Google Scholar] [CrossRef] [PubMed]
- Arakelyan, J.; Zohrabyan, D.; Philip, P.A. Molecular profile of pancreatic neuroendocrine neoplasms (PanNENs): Opportunities for personalized therapies. Cancer 2021, 127, 345–353. [Google Scholar] [CrossRef]
- Ischida, A.; King-yin, L.A. Pancreatic neuroendocrine neoplasms: Updates on genomic changes in inherited tumor syndromes and sporadic tumors based on WHO classification. Crit. Rev. Oncol. 2022, 172, 103648. [Google Scholar] [CrossRef]
- Tirosh, A.; Kebebew, E. Genetic and epigenetic alterations in pancreatic neuroendocrine tumors. J. Gastrointest. Oncol. 2020, 11, 567–577. [Google Scholar] [CrossRef] [PubMed]
- van Riet, J.; van de Werken, H.J.G.; Cuppen, E.; Eskens, F.A.L.M.; Tesselaar, M.; van Veenendaal, L.M.; Klümpen, H.J.; Dercksen, M.W.; Valk, G.D.; Lolkema, M.P.; et al. The genomic landscape of 85 advanced neuroendocrine neoplasms reveals subtype-heterogeneity and potential therapeutic targets. Nat. Commun. 2021, 12, 4612. [Google Scholar] [CrossRef]
- Chan, J.; Kulke, M. Targeting the mTOR signaling pathway in neuroendocrine tumours. Curr. Treat. Options Oncol. 2014, 15, 365–379. [Google Scholar] [CrossRef]
- Yao, J.C.; Shah, M.H.; Ito, T.; Bohas, C.L.; Wolin, E.M.; Van Cutsem, E.; Hobday, T.J.; Okusaka, T.; Capdevila, J.; de Vries, E.G.E.; et al. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 2011, 364, 514–523. [Google Scholar] [CrossRef]
- Capozzi, M.; Von Arx, C.; de Divitiis, C.; Ottaiano, A.; Tatangelo, F.; Romano, G.M.; Tafuto, S.; On behalf of ENETS Center of Excellence Multidisciplinary Group for Neuroendocrine Tumors in Naples, Italy. Antiangiogenic therapy in pancreatic neuroendocrinor tumor. Anticancer. Res. 2016, 36, 5025–5030. [Google Scholar] [CrossRef]
- Raymond, E.; Dahan, L.; Raoul, J.-L.; Bang, Y.-J.; Borbath, I.; Lombard-Bohas, C.; Valle, J.; Metrakos, P.; Smith, D.; Vinik, A.; et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 2011, 364, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Pavel, M.E.; Sers, C. Women in cancer Thematic review: Systemic therapies in neuroendocrine tumors and novel approaches toward personalized medicine. Endocr. Relat. Cancer 2016, 23, T135–T154. [Google Scholar] [CrossRef]
- Sorscher, S.; Ansley, K.; Delaney, S.D.; Ramkissoon, S. The implications of BRCA loss of heterozygosity (LOH) and deficient mismatch repair gene (dMMR) expression in the breast cancer of a patient with both inherited breast and ovarian cancer syndrome (BRCA2) and Lynch syndrome (MLH1). Breast Cancer Res. Treat. 2020, 180, 511–514. [Google Scholar] [CrossRef]
- Lucky, M.H.; Baig, S.; Hanif, M.; Asghar, H.A. Systematic Review: Comprehensive Methods for Detecting BRCA1 and BRCA2 Mutations in Breast and Ovarian Cancer. Asian Pac. J. Cancer Biol. 2025, 10, 229–238. [Google Scholar] [CrossRef]
- Deans, A.J.; West, S.C. DNA interstrand crosslink repair and cancer. Nat. Rev. Cancer 2011, 11, 467–480. [Google Scholar] [CrossRef] [PubMed]
