Risk of Childhood Cancer in Children with Congenital Anomalies and Their Impact on Survival: A Population-Based Registry Approach
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Case Selection
2.2. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CA | Congenital anomalies |
| CC | Childhood cancers |
| CC + CA | Childhood cancer and congenital anomalies |
| CAPBR-VR | Congenital Anomalies population-based Registry of Valencian Region |
| CAPBCR-VR | Childhood and Adolescent population-based Cancer Registry of Valencian Region |
| ECIS | European Cancer Information System |
| EUROCAT | European network of population-based registries for the epidemiological surveillance of congenital anomalies |
| CAPBCR-VR | Childhood and Adolescent population-based Cancer Registry |
| ICCC-3-2017 | International Classification of Childhood Cancer, 3rd edition, update of 2017 |
| SIR | Standardized incidence ratio |
| 95% CI | 95% Confidence intervals |
| VR | Valencian Region |
References
- Young-Speirs, M.; Forbes, C.; Patton, M.; Russell, K.B.; Stokoe, M.; Reynolds, K.; Schulte, F. Perceived Health among Adolescent and Young Adult Survivors of Childhood Cancer. Curr. Oncol. 2021, 28, 825–836. [Google Scholar] [CrossRef]
- Ehrhardt, M.J.; Krull, K.R.; Bhakta, N.; Liu, Q.; Yasui, Y.; Robison, L.L.; Hudson, M.M. Improving quality and quantity of life for childhood cancer survivors globally in the twenty-first century. Nat. Rev. Clin. Oncol. 2023, 20, 678–696. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.J.; Lee, J.M.; Ahsan, K.; Padda, H.; Feng, Q.; Partap, S.; Fowler, S.A.; Druley, T.E. Pediatric cancer risk in association with birth defects: A systematic review. PLoS ONE 2017, 12, e0181246. [Google Scholar] [CrossRef]
- de Pontual, L.; Lyonnet, S.; Amiel, J. Réseau INCa-DHOS «ALK et neuroblastome». Anomalies de développement et pédisposition aux tumeurs de l’enfant. Arch. De Pediatr. 2010, 17, 1220–1227. [Google Scholar] [CrossRef]
- World Health Organization. CureAll Framework: WHO Global Initiative for Childhood Cancer. Increasing Access, Advancing Quality, Saving Lives; World Health Organization: Geneva, Switzerland, 2021; Licence: CC BY-NC-SA 3.0 IGO; Available online: https://creativecommons.org/licenses/by-nc-sa/3.0/igo/ (accessed on 10 August 2025).
- World Health Organization. Birth Defects Surveillance: A Manual for Programme Managers, 2nd ed.; World Health Organization: Geneva, Switzerland, 2020; Licence: CC BY-NC-SA 3.0 IGO; Available online: https://iris.who.int/bitstream/handle/10665/337425/9789240015395-eng.pdf?sequence=1 (accessed on 10 August 2025).
