Chemokine Receptors in Peripheral Blood Mononuclear Cells as Predictive Biomarkers for Immunotherapy Efficacy in Non-Small Cell Lung Cancer
Abstract
Simple Summary
Abstract
1. Introduction
2. Non-Small Cell Lung Cancer: Epidemiology, Classification, and Current Treatment Approaches
2.1. Classification of NSCLC
2.2. Standard of Care for Advanced NSCLC
2.3. Emergence of Immunotherapy and Its Limitations
2.4. Challenges with Current Biomarkers
3. Chemokines and Their Receptors in Cancer Progression and the Tumor Microenvironment
4. Chemokine Receptors as Prognostic and Predictive Biomarkers in NSCLC
4.1. CXCR4 (C-X-C Chemokine Receptor Type 4) Is a Candidate Oncogene in Several Human Tumors, Including NSCLC
4.1.1. Pathological Roles of CXCR4 in NSCLC
4.1.2. CXCR4 as a Prognostic Marker
4.1.3. CXCR4 as a Therapeutic Target
4.1.4. CXCR4 Expression in PBMCs and Immunotherapy Response
4.2. CXCR6 (C-X-C Chemokine Receptor Type 6)
4.2.1. Role in T-Cell Migration and Function
4.2.2. CXCR6 and Immunotherapy Efficacy
4.3. Other Chemokine Receptors and Their Significance in NSCLC Immunotherapy
4.3.1. CXCR3
4.3.2. CCR5
4.3.3. CXCR2/CXCL5
4.3.4. CX3CR1/CX3CL1 (Fractalkine)
4.3.5. CCR9 and CCR10
5. Peripheral Blood Mononuclear Cells (PBMCs) as a Source of Biomarkers
6. Conclusions
- (1)
- CXCR4 overexpression in tumor tissue is consistently associated with poorer outcomes in NSCLC, including increased metastasis to lymph nodes, brain, and pleural space, as well as enhanced tumor growth, invasion, and chemo-resistance. CXCR4 antagonists are actively being developed to counteract these pro-tumorigenic effects and to enhance the efficacy of immunotherapy by overcoming immune suppression. Crucially, studies on PBMCs suggest that high baseline levels of circulating CD8+ CXCR4+ T cells are associated with poorer overall survival in immunotherapy-treated patients, indicating that the peripheral immune status regarding this receptor could be a significant predictive factor. Conversely, low circulating CXCR4-expressing cytotoxic T lymphocytes may correlate with increased tumor infiltration and better immunotherapy benefit [2,11].
- (2)
- CXCR6 plays a vital role in the migration and function of CD8+ resident memory T cells (TRM) in the lung mucosa, which are critical for effective antitumor immunity. Deficiency in CXCR6 impairs the efficacy of cancer vaccines and responsiveness to anti-PD-1 treatment in preclinical models. The finding that CXCR6 is significantly upregulated in CD8+ MAIT cells of immunotherapy responders further strengthens its potential as a predictive biomarker, with higher CXCR6+ CD8+ MAIT cell ratios in peripheral blood correlating with better progression-free survival.
- (3)
- Other chemokine receptors, such as CXCR3, CCR5, CXCR2, CCR9, CCR10, and CX3CR1, also exhibit significant associations with NSCLC progression and response to immunotherapy. For instance, while intratumoral CXCR3 activity is required for anti-PD-1 efficacy, high post-treatment CXCL10 (CXCR3 ligand) correlates with poor overall survival. High circulating levels of CD4+ CCR9+ and CD4+ CCR10+ T cells are linked to poorer outcomes in ICI-treated NSCLC patients. The CXCL5/CXCR2 axis, characterized by neutrophil infiltration, is associated with unfavorable immunotherapy responses and poor prognosis. CX3CR1 expression on circulating CD8+ T cells also holds promise as a dynamic blood-based biomarker.
7. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef]
- Rogado, J.; Pozo, F.; Troule, K.; Pacheco, M.; Adrados, M.; Sánchez-Torres, J.M.; Al-Shahrour, F.; Aspa, J.; Alfranca, A.; Romero-Laorden, N.; et al. The role of the CXCL12/CXCR4 axis in the immunotherapy of non-small cell lung cancer. Clin. Transl. Oncol. 2024, 27, 2970–2981. [Google Scholar] [CrossRef]
- Srivastava, S.; Mohanty, A.; Nam, A.; Singhal, S.; Salgia, R. Chemokines and NSCLC: Emerging role in prognosis, heterogeneity, and therapeutics. Semin. Cancer Biol. 2022, 86, 233–246. [Google Scholar] [CrossRef]
- Ramachandran, S.; Verma, A.K.; Dev, K.; Goyal, Y.; Bhatt, D.; Alsahli, M.A.; Rahmani, A.H.; Almatroudi, A.; Almatroodi, S.A.; Alrumaihi, F.; et al. Role of Cytokines and Chemokines in NSCLC Immune Navigation and Proliferation. Oxidative Med. Cell. Longev. 2021, 2021, 5563746. [Google Scholar] [CrossRef]
- Wald, O. CXCR4 Based Therapeutics for Non-Small Cell Lung Cancer (NSCLC). J. Clin. Med. 2018, 7, 303. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Ciuleanu, T.-E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O.; et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): An international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Li, S.; Zhang, C.; Pang, G.; Wang, P. Emerging Blood-Based Biomarkers for Predicting Response to Checkpoint Immunotherapy in Non-Small-Cell Lung Cancer. Front. Immunol. 2020, 11, 603157. [Google Scholar] [CrossRef]
- Rogado, J.; Pozo, F.; Troule, K.; Sánchez-Torres, J.M.; Romero-Laorden, N.; Mondejar, R.; Donnay, O.; Ballesteros, A.; Pacheco-Barcia, V.; Aspa, J.; et al. Peripheral Blood Mononuclear Cells Predict Therapeutic Efficacy of Immunotherapy in NSCLC. Cancers 2022, 14, 2898. [Google Scholar] [CrossRef]
- Hu, Y.; Li, S.; Xiao, H.; Xiong, Y.; Lu, X.; Yang, X.; Luo, W.; Luo, J.; Zhang, S.; Cheng, Y.; et al. Distinct circulating cytokine/chemokine profiles correlate with clinical benefit of immune checkpoint inhibitor monotherapy and combination therapy in advanced non-small cell lung cancer. Cancer Med. 2023, 12, 12234–12252. [Google Scholar] [CrossRef]
- Ning, J.; Ge, T.; Jiang, M.; Jia, K.; Wang, L.; Li, W.; Chen, B.; Liu, Y.; Wang, H.; Zhao, S.; et al. Early diagnosis of lung cancer: Which is the optimal choice? Aging 2021, 13, 6214–6227. [Google Scholar] [CrossRef] [PubMed]
- Sarode, P.; Schaefer, M.B.; Grimminger, F.; Seeger, W.; Savai, R. Macrophage and Tumor Cell Cross-Talk Is Fundamental for Lung Tumor Progression: We Need to Talk. Front. Oncol. 2020, 10, 324. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, A.G.; Tsao, M.S.; Beasley, M.B.; Borczuk, A.C.; Brambilla, E.; Cooper, W.A.; Dacic, S.; Jain, D.; Kerr, K.M.; Lantuejoul, S.; et al. The 2021 WHO Classification of Lung Tumors: Impact of Advances Since 2015. J. Thorac. Oncol. 2022, 17, 362–387. [Google Scholar] [CrossRef]
- Horn, L.; Spigel, D.R.; Vokes, E.E.; Holgado, E.; Ready, N.; Steins, M.; Poddubskaya, E.; Borghaei, H.; Felip, E.; Paz-Ares, L.; et al. Nivolumab Versus Docetaxel in Previously Treated Patients With Advanced Non–Small-Cell Lung Cancer: Two-Year Outcomes From Two Randomized, Open-Label, Phase III Trials (CheckMate 017 and CheckMate 057). J. Clin. Oncol. 2017, 35, 3924–3933. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, S.; Klimowicz, A.C.; Kopciuk, K.; Petrillo, S.K.; Konno, M.; Hao, D.; Muzik, H.; Stolte, E.; Boland, W.; Morris, D.; et al. CXCR4 Overexpression Is Associated with Poor Outcome in Females Diagnosed with Stage IV Non-small Cell Lung Cancer. J. Thorac. Oncol. 2011, 6, 1169–1178. [Google Scholar] [CrossRef]
