Let It Grow: The Role of Growth Factors in Managing Chemotherapy-Induced Cytopenia
Abstract
:1. Introduction
2. Article Selection
3. Pathophysiology and Risk Factors of Chemotherapy-Induced Cytopenia (CIC)
4. CIC and the Use of Growth Factors (GF)
4.1. Chemotherapy-Induced Neutropenia (CIN) and GCSF Use
4.2. Chemotherapy-Induced Anemia (CIA) and Use of ESAs
4.3. Chemotherapy-Induced Thrombocytopenia (CIT) and Use of TPO-RAs
5. Cancer-Related Risk with the Usage of Growth Factors in CIC
6. Predictors of Response to Growth Factors in CIC
7. Future Insights and Ongoing Clinical Trials
8. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kurtin, S. Myeloid Toxicity of Cancer Treatment. J. Adv. Pract. Oncol. 2012, 3, 209–224. [Google Scholar] [PubMed]
- Crawford, J.; Cella, D.; Cleeland, C.S.; Cremieux, P.; Demetri, G.D.; Sarokhan, B.J.; Slavin, M.B.; Glaspy, J.A. Relationship between changes in hemoglobin level and quality of life during chemotherapy in anemic cancer patients receiving epoetin alfa therapy. Cancer 2002, 95, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Lalami, Y.; Klastersky, J. Impact of chemotherapy-induced neutropenia (CIN) and febrile neutropenia (FN) on cancer treatment outcomes: An overview about well-established and recently emerging clinical data. Crit. Rev. Oncol. Hematol. 2017, 120, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Lyman, G.H.; Dale, D.C.; Culakova, E.; Poniewierki, M.S.; Wolff, D.A.; Kuderer, N.M.; Huang, M.; Crawford, J. The impact of the granulocyte colony-stimulating factor on chemotherapy dose intensity and cancer survival: A systematic review and meta-analysis of randomized controlled trials. Ann. Oncol. 2013, 24, 2475–2484. [Google Scholar] [CrossRef]
- Schiffer, C.A.; Bohlke, K.; Delaney, M.; Hume, H.; Magdalinski, A.J.; McCullough, J.J.; Omel, J.L.; Rainey, J.M.; Rebulla, P.; Rowley, S.D.; et al. Platelet Transfusion for Patients With Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. J. Clin. Oncol. 2018, 36, 283–299. [Google Scholar] [CrossRef]
- Weycker, D.; Hatfield, M.; Grossman, A.; Hanau, A.; Lonshteyn, A.; Sharma, A.; Chandler, D. Risk and consequences of chemotherapy-induced thrombocytopenia in US clinical practice. BMC Cancer 2019, 19, 151. [Google Scholar] [CrossRef]
- Rowe, J.M.; Rapoport, A.P. Hemopoietic Growth Factors: A Review. J. Clin. Pharmacol. 1992, 32, 486–501. [Google Scholar] [CrossRef]
- Crea, F.; Giovannetti, E.; Zinzani, P.L.; Danesi, R. Pharmacologic rationale for early G-CSF prophylaxis in cancer patients and role of pharmacogenetics in treatment optimization. Crit. Rev. Oncol. Hematol. 2009, 72, 21–44. [Google Scholar] [CrossRef]
- Maxwell, M.B.; Maher, K.E. Chemotherapy-induced myelosuppression. Semin. Oncol. Nurs. 1992, 8, 113–123. [Google Scholar] [CrossRef]
- Gatter, K.; Natkunam, Y.; Brown, D. Bone Marrow Diagnosis: An Illustrated Guide, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2008. [Google Scholar]
- Kuter, D.J. Treatment of chemotherapy-induced thrombocytopenia in patients with non-hematologic malignancies. Haematologica 2022, 107, 1243–1263. [Google Scholar] [CrossRef]