- Hatano, Y.; Tamada, M.; Matsuo, M.; Hara, A. Molecular trajectory of BRCA1 and BRCA2 mutations. Front. Oncol. 2020, 10, 361. [Google Scholar] [CrossRef]
- Rebbeck, T.R.; Mitra, N.; Wan, F.; Sinilnikova, O.M.; Healey, S.; McGuffog, L.; Mazoyer, S.; Chenevix-Trench, G.; Easton, D.F.; Antoniou, A.C.; et al. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA 2015, 313, 1347–1361. [Google Scholar] [CrossRef]
- Pilarski, R. The Role of BRCA Testing in Hereditary Pancreatic and Prostate Cancer Families. Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Kasi, P.M.; Couch, F.; Bamlet, W.R.; Hu, C.; Hart, S.; Polley, E.; Petersen, G.M.; McWilliams, R.R. Germline BRCA1/2, PALB2, and ATM mutations in 3030 patients with pancreatic adenocarcinoma: Survival analysis of carriers and noncarriers. J. Clin. Oncol. 2018, 36, 280. [Google Scholar] [CrossRef]
- Sharma, M.B.; Carus, A.; Sunde, L.; Hamilton-Dutoit, S.; Ladekarl, M. BRCA-associated pancreatico-biliary neoplasms: Four cases illustrating the emerging clinical impact of genotyping. Acta Oncol. 2016, 55, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Šukys, M.; Pocevičienė, I.; Širkienė, L.; Čereškevičius, D.; Žemeckienė, Ž.; Valančiūtė, I.; Ugenskienė, R. Case of BRCA1 Gene Germline Mutation in Patient with Neuroendocrine Tumor. In Online Poster Abstract Book, Proceedings of the 6th Kaunas/Lithuania International Hematology/Oncology Colloquium, Kaunas, Lithuania, 28 May 2021; Juozaitytė, E., Ed.; Kaunas Region Society of Oncologists, Hematologists and Transfusiologists: Kaunas, Lithuania, 2021; pp. 12–13. Available online: https://hdl.handle.net/20.500.12512/111276 (accessed on 2 November 2025).
- Stolz, A.; Ertych, N.; Bastians, H. Tumor suppressor CHK2: Regulator of DNA damage response and mediator of chromosomal instability. Clin. Cancer Res. 2011, 17, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Zannini, L.; Delia, D.; Buscemi, G. CHK2 kinase in the DNA damage response and beyond. J. Mol. Cell Biol. 2014, 6, 442–457. [Google Scholar] [CrossRef]
- Mandelker, D.; Kumar, R.; Pei, X.; Selenica, P.; Setton, J.; Arunachalam, S.; Ceyhan-Birsoy, O.; Brown, D.N.; Norton, L.; Robson, M.E.; et al. The landscape of somatic genetic alterations in breast cancers from CHEK2 germline mutation carriers. JNCI Cancer Spectr. 2019, 3, pkz027. [Google Scholar] [CrossRef]
- Stolarova, L.; Kleiblova, P.; Janatova, M.; Soukupova, J.; Zemankova, P.; Macurek, L.; Kleibl, Z. CHEK2 germline variants in cancer predisposition: Stalemate rather than checkmate. Cells 2020, 9, 2675. [Google Scholar] [CrossRef]
- Vallera, R.D.; Ding, Y.; Hatanpaa, K.J.; Bishop, J.A.; Mirfakhraee, S.; Alli, A.A.; Tevosian, S.G.; Tabebi, M.; Gimm, O.; Söderkvist, P.; et al. Case report: Two sisters with a germline CHEK2 variant and distinct endocrine neoplasias. Front. Endocrinol. 2022, 13, 1024108. [Google Scholar] [CrossRef]
- Boonen, R.A.C.M.; Vreeswijk, M.P.G.; van Attikum, H. CHEK2 variants: Linking functional impact to cancer risk. Trends Cancer 2022, 8, 759–770. [Google Scholar] [CrossRef]