- Hendriks, L.; Kerr, K.; Menis, J.; Mok, T.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.; Solomon, B.; et al. Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 339–357. [Google Scholar] [CrossRef]
- Hendriks, L.E.L.; Cortiula, F.; Martins-Branco, D.; Mariamidze, E.; Popat, S.; Reck, M.; ESMO Guidelines Committee. Updated treatment recommen-dations for systemic treatment: From the ESMO oncogene-addicted metastatic NSCLC living guideline. Ann. Oncol. 2025, 36, 1227–1231. [Google Scholar] [CrossRef]
- Hendriks, L.; Kerr, K.; Menis, J.; Mok, T.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.; Solomon, B.; et al. Non-oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 358–376. [Google Scholar] [CrossRef]
- Hendriks, L.; Cortiula, F.; Martins-Branco, D.; Mariamidze, E.; Popat, S.; Reck, M. Updated treatment recommendations for systemic treatment: From the ESMO non-oncogene-addicted metastatic NSCLC Living Guideline. Ann. Oncol. 2025. [Google Scholar] [CrossRef]
- Schiller, J.H. A New Standard of Care for Advanced Lung Cancer. N. Engl. J. Med. 2018, 378, 2135–2137. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Ciuleanu, T.-E.; Pluzanski, A.; Lee, J.S.; Otterson, G.A.; Audigier-Valette, C.; Minenza, E.; Linardou, H.; Burgers, S.; Salman, P.; et al. Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. N. Engl. J. Med. 2018, 378, 2093–2104. [Google Scholar] [CrossRef]
- Zhang, J.; Song, Z.; Zhang, Y.; Zhang, C.; Xue, Q.; Zhang, G.; Tan, F. Recent advances in biomarkers for predicting the efficacy of immunotherapy in non-small cell lung cancer. Front. Immunol. 2025, 16, 1554871. [Google Scholar] [CrossRef] [PubMed]
- Mino-Kenudson, M.; Schalper, K.; Cooper, W.; Dacic, S.; Hirsch, F.R.; Jain, D.; Lopez-Rios, F.; Tsao, M.S.; Yatabe, Y.; Beasley, M.B.; et al. Predictive Biomarkers for Immunotherapy in Lung Cancer: Perspective From the International Association for the Study of Lung Cancer Pathology Committee. J. Thorac. Oncol. 2022, 17, 1335–1354. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yang, Z.; Guo, F.; Chen, Y.; Wei, J.; Dai, X.; Zhang, X. Research progress of biomarkers in the prediction of anti-PD-1/PD-L1 immunotherapeutic efficiency in lung cancer. Front. Immunol. 2023, 14, 1227797. [Google Scholar] [CrossRef]
- JW, G.; CL, S.; Luster, A.D. Chemokines and chemokine receptors: Positioning cells for host defense and immunity. Annu. Rev. Immunol. 2014, 32, 659–702. [Google Scholar] [CrossRef]
- Balkwill, F. Cancer and the chemokine network. Nat. Rev. Cancer. 2004, 4, 540–550. [Google Scholar] [CrossRef]
- Nagarsheth, N.; Wicha, M.S.; Zou, W. Chemokines in the cancer microenvironment and their relevance in cancer immuno-therapy. Nat. Rev. Immunol. 2017, 17, 559–572. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Lei, W.; Wang, H.; Ni, Y.; Liu, Y.; Yan, H.; Tian, Y.; Wang, Z.; Yang, Z.; et al. CXCL12-CXCR4/CXCR7 Axis in Cancer: From Mechanisms to Clinical Applications. Int. J. Biol. Sci. 2023, 19, 3341–3359. [Google Scholar] [CrossRef] [PubMed]
- Sever, T.; Leblebici, A.; Koc, A.; Binicier, C.; Olgun, A.; Edizer, D.T.; Özdemir, T.R.; Serin, G.; Erdem, M.; Basbinar, Y. New Insight of Tumor Microenvironment in Non-Small Cell Lung Cancer. J. Basic Clin. Health Sci. 2019, 3, 113–120. [Google Scholar] [CrossRef]