- Hitron, A.; Steinke, D.; Sutphin, S.; Lawson, A.; Talbert, J.; Adams, V. Incidence and risk factors of clinically significant chemotherapy-induced thrombocytopenia in patients with solid tumors. J. Oncol. Pharm. Pract. 2011, 17, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Blay, J.Y.; Cesne, A.L.; Mermet, C.; Maugard, C.; Ravaud, A.; Chevreau, C.; Sebban, C.; Guastalla, J.; Biron, P.; Ray-Coquard, I. A risk model for thrombocytopenia requiring platelet transfusion after cytotoxic chemotherapy. Blood 1998, 92, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Kurtin, S. Risk Analysis in the Treatment of Hematologic Malignancies in the Elderly. J. Adv. Pract. Oncol. 2010, 1, 19–29. [Google Scholar] [CrossRef]
- Scripture, C.D.; Figg, W.D. Drug interactions in cancer therapy. Nat. Rev. Cancer 2006, 6, 546–558. [Google Scholar] [CrossRef]
- Carreca, I.; Balducci, L. Cancer chemotherapy in the older cancer patient. Urol. Oncol. Semin. Orig. Investig. 2009, 27, 633–642. [Google Scholar] [CrossRef]
- Greipp, P.R.; Miguel, J.S.; Durie, B.G.M.; Crowley, J.J.; Barlogie, B.; Blade, J.; Boccadoro, M.; Child, J.A.; Avet-Loiseau, H.; Kyle, R.A.; et al. International Staging System for Multiple Myeloma. J. Clin. Oncol. 2005, 23, 3412–3420. [Google Scholar] [CrossRef]
- Okunaka, M.; Kano, D.; Matsui, R.; Kawasaki, T.; Uesawa, Y. Comprehensive Analysis of Chemotherapeutic Agents That Induce Infectious Neutropenia. Pharmaceuticals 2021, 14, 681. [Google Scholar] [CrossRef]
- Björn, N.; Sigurgeirsson, B.; Svedberg, A.; Pradhananga, S.; Branden, E.; Koyi, H.; Lewensohn, R.; de Petris, L.; Apellaniz-Ruiz, M.; Rodriguez-Antona, C.; et al. Genes and variants in hematopoiesis-related pathways are associated with gemcitabine/carboplatin-induced thrombocytopenia. Pharmacogenomics J. 2020, 20, 179–191. [Google Scholar] [CrossRef]
- Smith, R.E. Trends in Recommendations for Myelosuppressive Chemotherapy for the Treatment of Solid Tumors. J. Natl. Compr. Cancer Netw. 2006, 4, 649–658. [Google Scholar] [CrossRef]
- Crawford, J.; Allen, J.; Armitage, J.; Blayney, D.W.; Cataland, S.R.; Heaney, M.L.; Htoy, S.; Hudock, S.; Kloth, D.D.; Kuter, D.J.; et al. Myeloid Growth Factors. J. Natl. Compr. Cancer Netw. 2011, 9, 914–932. [Google Scholar] [CrossRef]
- Aapro, M.S.; Bohilus, J.; Cameron, D.A.; Lago, L.D.; Donnelly, J.P.; Kearney, N.; Lyman, G.H.; Pettengell, R.; Tjan-Heijnen, V.C.; Walewski, J.; et al. 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur. J. Cancer 2011, 47, 8–32. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.; Verma, S.; Loibl, S.; Crawford, J.; Choi, M.R.; Dreiling, L.; Vandenberg, T. Reporting of myelotoxicity associated with emerging regimens for the treatment of selected solid tumors. Crit. Rev. Oncol. Hematol. 2012, 81, 136–150. [Google Scholar] [CrossRef] [PubMed]
- Taplitz, R.A.; Kennedy, E.B.; Flowers, C.R. Antimicrobial Prophylaxis for Adult Patients With Cancer-Related Immunosuppression: ASCO and IDSA Clinical Practice Guideline Update. J. Clin. Oncol. 2018, 36, 3043–3054. [Google Scholar] [CrossRef]
- Mohanlal, R.; Ogenstad, S.; Lyman, G.H.; Huang, L.; Blayney, D.W. Grade 4 Neutropenia Frequency as a Binary Risk Predictor for Adverse Clinical Consequences of Chemotherapy-Induced Neutropenia: A Meta-analysis. Cancer Investig. 2023, 41, 369–378. [Google Scholar] [CrossRef]