- Eccles, D.M.; Mitchell, G.; Monteiro, A.N.; Schmutzler, R.; Couch, F.J.; Spurdle, A.B.; Gómez-García, E.B.; ENIGMA Clinical Working Group. BRCA1 and BRCA2 genetic testing-pitfalls and recommendations for managing variants of uncertain clinical significance. Ann. Oncol. 2015, 26, 2057–2065. [Google Scholar] [CrossRef]
- Kunkel, T.A.; Erie, D.A. DNA mismatch repair. Annu. Rev. Biochem. 2005, 74, 681–710. [Google Scholar] [CrossRef] [PubMed]
- Mei, M.; Deng, D.; Liu, T.H.; Sang, X.T.; Lu, X.; Xiang, H.D.; Zhou, J.; Wu, H.; Yang, Y.; Chen, J.; et al. Clinical implications of microsatellite instability and MLH1 gene inactivation in sporadic insulinomas. J. Clin. Endocrinol. Metab. 2009, 94, 3448–3457. [Google Scholar] [CrossRef]
- House, M.G.; Herman, J.G.; Guo, M.Z.; Hooker, C.M.; Schulick, R.D.; Cameron, J.L.; Hruban, R.H.; Maitra, A.; Yeo, C.J. Prognostic value of hMLH1 methylation and microsatellite instability in pancreatic endocrine neoplasms. Surgery 2003, 134, 902–908, discussion 909. [Google Scholar] [CrossRef] [PubMed]
- Sahnane, N.; Furlan, D.; Monti, M.; Romualdi, C.; Vanoli, A.; Vicari, E.; Capella, C.; La Rosa, S. Microsatellite unstable pancreatic neuroendocrine neoplasms (PanNENs) harbour a hypermutated genotype. Endocr. Relat. Cancer 2015, 22, 615–624. [Google Scholar]
- Karamurzin, Y.; Zeng, Z.; Stadler, Z.K.; Zhang, L.; Ouansafi, I.; Al-Ahmadie, H.A.; Sempoux, C.; Saltz, L.B.; Soslow, R.A.; O’Reilly, E.M.; et al. Unusual DNA mismatch repair-deficient tumors in Lynch syndrome: A report of new cases and review of the literature. Hum. Pathol. 2012, 43, 1677–1687. [Google Scholar] [CrossRef]
- Serracant Barrera, A.; Serra Pla, S.; Blázquez Maña, C.M.; Salas, R.C.; García Monforte, N.; Bejarano González, N.; Romaguera Monzonis, A.; Andreu Navarro, F.J.; Bella Cueto, M.R.; Borobia, F.G. Pancreatic non-functioning neuroendocrine tumor: A new entity genetically related to Lynch syndrome. J. Gastrointest. Oncol. 2017, 8, E73–E79. [Google Scholar] [CrossRef]
- Golan, T.; Kanji, Z.S.; Epelbaum, R.; Devaud, N.; Dagan, E.; Holter, S.; Aderka, D.; Paluch-Shimon, S.; Kaufman, B.; Gershoni-Baruch, R.; et al. Overall survival and clinical characteristics of pancreatic cancer in BRCA mutation carriers. Br. J. Cancer 2014, 111, 1132–1138. [Google Scholar] [CrossRef]
- Jameson, G.S.; Borazanci, E.; Babiker, H.M.; Poplin, E.; Niewiarowska, A.A.; Gordon, M.S.; Barrett, M.T.; Rosenthal, A.; Stoll-D’Astice, A.; Crowley, J.; et al. Response rate following albumin-bound paclitaxel plus gemcitabine plus cisplatin treatment among patients with advanced pancreatic cancer: A phase 1b/2 Pilot clinical trial. JAMA Oncol. 2020, 6, 125–132. [Google Scholar] [CrossRef]
- Brown, J.S.; O’Carrigan, B.; Jackson, S.P.; Yap, T.A. Targeting DNA repair in cancer: Beyond PARP inhibitors. Cancer Discov. 2017, 7, 20–37. [Google Scholar] [CrossRef]