- Bian, X.; Xiao, Y.-T.; Wu, T.; Yao, M.; Du, L.; Ren, S.; Wang, J. Microvesicles and chemokines in tumor microenvironment: Mediators of intercellular communications in tumor progression. Mol. Cancer 2019, 18, 1–13. [Google Scholar] [CrossRef]
- Cacho-Díaz, B.; DR, G.-B.; Wegman-Ostrosky, T.; Reyes-Soto, G.; Ortiz-Sánchez, E.; Herrera-Montalvo, L.A. Tumor micro-environment differences between primary tumor and brain metastases. J. Transl. Med. 2020, 18, 1. [Google Scholar] [CrossRef]
- Iwakiri, S.; Mino, N.; Takahashi, T.; Sonobe, M.; Nagai, S.; Okubo, K.; Wada, H.; Date, H.; Miyahara, R. Higher expression of chemokine receptor CXCR7 is linked to early and metastatic recurrence in pathological stage I nonsmall cell lung cancer. Cancer 2009, 115, 2580–2593. [Google Scholar] [CrossRef]
- Takanami, I. Overexpression of CCR7 mRNA in nonsmall cell lung cancer: Correlation with lymph node metastasis. Int. J. Cancer 2003, 105, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.-P.; Shen, H.; Liu, L.-X.; Shu, Y.-Q. The impact of chemokine receptor CXCR4 on breast cancer prognosis: A meta-analysis. Cancer Epidemiol. 2013, 37, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Miao, L.; Zhao, Y.; Xiao, Y.-Y.; Xu, Q. A meta-analysis for C-X-C chemokine receptor type 4 as a prognostic marker and potential drug target in hepatocellular carcinoma. Drug Des. Dev. Ther. 2015, 9, 3625–3633. [Google Scholar] [CrossRef]
- Wald, O.; Izhar, U.; Amir, G.; Kirshberg, S.; Shlomai, Z.; Zamir, G.; Peled, A.; Shapira, O.M. Interaction between neoplastic cells and cancer-associated fibroblasts through the CXCL12/CXCR4 axis: Role in non–small cell lung cancer tumor proliferation. J. Thorac. Cardiovasc. Surg. 2011, 141, 1503–1512. [Google Scholar] [CrossRef]
- Levina, V.; Marrangoni, A.; Wang, T.; Parikh, S.; Su, Y.; Herberman, R.; Lokshin, A.; Gorelik, E. Elimination of Human Lung Cancer Stem Cells through Targeting of the Stem Cell Factor–c-kit Autocrine Signaling Loop. Cancer Res. 2010, 70, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Zhang, C.; Li, J.; Han, Y. A meta-analysis for CXCR4 as a prognostic marker and potential drug target in non-small cell lung cancer. Drug Des. Dev. Ther. 2015, 9, 3267–3278. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Z.; Liu, X.-Y.; Liu, F.-Y. High-level CXCR4 expression correlates with brain-specific metastasis of non-small cell lung cancer. World J. Surg. 2011, 35, 56–61. [Google Scholar] [CrossRef]
- Wang, M.; Lin, T.; Wang, Y.; Gao, S.; Yang, Z.; Hong, X.; Chen, G. CXCL12 suppresses cisplatin-induced apoptosis through activation of JAK2/STAT3 signaling in human non-small-cell lung cancer cells. OncoTargets Ther. 2017, 10, 3215–3224. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.M.; He, L.; Hou, G.; Jiang, B.; Wang, Y.H.; Zhao, L. Clinicopathological significance of CXCR4 in non-small cell lung cancer. Drug Des. Dev. Ther. 2015, 9, 1349–1358. [Google Scholar] [CrossRef]
- Jung, M.-J.; Rho, J.-K.; Kim, Y.-M.; E Jung, J.; Jin, Y.B.; Ko, Y.-G.; Lee, J.-S.; Lee, S.-J.; Lee, J.C.; Park, M.-J. Upregulation of CXCR4 is functionally crucial for maintenance of stemness in drug-resistant non-small cell lung cancer cells. Oncogene 2012, 32, 209–221. [Google Scholar] [CrossRef]
- A Burger, J.; Stewart, D.J.; Wald, O.; Peled, A. Potential of CXCR4 antagonists for the treatment of metastatic lung cancer. Expert Rev. Anticancer. Ther. 2011, 11, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Katsura, M.; Shoji, F.; Okamoto, T.; Shimamatsu, S.; Hirai, F.; Toyokawa, G.; Morodomi, Y.; Tagawa, T.; Oda, Y.; Maehara, Y. Correlation between CXCR4/CXCR7/CXCL12 chemokine axis expression and prognosis in lymph-node-positive lung cancer patients. Cancer Sci. 2017, 109, 154–165. [Google Scholar] [CrossRef]