- Dangoni, G.D.; Teixeira, A.C.B.; da Costa, S.S.; Scliar, M.O.; Carvalho, L.M.L.; Silva, L.N.; Novak, E.M.; Vince, C.S.C.; Maschietto, M.C.; Sugayama, S.M.M.; et al. Germline mutations in cancer predisposition genes among pediatric patients with cancer and congenital anomalies. Pediatr. Res. 2024, 95, 1346–1355. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qu, H.Q.; Chang, X.; Mentch, F.D.; Qiu, H.; Nguyen, K.; Wang, X.; Saeidian, A.H.; Watson, D.; Glessner, J.; et al. Identification of risk variants related to malignant tumors in children with birth defects by whole genome sequencing. Biomark. Res. 2022, 10, 84. [Google Scholar] [CrossRef]
- Morton, S.U.; Shimamura, A.; Newburger, P.E.; Opotowsky, A.R.; Quiat, D.; Pereira, A.C.; Jin, S.C.; Gurvitz, M.; Brueckner, M.; Chung, W.K.; et al. Association of Damaging Variants in Genes with Increased Cancer Risk Among Patients with Congenital Heart Disease. JAMA Cardiol. 2021, 6, 457–462. [Google Scholar] [CrossRef]
- Qu, H.Q.; Glessner, J.T.; Qu, J.; Liu, Y.; Watson, D.; Chang, X.; Saeidian, A.H.; Qiu, H.; Mentch, F.D.; Connolly, J.J.; et al. High Comorbidity of Pediatric Cancers in Patients with Birth Defects: Insights from Whole Genome Sequencing Analysis of Copy Number Variations. Transl. Res. 2024, 266, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Murtas, R.; Andreano, A.; Greco, M.T.; Tunesi, S.; Russo, A.G. Cancer incidence and congenital anomalies evaluation in the contaminated sites of Sesto San Giovanni-the SENTIERI Project. Ann. Ist. Super. Sanita 2019, 55, 345–350. [Google Scholar] [CrossRef]
- Ruckart, P.Z.; Bove, F.J.; Maslia, M. Evaluation of exposure to contaminated drinking water and specific birth defects and childhood cancers at Marine Corps Base Camp Lejeune, North Carolina: A case-control study. Environ. Health 2013, 12, 104. [Google Scholar] [CrossRef]
- Agha, M.M.; Williams, J.I.; Marrett, L.; To, T.; Zipursky, A.; Dodds, L. Congenital abnormalities and childhood cancer. Cancer 2005, 103, 1939–1948. [Google Scholar] [CrossRef] [PubMed]
- Altmann, A.E.; Halliday, J.L.; Giles, G.G. Associations between congenital malformations and childhood cancer. A register-based case-control study. Br. J. Cancer 1998, 78, 1244–1249. [Google Scholar] [CrossRef]
- Bjørge, T.; Cnattingius, S.; Lie, R.T.; Tretli, S.; Engeland, A. Cancer risk in children with birth defects and in their families: A population based cohort study of 5.2 million children from Norway and Sweden. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 500–506. [Google Scholar] [CrossRef]
- Botto, L.D.; Flood, T.; Little, J.; Fluchel, M.N.; Krikov, S.; Feldkamp, M.L.; Wu, Y.; Goedken, R.; Puzhankara, S.; Romitti, P.A. Cancer risk in children and adolescents with birth defects: A population-based cohort study. PLoS ONE 2013, 8, e69077. [Google Scholar] [CrossRef]
- Carozza, S.E.; Langlois, P.H.; Miller, E.A.; Canfield, M. Are children with birth defects at higher risk of childhood cancers? Am. J. Epidemiol. 2012, 175, 1217–1224. [Google Scholar] [CrossRef]
- Dawson, S.; Charles, A.K.; Bower, C.; de Klerk, N.H.; Milne, E. Risk of cancer among children with birth defects: A novel approach. Birth Defects Res. A Clin. Mol. Teratol. 2015, 103, 284–291. [Google Scholar] [CrossRef]