- Gargiulo, P.; Arenare, L.; Gridelli, C.; Morabito, A.; Ciardiello, F.; Gebbia, V.; Maione, P.; Spagnuolo, A.; Palumbo, G.; Esposito, G.; et al. Chemotherapy-induced neutropenia and treatment efficacy in advanced non-small-cell lung cancer: A pooled analysis of 6 randomized trials. BMC Cancer 2021, 21, 549. [Google Scholar] [CrossRef]
- Hutajulu, S.H.; Oktariani, S.; Sunggoro, A.J.; Bintoro, B.S.; Astari, Y.K.; Wiranata, J.A.; Widodo, I.; Ekowati, A.; Hardianti, M.S.; Taroeno-Hariadi, K.W.; et al. The occurrence and risk factors of chemotherapy-induced neutropenia in patients with breast cancer not receiving primary G-CSF prophylaxis. Ecancermedicalscience 2023, 17, 1618. [Google Scholar] [CrossRef]
- Fortner, B.V.; Houts, A.C.; Schwartzberg, L.S. A prospective investigation of chemotherapy-induced neutropenia and quality of life. J. Support. Oncol. 2006, 4, 472–478. [Google Scholar] [CrossRef]
- Li, Y.; Klippel, Z.; Shih, X.; Reiner, M.; Wang, H.; Page, J.H. Relationship between severity and duration of chemotherapy-induced neutropenia and risk of infection among patients with nonmyeloid malignancies. Support. Care Cancer 2016, 24, 4377–4383. [Google Scholar] [CrossRef]
- Wingard, J.R.; Elmongy, M. Strategies for minimizing complications of neutropenia: Prophylactic myeloid growth factors or antibiotics. Crit. Rev. Oncol. Hematol. 2009, 72, 144–154. [Google Scholar] [CrossRef]
- Aapro, M.; Crawford, J.; Kamioner, D. Prophylaxis of chemotherapy-induced febrile neutropenia with granulocyte colony-stimulating factors: Where are we now? Support. Care Cancer 2010, 18, 529–541. [Google Scholar] [CrossRef]
- Klastersky, J.; Awada, A.; Paesmans, M.; Aoun, M. Febrile neutropenia: A critical review of the initial management. Crit. Rev. Oncol. Hematol. 2011, 78, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Ozer, H. The timing of chemotherapy-induced neutropenia and its clinical and economic impact. Oncology 2006, 20 (Suppl. S4), 11–15. [Google Scholar] [PubMed]
- Rohr, O.; Priou, S.; Chatellier, G.; Babai, S.; Gallien, S.; Flicoteaux, R.; Tournigand, C.; Kempf, E.; Assistance Publique-Hopitaux de Paris (AP-HP) Cancer Group, a CRAB* project. Prevalence and risks of intravenous chemotherapy-induced severe neutropenia in solid cancers: A multicenter retrospective cohort study on real-life data. Support. Care Cancer 2024, 32, 657. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. NEUPOGEN-Filgrastim Injection, Solution Amgen Inc. Available online: www.fda.gov/medwatch (accessed on 4 October 2024).
- Food and Drug Administration. ZARXIO-Filgrastim-Sndz Injection, Solution Sandoz Inc. Highlights Of Prescribing Information. Available online: www.fda.gov/medwatch (accessed on 4 October 2024).
- Food and Drug Administration. RELEUKO-Filgrastim Injection, Solution Amneal Pharmaceuticals LLC. Highlights Of Prescribing Information. Available online: www.fda.gov/medwatch (accessed on 4 October 2024).
- Klocke, R.; Kuhlmann, M.; Scobioala, S.; Schabitz, W.-R.; Nikol, S. Granulocyte Colony-Stimulating Factor (G-CSF) for Cardio- and Cerebrovascular Regenerative Applications. Curr. Med. Chem. 2008, 15, 968–977. [Google Scholar] [CrossRef]
- Food and Drug Administration. Label for Neupogen (Filgrastim). 2013. Available online: https://www.fda.gov/drugsatfda (accessed on 4 October 2024).