- Zagzag, D.; Lukyanov, Y.; Lan, L.; Ali, M.A.; Esencay, M.; Mendez, O.; Yee, H.; Voura, E.B.; Newcomb, E.W. Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: Implications for angiogenesis and glioma cell invasion. Mod. Pathol. 2006, 86, 1221–1232. [Google Scholar] [CrossRef]
- Spano, J.-P.; Andre, F.; Morat, L.; Sabatier, L.; Besse, B.; Combadiere, C.; Deterre, P.; Martin, A.; Azorin, J.; Valeyre, D.; et al. Chemokine receptor CXCR4 and early-stage non-small cell lung cancer: Pattern of expression and correlation with outcome. Ann. Oncol. 2004, 15, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Phillips, R.J.; Burdick, M.D.; Lutz, M.; Belperio, J.A.; Keane, M.P.; Strieter, R.M. The Stromal Derived Factor–1/CXCL12–CXC Chemokine Receptor 4 Biological Axis in Non–Small Cell Lung Cancer Metastases. Am. J. Respir. Crit. Care Med. 2003, 167, 1676–1686. [Google Scholar] [CrossRef]
- Wu, F.; Fan, J.; He, Y.; Xiong, A.; Yu, J.; Li, Y.; Zhang, Y.; Zhao, W.; Zhou, F.; Li, W.; et al. Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nat. Commun. 2021, 12, 1–11. [Google Scholar] [CrossRef]
- Fung, A.S.; Kopciuk, K.; Dean, M.L.; D’sIlva, A.; Otsuka, S.; Klimowicz, A.; Hao, D.; Morris, D.; Bebb, D.G. CXCR4 expression in lung carcinogenesis: Evaluating gender-specific differences in survival outcomes based on CXCR4 expression in early stage non-small cell lung cancer patients. PLoS ONE 2021, 16, e0241240. [Google Scholar] [CrossRef] [PubMed]
- Minamiya, Y.; Saito, H.; Takahashi, N.; Ito, M.; Imai, K.; Ono, T.; Motoyama, S.; Ogawa, J. Expression of the chemokine receptor CXCR4 correlates with a favorable prognosis in patients with adenocarcinoma of the lung. Lung Cancer 2010, 68, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Wagner, P.L.; Hyjek, E.; Vazquez, M.F.; Meherally, D.; Liu, Y.F.; Chadwick, P.A.; Rengifo, T.; Sica, G.L.; Port, J.L.; Lee, P.C.; et al. CXCL12 and CXCR4 in adenocarcinoma of the lung: Association with metastasis and survival. J. Thorac. Cardiovasc. Surg. 2009, 137, 615–621. [Google Scholar] [CrossRef]
- Fischer, T.; Nagel, F.; Jacobs, S.; Stumm, R.; Schulz, S. Reassessment of CXCR4 Chemokine Receptor Expression in Human Normal and Neoplastic Tissues Using the Novel Rabbit Monoclonal Antibody UMB-2. PLoS ONE 2008, 3, e4069. [Google Scholar] [CrossRef] [PubMed]
- Fridman, W.H.; Pagès, F.; Sautès-Fridman, C.; Galon, J. The immune contexture in human tumours: Impact on clinical outcome. Nat. Rev. Cancer 2012, 12, 298–306. [Google Scholar] [CrossRef]
- Righi, E.; Kashiwagi, S.; Yuan, J.; Santosuosso, M.; Leblanc, P.; Ingraham, R.; Forbes, B.; Edelblute, B.; Collette, B.; Xing, D.; et al. CXCL12/CXCR4 Blockade Induces Multimodal Antitumor Effects That Prolong Survival in an Immunocompetent Mouse Model of Ovarian Cancer. Cancer Res. 2011, 71, 5522–5534. [Google Scholar] [CrossRef]
- Fahham, D.; Weiss, I.D.; Abraham, M.; Beider, K.; Hanna, W.; Shlomai, Z.; Eizenberg, O.; Zamir, G.; Izhar, U.; Shapira, O.M.; et al. In vitro and in vivo therapeutic efficacy of CXCR4 antagonist BKT140 against human non–small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2012, 144, 1167–1175.e1. [Google Scholar] [CrossRef]