- Janitz, A.E.; Neas, B.R.; Campbell, J.E.; Pate, A.E.; Stoner, J.A.; Magzamen, S.L.; Peck, J.D. Childhood cancer in children with congenital anomalies in Oklahoma, 1997 to 2009. Birth Defects Res. A Clin. Mol. Teratol. 2016, 106, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Lupo, P.J.; Schraw, J.M.; Desrosiers, T.A.; Nembhard, W.N.; Langlois, P.H.; Canfield, M.A.; Copeland, G.; Meyer, R.E.; Brown, A.L.; Chambers, T.M.; et al. Association Between Birth Defects and Cancer Risk Among Children and Adolescents in a Population-Based Assessment of 10 Million Live Births. JAMA Oncol. 2019, 5, 1150–1158, Erratum in JAMA Oncol. 2019, 5, 1232. [Google Scholar] [CrossRef]
- Mili, F.; Khoury, M.J.; Flanders, W.D.; Greenberg, R.S. Risk of childhood cancer for infants with birth defects. I. A record-linkage study, Atlanta, Georgia, 1968–1988. Am. J. Epidemiol. 1993, 137, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Mili, F.; Lynch, C.F.; Khoury, M.J.; Flanders, W.D.; Edmonds, L.D. Risk of childhood cancer for infants with birth defects. II. A record-linkage study, Iowa, 1983–1989. Am. J. Epidemiol. 1993, 137, 639–644. [Google Scholar] [CrossRef]
- Narod, S.A.; Hawkins, M.M.; Robertson, C.M.; Stiller, C.A. Congenital anomalies and childhood cancer in Great Britain. Am. J. Hum. Genet 1997, 60, 474–485. [Google Scholar]
- Norwood, M.S.; Lupo, P.J.; Chow, E.J.; Scheurer, M.E.; Plon, S.E.; Danysh, H.E.; Spector, L.G.; Carozza, S.E.; Doody, D.R.; Mueller, B.A. Childhood cancer risk in those with chromosomal and non-chromosomal congenital anomalies in Washington State: 1984–2013. PLoS ONE. 2017, 12, e0179006. [Google Scholar] [CrossRef]
- Rankin, J.; Silf, K.A.; Pearce, M.S.; Parker, L.; Ward Platt, M. Congenital anomaly and childhood cancer: A population-based, record linkage study. Pediatr. Blood Cancer 2008, 51, 608–612. [Google Scholar] [CrossRef] [PubMed]
- Collins RT2nd Von Behren, J.; Yang, W.; Carmichael, S.L.; Reynolds, P.; Fisher, P.G.; Shaw, G.M. Congenital heart disease complexity and childhood cancer risk. Birth Defects Res. 2018, 110, 1314–1321. [Google Scholar] [CrossRef]
- Bjørge, T.; Engeland, A.; Tretli, S.; Heuch, I. Birth and parental characteristics and risk of neuroblastoma in a population-based Norwegian cohort study. Br. J. Cancer 2008, 99, 1165–1169. [Google Scholar] [CrossRef]
- Chow, E.J.; Friedman, D.L.; Mueller, B.A. Maternal and perinatal characteristics in relation to neuroblastoma. Cancer 2007, 109, 983–992. [Google Scholar] [CrossRef] [PubMed]
- Menegaux, F.; Olshan, A.F.; Reitnauer, P.J.; Blatt, J.; Cohn, S.L. Positive association between congenital anomalies and risk of neuroblastoma. Pediatr. Blood Cancer 2005, 45, 649–655. [Google Scholar] [CrossRef]
- Rios, P.; Bailey, H.D.; Orsi, L.; Lacour, B.; Valteau-Couanet, D.; Levy, D.; Corradini, N.; Leverger, G.; Defachelles, A.S.; Gambart, M.; et al. Risk of neuroblastoma, birth-related characteristics, congenital malformations and perinatal exposures: A pooled analysis of the ESCALE and ESTELLE French studies (SFCE). Int. J. Cancer 2016, 139, 1936–1948. [Google Scholar] [CrossRef] [PubMed]
- Partap, S.; MacLean, J.; Von Behren, J.; Reynolds, P.; Fisher, P.G. Birth anomalies and obstetric history as risks for childhood tumors of the central nervous system. Pediatrics 2011, 128, e652–e657. [Google Scholar] [CrossRef]
- Venkatramani, R.; Spector, L.G.; Georgieff, M.; Tomlinson, G.; Krailo, M.; Malogolowkin, M.; Kohlmann, W.; Curtin, K.; Fonstad, R.K.; Schiffman, J.D. Congenital abnormalities and hepatoblastoma: A report from the Children’s Oncology Group (COG) and the Utah Population Database (UPDB). Am. J. Med. Genet. A 2014, 164, 2250–2255. [Google Scholar] [CrossRef]