- Mehta, H.M.; Malandra, M.; Corey, S.J. G-CSF and GM-CSF in Neutropenia. J. Immunol. 2015, 195, 1341–1349. [Google Scholar] [CrossRef]
- Crawford, J.; Becker, P.S.; Armitage, J.O.; Blayney, D.W.; Chavez, J.; Curtin, P.; Dinner, S.; Fynan, T.; Gojo, I.; Griffiths, E.A.; et al. Myeloid Growth Factors, Version 2.2017, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2017, 15, 1520–1541. [Google Scholar] [CrossRef]
- Hollingshead, L.M.; Goa, K.L. Recombinant Granulocyte Colony-Stimulating Factor (rG-CSF). Drugs 1991, 42, 300–330. [Google Scholar] [CrossRef]
- Kourlaba, G.; Dimopoulos, M.A.; Pectasides, D.; Skarlos, D.V.; Gogas, H.; Pentheroudakis, G.; Koutras, A.; Fountzilas, G.; Maniadakis, N. Comparison of filgrastim and pegfilgrastim to prevent neutropenia and maintain dose intensity of adjuvant chemotherapy in patients with breast cancer. Support. Care Cancer 2015, 23, 2045–2051. [Google Scholar] [CrossRef]
- Cornes, P.; Gascon, P.; Vulto, A.G.; Aapro, M. Biosimilar Pegfilgrastim: Improving Access and Optimising Practice to Supportive Care that Enables Cure. BioDrugs 2020, 34, 255–263. [Google Scholar] [CrossRef]
- Zecchini, J.; Yum, K.; Steinberg, A.; Smith, C.; Kim, S. A single-center, retrospective analysis to compare the efficacy and safety of filgrastim-sndz to filgrastim for prophylaxis of chemotherapy-induced neutropenia and for neutrophil recovery following autologous stem cell transplantation. Support. Care Cancer 2018, 26, 1013–1016. [Google Scholar] [CrossRef]
- Blair, H.A.; Scott, L.J. Tbo-Filgrastim: A Review in Neutropenic Conditions. BioDrugs 2016, 30, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Tomic, K.; Hurley, D.; Daniel, G.; Barron, R.; Malin, J. Comparative effectiveness of colony-stimulating factors for febrile neutropenia: A retrospective study. Curr. Med. Res. Opin. 2011, 27, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Naeim, A.; Henk, H.J.; Becker, L.; Chia, V.; Badre, S.; Li, X.; Deeter, R. Pegfilgrastim prophylaxis is associated with a lower risk of hospitalization of cancer patients than filgrastim prophylaxis: A retrospective United States claims analysis of granulocyte colony-stimulating factors (G-CSF). BMC Cancer 2013, 13, 11. [Google Scholar] [CrossRef]
- Lapidari, P.; Vaz-Luis, I.; Di Meglio, A. Side effects of using granulocyte-colony stimulating factors as prophylaxis of febrile neutropenia in cancer patients: A systematic review. Crit. Rev. Oncol. Hematol. 2021, 157, 103193. [Google Scholar] [CrossRef] [PubMed]
- Lambertini, M.; Del Mastro, L.; Bellodi, A.; Pronzato, P. The five ‘Ws’ for bone pain due to the administration of granulocyte-colony stimulating factors (G-CSFs). Crit. Rev. Oncol. Hematol. 2014, 89, 112–128. [Google Scholar] [CrossRef]
- Løhmann, D.J.A.; Asdahl, P.H.; Abrahamsson, J.; Ha, S.; Jonsson, O.G.; Kaspers, G.J.L.; Koskenvuo, M.; Lausen, B.; Moerloose, B.D.; Palle, J.; et al. Use of granulocyte colony-stimulating factor and risk of relapse in pediatric patients treated for acute myeloid leukemia according to NOPHO-AML 2004 and DB AML-01. Pediatr. Blood Cancer 2019, 66, e27701. [Google Scholar] [CrossRef]