- Do, H.T.T.; Lee, C.H.; Cho, J. Chemokines and their Receptors: Multifaceted Roles in Cancer Progression and Potential Value as Cancer Prognostic Markers. Cancers 2020, 12, 287. [Google Scholar] [CrossRef]
- Bule, P.; Aguiar, S.I.; Aires-Da-Silva, F.; Dias, J.N.R. Chemokine-Directed Tumor Microenvironment Modulation in Cancer Immunotherapy. Int. J. Mol. Sci. 2021, 22, 9804. [Google Scholar] [CrossRef]
- Wald, O.; Shapira, O.M.; Izhar, U. CXCR4/CXCL12 Axis in Non Small Cell Lung Cancer (NSCLC) Pathologic Roles and Therapeutic Potential. Theranostics 2013, 3, 26–33. [Google Scholar] [CrossRef]
- Wald, O.; Izhar, U.; Amir, G.; Avniel, S.; Bar-Shavit, Y.; Wald, H.; Weiss, I.D.; Galun, E.; Peled, A. CD4+CXCR4highCD69+ T Cells Accumulate in Lung Adenocarcinoma. J. Immunol. 2006, 177, 6983–6990. [Google Scholar] [CrossRef] [PubMed]
- McCully, M.L.; Kouzeli, A.; Moser, B. Peripheral Tissue Chemokines: Homeostatic Control of Immune Surveillance T Cells. Trends Immunol. 2018, 39, 734–747. [Google Scholar] [CrossRef]
- Ebert, L.M.; Schaerli, P.; Moser, B. Chemokine-mediated control of T cell traffic in lymphoid and peripheral tissues. Mol. Immunol. 2005, 42, 799–809. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y.; Sun, X.; Deng, G.; Huang, W.; Wu, X.; Gu, Y.; Tian, Z.; Fan, Z.; Xu, Q.; et al. CXCR6 is required for antitumor efficacy of intratumoral CD8+T cell. J. Immunother. Cancer 2021, 9, e003100. [Google Scholar] [CrossRef]
- Hattermann, K.; Held-Feindt, J.; Ludwig, A.; Mentlein, R. The CXCL16–CXCR6 chemokine axis in glial tumors. J. Neuroimmunol. 2013, 260, 47–54. [Google Scholar] [CrossRef]
- Karaki, S.; Blanc, C.; Tran, T.; Galy-Fauroux, I.; Mougel, A.; Dransart, E.; Anson, M.; Tanchot, C.; Paolini, L.; Gruel, N.; et al. CXCR6 deficiency impairs cancer vaccine efficacy and CD8+ resident memory T-cell recruitment in head and neck and lung tumors. J. Immunother. Cancer 2021, 9, e001948. [Google Scholar] [CrossRef]
- Edwards, J.; Wilmott, J.S.; Madore, J.; Gide, T.N.; Quek, C.; Tasker, A.; Ferguson, A.; Chen, J.; Hewavisenti, R.; Hersey, P.; et al. CD103+ tumor-resident CD8+ T cells are asso-ciated with improved survival in immunotherapy-naïve melanoma patients and expand significantly during anti-PD-1 treatment. Clin. Cancer Res. 2018, 24, 3036–3045. [Google Scholar] [CrossRef]
- Qu, J.; Wu, B.; Chen, L.; Wen, Z.; Fang, L.; Zheng, J.; Shen, Q.; Heng, J.; Zhou, J.; Zhou, J. CXCR6-positive circulating mucosal-associated invariant T cells can identify patients with non-small cell lung cancer responding to anti-PD-1 immunotherapy. J. Exp. Clin. Cancer Res. 2024, 43, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Pan, J.; Chen, H.; Fang, Y.; Sun, Y. CXCR6-based immunotherapy in autoimmune, cancer and inflammatory infliction. Acta Pharm. Sin. B 2022, 12, 3255–3262. [Google Scholar] [CrossRef]
- Hu, L.-T.; Deng, W.-J.; Chu, Z.-S.; Sun, L.; Zhang, C.-B.; Lu, S.-Z.; Weng, J.-R.; Ren, Q.-S.; Dong, X.-Y.; Li, W.-D.; et al. Comprehensive analysis of CXCR family members in lung adenocarcinoma with prognostic values. BMC Pulm. Med. 2022, 22, 259. [Google Scholar] [CrossRef] [PubMed]
- Shibata, Y.; Kobayashi, N.; Sato, T.; Nakashima, K.; Kaneko, T. The clinical significance of CXCL16 in the treatment of advanced non-small cell lung cancer. Thorac. Cancer 2020, 11, 1258–1264. [Google Scholar] [CrossRef]
- Karin, N. CXCR3 Ligands in Cancer and Autoimmunity, Chemoattraction of Effector T Cells, and Beyond. Front. Immunol. 2020, 11, 976. [Google Scholar] [CrossRef]