- Golan, T.; Hammel, P.; Reni, M.; Van Cutsem, E.; Macarulla, T.; Hall, M.J.; Park, J.O.; Hochhauser, D.; Arnold, D.; Oh, D.Y.; et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. N. Engl. J. Med. 2019, 381, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.-P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: Results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- Else, T.; Jonasch, E.; Iliopoulos, O.; Beckermann, K.E.; Narayan, V.; Maughan, B.L.; Oudard, S.; Maranchie, J.K.; Iversen, A.B.; Goldberg, C.M.; et al. Belzutifan for von Hippel-Lindau Disease: Pancreatic Lesion Population of the Phase 2 LITESPARK-004 Study. Clin. Cancer Res. 2024, 30, 1750–1757. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fallah, J.; Brave, M.H.; Weinstock, C.; Mehta, G.U.; Bradford, D.; Gittleman, H.; Bloomquist, E.W.; Charlab, R.; Hamed, S.S.; Miller, C.P.; et al. FDA approval summary: Belzutifan for von Hippel-Lindau disease-associated tumors. Clin. Cancer Res. 2022, 28, 4843–4848. [Google Scholar] [CrossRef] [PubMed]

| Variable | Group | No Mutation (n = 43) | Mutation (n = 14) | p | Effect Size (95% CI) |
|---|---|---|---|---|---|
| Sex, n (%) | Female | 20 (47%) | 11 (79%) | 0.062 F | 0.24 (0.04–1.1) OR |
| Male | 23 (53%) | 3 (21%) | |||
| Age, median (Q1–Q3) (y) | 61 (IQR 50–70) | 59 (IQR 52–65) | 0.52 W | 0.16 (−0.46–0.77) d | |
| Age at diagnosis, median (Q1–Q3) (y) | 55 (45–63) | 51 (45–60) | 0.48 W | 0.20 (−0.42–0.82) d | |
| Grading, n (%) | G1 | 24 (56%) | 7 (50%) | 0.53 F | 1.59 (0.39–6.54) OR |
| G2 | 15 (35%) | 7(50%) | |||
| Gx | 4 (9%) | 0 (0%) | – | – | |
| T, n (%) | T1 | 14 (33%) | 7 (50%) | 0.42 FFH | 0.23 (0.11–0.52) φc |
| T2 | 11 (26%) | 1 (7%) | |||
| T3 | 12 (28%) | 3 (21%) | |||
| T4 | 3 (7%) | 1 (7%) | |||
| Tx | 3 (7%) | 2 (14%) | – | – | |
| N, n (%) | N0 | 22 (51%) | 9 (64%) | 0.76 F | 0.77 (0.17–3.16) OR |
| N1 | 16 (37%) | 5 (36%) | |||
| Nx | 5 (12%) | 0 (0%) | – | – | |
| M, n (%) | M0 | 29 (67%) | 9 (64%) | 0.75 F | 1.24 (0.27–5.15) OR |
| M1 | 13 (30%) | 5 (36%) | |||
| Mx | 1 (2%) | 0 (0%) | – | – | |
| Endocrine activity, n (%) | 0 | 40 (93%) | 12 (86%) | 0.59 F | 2.19 (0.17–21.53) OR |
| 1 | 3 (7%) | 2 (14%) | |||
| Cardiovascular diseases, n (%) | 0 | 18 (42%) | 10 (71%) | 0.070 F | 0.30 (0.06–1.23) OR |
| 1 | 25 (58%) | 4 (29%) | |||
| Diabetes, n (%) | 0 | 29 (67%) | 10 (71%) | >0.99 F | 0.83 (0.16–3.57) OR |
| 1 | 14 (33%) | 4 (29%) | |||
| Tumors (other), n (%) | 0 | 38 (88%) | 14 (100%) | 0.32 F | 0.00 (0.00–3.37) OR |
| 1 | 5 (12%) | 0 (0%) | |||
| Family history | |||||
| Breast, ovarian, prostate, or pancreatic cancer, n (%) | 0 | 25 (58%) | 7 (50%) | >0.99 F | 1.38 (0.35–5.55) OR |
| 1 | 18 (42%) | 7(50%) | |||
| Colorectal cancer, n (%) | 0 | 31 (72%) | 10 (71%) | >0.99 F | 1.03 (0.20–4.53) OR |
| 1 | 12 (28%) | 4 (29%) | |||
| Other tumors, n (%) | 0 | 28 (65%) | 9 (64%) | >0.99 F | 1.03 (0.23–4.24) OR |
| 1 | 15 (33%) | 5 (36%) | |||
| Variant Type | Detected Variant | Diagnosis | Age at Diagnosis | Years of Observation |