- Johnson, K.J.; Ross, J.A.; Poynter, J.N.; Linabery, A.M.; Robison, L.L.; Shu, X.O. Paediatric germ cell tumours and congenital abnormalities: A Children’s Oncology Group study. Br. J. Cancer 2009, 101, 518–521. [Google Scholar] [CrossRef]
- Schraw, J.M.; Sok, P.; Desrosiers, T.A.; Janitz, A.E.; Langlois, P.H.; Canfield, M.A.; Frazier, A.L.; Plon, S.E.; Lupo, P.J.; Poynter, J.N. Associations between birth defects and childhood and adolescent germ cell tumors according to sex, histologic subtype, and site. Cancer 2023, 129, 3300–3308. [Google Scholar] [CrossRef]
- Salotti, J.A.; Tennant, P.W.; Windebank, K.; Rankin, J. Langerhans cell histiocytosis in children with congenital anomalies: A population-based record linkage study. Birth Defects Res. A Clin. Mol. Teratol. 2015, 103, 157–160. [Google Scholar] [CrossRef]
- Schraw, J.M.; Tark, J.Y.; Desrosiers, T.A.; Chambers, T.M.; Shumate, C.J.; Nembhard, W.N.; Yazdy, M.M.; Nestoridi, E.; Malone, M.F.W.; Laetsch, T.W.; et al. Risk of carcinomas among children and adolescents with birth defects. Cancer Epidemiol. 2025, 95, 102748. [Google Scholar] [CrossRef]
- Fisher, P.G.; Reynolds, P.; Von Behren, J.; Carmichael, S.L.; Rasmussen, S.A.; Shaw, G.M. Cancer in children with nonchromosomal birth defects. J. Pediatr. 2012, 160, 978–983. [Google Scholar] [CrossRef]
- Hasle, H.; Clemmensen, I.H.; Mikkelsen, M. Risks of leukaemia and solid tumours in individuals with Down’s syndrome. Lancet 2000, 355, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.; Schraw, J.M.; Lupo, P.J.; Mian, A.; Nembhard, W.N. Cancer Risk by Attained Age among Children with Birth Defects in Arkansas. Cancer Epidemiol. 2020, 68, 101796. [Google Scholar] [CrossRef] [PubMed]
- Daltveit, D.S.; Klungsøyr, K.; Engeland, A.; Ekbom, A.; Gissler, M.; Glimelius, I.; Grotmol, T.; Madanat-Harjuoja, L.; Ording, A.G.; Sæther, S.M.M.; et al. Cancer risk in individuals with major birth defects: Large Nordic population based case-control study among children, adolescents, and adults. BMJ 2020, 371, m4060. [Google Scholar] [CrossRef]
- Von Behren, J.; Fisher, P.G.; Carmichael, S.L.; Shaw, G.M.; Reynolds, P. An Investigation of Connections between Birth Defects and Cancers Arising in Adolescence and Very Young Adulthood. J. Pediatr. 2017, 185, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Windham, G.C.; Bjerkedal, T.; Langmark, F. A population-based study of cancer incidence in twins and in children with congenital malformations or low birth weight, Norway, 1967–1980. Am. J. Epidemiol. 1985, 121, 49–56. [Google Scholar] [CrossRef]
- Janitz, A.E.; Schraw, J.M.; Xu, C.; Lupo, P.J. Comprehensively evaluating cancer survival in children with birth defects: A population-based assessment. Cancer Causes Control 2022, 33, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Qiao, B.; Austin, A.A.; Schymura, M.J.; Browne, M.L. Characteristics and survival of children with acute leukemia with Down syndrome or other birth defects in New York State. Cancer Epidemiol. 2018, 57, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Kampitsi, C.E.; Kenborg, L.; Mogensen, H.; Broberg, O.; Glimelius, I.; Erdmann, F.; Falck Winther, J.; Feychting, M.; Tettamanti, G. Mortality after cancer diagnosis among children with congenital heart disease in Denmark and Sweden. J. Natl. Cancer Inst. 2025, 117, 1134–1141. [Google Scholar] [CrossRef]
- ECIS-European Cancer Information System. European Commission. Available online: https://ecis.jrc.ec.europa.eu/ (accessed on 20 October 2025).