- Chow, M.T.; Ozga, A.J.; Servis, R.L.; Frederick, D.T.; Lo, J.A.; Fisher, D.E.; Freeman, G.J.; Boland, G.M.; Luster, A.D. Intratumoral Activity of the CXCR3 Chemokine System Is Required for the Efficacy of Anti-PD-1 Therapy. Immunity 2019, 50, 1498–1512.e5. [Google Scholar] [CrossRef]
- Jiao, X.; Nawab, O.; Patel, T.; Kossenkov, A.V.; Halama, N.; Jaeger, D.; Pestell, R.G. Recent Advances Targeting CCR5 for Cancer and Its Role in Immuno-Oncology. Cancer Res. 2019, 79, 4801–4807. [Google Scholar] [CrossRef]
- Singh, S.K.; Mishra, M.K.; Eltoum, I.-E.A.; Bae, S.; Lillard, J.W., Jr.; Singh, R. CCR5/CCL5 axis interaction promotes migratory and invasiveness of pancreatic cancer cells. Sci. Rep. 2018, 8, 1323. [Google Scholar] [CrossRef]
- González-Martín, A.; Gómez, L.; Lustgarten, J.; Mira, E.; Mañes, S. Maximal T Cell–Mediated Antitumor Responses Rely upon CCR5 Expression in Both CD4+ and CD8+ T Cells. Cancer Res. 2011, 71, 5455–5466. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, H.; Sun, M.; Deng, X.; Wu, X.; Ma, Y.; Li, M.; Shuoa, S.M.; You, Q.; Miao, L. CXCL5/CXCR2 axis in tumor microenvironment as potential diagnostic biomarker and therapeutic target. Cancer Commun. 2020, 40, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Ma, X.; Ni, Y.; Li, X.; Xi, W.; Tian, M.; Zhang, X.; Xiang, M.; Deng, W.; Song, C.; et al. Identification of CXCL5 expression as a predictive biomarker associated with response and prognosis of immunotherapy in patients with non-small cell lung cancer. Cancer Med. 2022, 11, 1787–1795. [Google Scholar] [CrossRef]
- Cheng, Y.; Mo, F.; Li, Q.; Han, X.; Shi, H.; Chen, S.; Wei, Y.; Wei, X. Targeting CXCR2 inhibits the progression of lung cancer and promotes therapeutic effect of cisplatin. Mol. Cancer 2021, 20, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Russo, R.C.; Garcia, C.C.; Teixeira, M.M.; A Amaral, F. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev. Clin. Immunol. 2014, 10, 593–619. [Google Scholar] [CrossRef]
- Yamauchi, T.; Hoki, T.; Oba, T.; Jain, V.; Chen, H.; Attwood, K.; Battaglia, S.; George, S.; Chatta, G.; Puzanov, I.; et al. T-cell CX3CR1 expression as a dynamic blood-based biomarker of response to immune checkpoint inhibitors. Nat. Commun. 2021, 12, 1402. [Google Scholar] [CrossRef]
- Aversa, I.; Malanga, D.; Fiume, G.; Palmieri, C. Molecular T-Cell Repertoire Analysis as Source of Prognostic and Predictive Biomarkers for Checkpoint Blockade Immunotherapy. Int. J. Mol. Sci. 2020, 21, 2378. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.-H.; Choi, M.G.; Kim, D.H.; Choi, Y.J.; Kim, S.Y.; Sung, K.J.; Lee, J.C.; Kim, S.-Y.; Rho, J.K.; Choi, C.-M. Natural Killer Cells as a Potential Biomarker for Predicting Immunotherapy Efficacy in Patients with Non-Small Cell Lung Cancer. Target. Oncol. 2020, 15, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Mazzaschi, G.; Facchinetti, F.; Missale, G.; Canetti, D.; Madeddu, D.; Zecca, A.; Veneziani, M.; Gelsomino, F.; Goldoni, M.; Buti, S.; et al. The circulating pool of functionally competent NK and CD8+ cells predicts the outcome of anti-PD1 treatment in advanced NSCLC. Lung Cancer 2019, 127, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Alama, A.; Coco, S.; Genova, C.; Rossi, G.; Fontana, V.; Tagliamento, M.; Bello, M.G.D.; Rosa, A.; Boccardo, S.; Rijavec, E.; et al. Prognostic Relevance of Circulating Tumor Cells and Circulating Cell-Free DNA Association in Metastatic Non-Small Cell Lung Cancer Treated with Nivolumab. J. Clin. Med. 2019, 8, 1011. [Google Scholar] [CrossRef]