|---|---|---|---|---|
| Pathogenic variants | ||||
| 1 | CHEK2 c.(908+1_909-1)_(1095+1_1096-1)del | G1, pT1N0M0 | 50 | 16 |
| 2 | BRCA2 c.8165C>G p.(Thr2722Arg) | G1, TXN1M1 | 70 | 16 |
| Variants of uncertain significance | ||||
| 1 | PMS2 c.2003T>C p.(Ile668Thr) VUS | G1, T1N0M0 | 43 | 5 |
| 2 | PMS2 c.2003T>C p.(Ile668Thr) VUS | G2, TXN1M1 | 60 | 14 |
| 3 | APC c.3436C>T p.(Arg1146Cys) VUS | G1, T1N1M0 | 55 | 11 |
| 4 | MSH6 c.3242T>G p.(Leu1081Trp) VUS | G1, pT1N0M0 | 50 | 6 |
| 5 | PALB2 c.3122A>C p.(Lys1041Thr) VUS | G2, TXN1M1 | 60 | 14 |
| 6 | EPCAM c.577A>G p.(Ile193Val) VUS | G2, TXN1M1 | 51 | 14 |
| 7 | MSH2 c.2178G>C p.(Met726Ile) VUS | G2, T2N0M0 | 65 | 11 |
| 8 | CHEK2 c.470T>C p.(Ile157Thr) VUS | G2, T1N0M0 | 58 | 5 |
| 9 | CHEK2 c.470T>C p.(Ile157Thr) VUS | G2, T1N1M1 | 29 | 1 |
| 10 | CHEK2 c.470T>C p.(Ile157Thr) VUS | G2, TXN1M1 | 55 | 5 |
| 11 | CHEK2 c.470T>C p.(Ile157Thr) VUS | G2, pT3N0M0 | 65 | 7 |
| Benign variants | ||||
| 1 | STK11 c.1208A>G p.(Lys403Arg) | G1, pT1N0M0 | 35 | 9 |
| 2 | APC c.4919G>A p.(Arg1640Gln) | G1, TXN1M0 | 36 | 9 |
| 3 | APC c.4919G>A p.(Arg1640Gln) | G1, T1N1M0 | 55 | 11 |
| 4 | BRCA2 c.7448G>A p.(Ser2483Asn) | G2, TXN1M1 | 60 | 14 |
| 5 | BRCA2 c.10095_10096insT p.(Ser3366Ter) | G2, pT2N0M0 | 65 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurecka-Lubieniecka, B.; Ros-Mazurczyk, M.; Sygula, A.; Cortez, A.J.; Krzempek, M.; Tuleja, A.B.; Kotecka-Blicharz, A.; Cieslicka, M.; Oczko-Wojciechowska, M.; Handkiewicz-Junak, D. Germline Mutations in DNA Repair Genes in Patients with Pancreatic Neuroendocrine Neoplasms: Diagnostic and Therapeutic Implications. Curr. Oncol. 2025, 32, 631. https://doi.org/10.3390/curroncol32110631
Jurecka-Lubieniecka B, Ros-Mazurczyk M, Sygula A, Cortez AJ, Krzempek M, Tuleja AB, Kotecka-Blicharz A, Cieslicka M, Oczko-Wojciechowska M, Handkiewicz-Junak D. Germline Mutations in DNA Repair Genes in Patients with Pancreatic Neuroendocrine Neoplasms: Diagnostic and Therapeutic Implications. Current Oncology. 2025; 32(11):631. https://doi.org/10.3390/curroncol32110631
Chicago/Turabian StyleJurecka-Lubieniecka, Beata, Małgorzata Ros-Mazurczyk, Aleksandra Sygula, Alexander J. Cortez, Marcela Krzempek, Anna B. Tuleja, Agnieszka Kotecka-Blicharz, Marta Cieslicka, Malgorzata Oczko-Wojciechowska, and Daria Handkiewicz-Junak. 2025. "Germline Mutations in DNA Repair Genes in Patients with Pancreatic Neuroendocrine Neoplasms: Diagnostic and Therapeutic Implications" Current Oncology 32, no. 11: 631. https://doi.org/10.3390/curroncol32110631
APA StyleJurecka-Lubieniecka, B., Ros-Mazurczyk, M., Sygula, A., Cortez, A. J., Krzempek, M., Tuleja, A. B., Kotecka-Blicharz, A., Cieslicka, M., Oczko-Wojciechowska, M., & Handkiewicz-Junak, D. (2025). Germline Mutations in DNA Repair Genes in Patients with Pancreatic Neuroendocrine Neoplasms: Diagnostic and Therapeutic Implications. Current Oncology, 32(11), 631. https://doi.org/10.3390/curroncol32110631