- EUROCAT-European Network of Population-Based Registries for the Epidemiological Surveillance of Congenital Anomalies. European Platform on Rare Disease Registration. Available online: https://eu-rd-platform.jrc.ec.europa.eu/eurocat_en (accessed on 10 August 2025).
- Bergman, J.E.H.; Perraud, A.; Barišić, I.; Kinsner-Ovaskainen, A.; Morris, J.K.; Tucker, D.; Wellesley, D.; Garne, E. Updated EUROCAT guidelines for classification of cases with congenital anomalies. Birth Defects Res. 2024, 116, e2314. [Google Scholar] [CrossRef]
- Generalitat Valenciana. Conselleria de Sanitdad. Informe de Salud Núm. 162. El Cáncer en la Infancia Y Adolescencia. Comunitat Valenciana, 2021–2022. Available online: https://www.san.gva.es/documents/d/salut-publica/2025_cancer_infantil_informe_datos-2021-2022_es (accessed on 10 August 2025).
- Generalitat Valenciana. Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana. ANOMALÍAS CONGÉNITAS EN LA COMUNITAT VALENCIANA 2007–2022. Available online: https://fisabio.san.gva.es/media/upload/arxius/salud-publica/enfermedades-raras/2007-2022-informe-web-ac-publicada-marzo2025.pdf?_t=1741168325 (accessed on 10 August 2025).
- INEbase. Población por Provincias, Edad (Grupos Quinquenales), Españoles/Extranjeros, Sexo y Año. Instituto Nacional de Estadística. Available online: https://www.ine.es/jaxi/Datos.htm?path=/t20/e245/p08/l0/&file=03002.px#_tabs-tabla (accessed on 10 August 2025).
- INEbase. Movimiento Natural de la Población: Nacimientos. Available online: https://www.ine.es/jaxiT3/Datos.htm?t=6507#_tabs-tabla (accessed on 10 August 2025).
- World Health Organization. International Classification of Childhood Cancer, 3rd ed.; Update of 2017 ICCC-3-2017: Main Groups and Subgroups; International Agency for Research on Cancer; World Health Organization: Geneva, Switzerland, 2017; Available online: https://iicc.iarc.fr/classification/diagnostic-groups-and-subgroups/ (accessed on 10 August 2025).
- EUROCAT Guide 1.5. EUROCAT Subgroups of Congenital Anomalies. Available online: https://eu-rd-platform.jrc.ec.europa.eu/system/files/public/eurocat/Guide_1.5_Chapter_3.3.pdf (accessed on 10 August 2025).
- Berbel Tornero, O.; Ortega García, J.A.; Ferrís i Tortajada, J.; García Castell, J.; Donat i Colomer, J.; Soldin, O.P.; Fuster Soler, J.L. Neonatal tumours and congenital malformations. An. Pediatr 2008, 68, 589–595. [Google Scholar] [CrossRef]
- Kratz, C.P.; Jongmans, M.C.; Cavé, H.; Wimmer, K.; Behjati, S.; Guerrini-Rousseau, L.; Milde, T.; Pajtler, K.W.; Golmard, L.; Gauthier-Villars, M.; et al. Predisposition to cancer in children and adolescents. Lancet Child Adolesc. Health 2021, 5, 142–154. [Google Scholar] [CrossRef]
- Plon, S.E.; Nathanson, K. Inherited susceptibility for pediatric cancer. Cancer J. 2005, 11, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation) (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679 (accessed on 10 August 2025).