Chemokine Receptor | Ligand(s) | Role in NSCLC Immunobiology | Circulating PBMC Association | Prognostic/Predictive Impact | Therapeutic Targeting/Trials |
---|---|---|---|---|---|
CXCR4 | CXCL12 | Promotes tumor growth, metastasis, immune suppression | High CD8+CXCR4+ T cells: poor OS Low levels:better ICI benefit | Poor OS, especially in females; linked to advanced stage and adenocarcinoma | Antagonists: AMD3100, BKT140; synergistic with ICIs. No data in NSCLC |
CXCR6 | CXCL16 | Guides CD8+ TRM and MAIT cell migration to lung; enhances local immunity | High CXCR6+ MAIT cells in responders | Better PFS and OS; deficiency impairs ICI efficacy | Potential biomarker for vaccine and ICI response. No trials in NSCLC |
CXCR3 | CXCL9, CXCL10, CXCL11 | Effector T-cell recruitment to TME | Sustained high CXCL10 post-therapy poor outcome | Required for ICI efficacy intratumorally | None in routine use; experimental modulation |
CCR5 | CCL5 | Tumor progression and immune regulation | Required in CD4+/CD8+ for maximal TME immune activity | Target in ongoing CCR2/CCR5 antagonist + ICI trials | None in routine use; experimental modulation |
CXCR2 | CXCL5, CXCL8 | Neutrophil recruitment, angiogenesis, tumor progression | High CXCL5: poor prognosis, unfavorable ICI response | Independent poor prognostic factor | CXCR2 blockade synergizes with chemotherapy. No data in NSCLC |
CX3CR1 | CX3CL1 | T cell–tumor interaction; potential “score” biomarker | Circulating CX3CR1+CD8+ predictive of ICI response | Emerging dynamic biomarker | None in standard care; under investigation |
CCR9/CCR10 | CCL25/CCL27–28 | CSC migration (CCR9), glioma progression (CCR10) | High CD4+CCR9+/CCR10+ T cells poor OS with ICIs | Negative prognostic in ICI-treated patients | No targeted drugs yet |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galera, P.; Iglesias-Beiroa, A.; Hernández-Marín, B.; Bañón, D.; Arangoa, T.; Castillo, L.; Álvarez-Maldonado, M.; Gil-Olarte, C.; Borregón, R.; Iribarren, M.; et al. Chemokine Receptors in Peripheral Blood Mononuclear Cells as Predictive Biomarkers for Immunotherapy Efficacy in Non-Small Cell Lung Cancer. Curr. Oncol. 2025, 32, 583. https://doi.org/10.3390/curroncol32100583
Galera P, Iglesias-Beiroa A, Hernández-Marín B, Bañón D, Arangoa T, Castillo L, Álvarez-Maldonado M, Gil-Olarte C, Borregón R, Iribarren M, et al. Chemokine Receptors in Peripheral Blood Mononuclear Cells as Predictive Biomarkers for Immunotherapy Efficacy in Non-Small Cell Lung Cancer. Current Oncology. 2025; 32(10):583. https://doi.org/10.3390/curroncol32100583
Chicago/Turabian StyleGalera, Paloma, Antía Iglesias-Beiroa, Berta Hernández-Marín, Dulce Bañón, Teresa Arangoa, Lucía Castillo, María Álvarez-Maldonado, Cristina Gil-Olarte, Rafael Borregón, María Iribarren, and et al. 2025. "Chemokine Receptors in Peripheral Blood Mononuclear Cells as Predictive Biomarkers for Immunotherapy Efficacy in Non-Small Cell Lung Cancer" Current Oncology 32, no. 10: 583. https://doi.org/10.3390/curroncol32100583
APA StyleGalera, P., Iglesias-Beiroa, A., Hernández-Marín, B., Bañón, D., Arangoa, T., Castillo, L., Álvarez-Maldonado, M., Gil-Olarte, C., Borregón, R., Iribarren, M., Colomer, R., & Rogado, J. (2025). Chemokine Receptors in Peripheral Blood Mononuclear Cells as Predictive Biomarkers for Immunotherapy Efficacy in Non-Small Cell Lung Cancer. Current Oncology, 32(10), 583. https://doi.org/10.3390/curroncol32100583