| Congenital Anomaly Group | * N. of Children with Congenital Anomalies | N. of Children with Childhood Cancers and Congenital Anomalies (%) | ∞ SIR Ω (95% CI) |
|---|---|---|---|
| All genetic disorders | 1103 | 26 (2.3%) | 26.6 (17.3–37.8) |
| 534 | 17 (3.2%) | 37.8 (21.9–57.8) |
| 395 | 9 (2.2%) | 22.2 (10.1–39.1) |
| Non-genetic disorder | 10,572 | 40 (0.4%) | 3.7 (2.6–4.9) |
| Nervous system | 908 | 8 (0.9%) | 9.9 (4.2–18.0) |
| Genital | 847 | 8 (0.9%) | 9.1 (3.9–16.5) |
| Kidney and urinary tract | 1817 | 15 (0.8%) | 8.3 (4.7–13.1) |
| Gastrointestinal | 933 | 7 (0.7%) | 7.9 (3.1–14.8) |
| Heart Defects | 4951 | 19 (0.4%) | 3.8 (2.3–5.7) |
| Survival in Children with Cancers and Congenital Anomalies | Survival in Children with Congenital Anomalies | |
|---|---|---|
| 1 year | 89.6% (79.3–94.9) | 95.8% (95.4–69.1) |
| 3 years | 86.6% (75.8–92.8) | 95.3% (95.0–95.9) |
| 5 years | 83.6% (72.3–90.6) | 95.2% (94.8–95.5) |
| Survival in Children with Cancers and Congenital Anomalies | Survival in Children with Cancers | |
|---|---|---|
| 1 year | 82.1% (70.6–89.4) | 90.6% (88.9–92.4) |
| 3 years | 79.1% (67.3–87.1) | 84.5% (81.9–86.8) |
| 5 years | 79.1% (67.3–87.1) | 82.3% (79.3–84.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martos, C.; García-Villodre, L.; Barrachina-Bonet, L.; Páramo-Rodríguez, L.; Arribas-Díaz, B.; Torró-Gómez, A.; Jeghalef El Karoui, N.; Sabater, C.; Cavero-Carbonell, C. Risk of Childhood Cancer in Children with Congenital Anomalies and Their Impact on Survival: A Population-Based Registry Approach. Curr. Oncol. 2025, 32, 621. https://doi.org/10.3390/curroncol32110621
Martos C, García-Villodre L, Barrachina-Bonet L, Páramo-Rodríguez L, Arribas-Díaz B, Torró-Gómez A, Jeghalef El Karoui N, Sabater C, Cavero-Carbonell C. Risk of Childhood Cancer in Children with Congenital Anomalies and Their Impact on Survival: A Population-Based Registry Approach. Current Oncology. 2025; 32(11):621. https://doi.org/10.3390/curroncol32110621
Chicago/Turabian StyleMartos, Carmen, Laura García-Villodre, Laia Barrachina-Bonet, Lucía Páramo-Rodríguez, Berta Arribas-Díaz, Anna Torró-Gómez, Noura Jeghalef El Karoui, Consol Sabater, and Clara Cavero-Carbonell. 2025. "Risk of Childhood Cancer in Children with Congenital Anomalies and Their Impact on Survival: A Population-Based Registry Approach" Current Oncology 32, no. 11: 621. https://doi.org/10.3390/curroncol32110621
APA StyleMartos, C., García-Villodre, L., Barrachina-Bonet, L., Páramo-Rodríguez, L., Arribas-Díaz, B., Torró-Gómez, A., Jeghalef El Karoui, N., Sabater, C., & Cavero-Carbonell, C. (2025). Risk of Childhood Cancer in Children with Congenital Anomalies and Their Impact on Survival: A Population-Based Registry Approach. Current Oncology, 32(11), 621. https://doi.org/10.3390/curroncol32110621