- Bordbar, M.; Hosseini-Bensenjan, M.; Sayadi, M.; Zekavat, O.; Bordbar, S.; Nozari, F.; Haghpanah, S. The Impact of Prophylactic Post-Chemotherapy G-CSF on the Relapse Rates in Patients with Acute Myeloid Leukemia: A Meta-Analysis. Cancer Investig. 2024, 42, 452–468. [Google Scholar] [CrossRef]
- Usuki, K.; Iki, S.; Endo, M.; Kitazume, K.; Ito, K.; Watanabe, M.; Urabe, A. Granulocyte colony-stimulating factor in acute myeloid leukemia. Stem Cells 1995, 13, 647–654. [Google Scholar] [CrossRef]
- Maeda, T.; Najima, Y.; Kamiyama, Y.; Nakao, S.; Ozaki, Y.; Nishio, H.; Tsuchihashi, K.; Ichihara, E.; Miumra, Y.; Endo, M.; et al. Effectiveness and safety of primary prophylaxis with G-CSF after induction therapy for acute myeloid leukemia: A systematic review and meta-analysis of the clinical practice guidelines for the use of G-CSF 2022 from the Japan society of clinical oncology. Int. J. Clin. Oncol. 2024, 29, 535–544. [Google Scholar] [CrossRef]
- Smith, T.J.; Bohlke, K.; Lyman, G.H.; Carson, K.R.; Crawford, J.; Cross, S.J.; Goldberg, J.M.; Khatcheressian, J.L.; Leighl, N.B.; Perkins, C.L.; et al. Recommendations for the Use of WBC Growth Factors: American Society of Clinical Oncology Clinical Practice Guideline Update. J. Clin. Oncol. 2015, 33, 3199–3212. [Google Scholar] [CrossRef]
- Bozcuk, H.; Coskun, H.S.; İlhan, Y.; Goksu, S.S.; Yildiz, M.; Bayram, S.; Yerlikaya, T.; Kocer, M.; Artac, M.; Ugrakli, M.; et al. Prospective external validation of an updated algorithm to quantify risk of febrile neutropenia in cancer patients after a cycle of chemotherapy. Support. Care Cancer 2022, 30, 2621–2629. [Google Scholar] [CrossRef] [PubMed]
- Pawloski, P.A.; Thomas, A.J.; Kane, S.; Vazquez-Benitez, G.; Shapiro, G.R.; Lyman, G.H. Predicting neutropenia risk in patients with cancer using electronic data. J. Am. Med. Inform. Assoc. 2017, 24, e129–e135. [Google Scholar] [CrossRef] [PubMed]
- Tsuchihashi, K.; Ito, M.; Okumura, Y.; Nio, K.; Ozaki, Y.; Nishio, H.; Ichihara, E.; Miura, Y.; Endo, M.; Yano, S.; et al. Therapeutic use of granulocyte colony-stimulating factor (G-CSF) in patients with febrile neutropenia: A comprehensive systematic review for clinical practice guidelines for the use of G-CSF 2022 from the Japan Society of Clinical Oncology. Int. J. Clin. Oncol. 2024, 29, 700–705. [Google Scholar] [CrossRef]
- Ribas, A.; Albanell, J.; Bellmunt, J.; Sole-Calvo, L.A.; Bermejo, B.; Gallardo, E.; Vidal, R.; Vera, R.; Eres, N.; Carulla, J.; et al. Five-day course of granulocyte colony-stimulating factor in patients with prolonged neutropenia after adjuvant chemotherapy for breast cancer is a safe and cost-effective schedule to maintain dose-intensity. J. Clin. Oncol. 1996, 14, 1573–1580. [Google Scholar] [CrossRef]
- Huang, W.; Liu, J.; Zeng, Y.; Wu, F.; Li, N.; Chen, K.; Hong, Y.; Wang, L.; Zhen, H.; Lin, L. Randomized controlled clinical trial of polyethylene glycol recombinant human granulocyte colony-stimulating factor in the treatment of neutropenia after chemotherapy for breast cancer. Cancer Chemother. Pharmacol. 2018, 82, 607–613. [Google Scholar] [CrossRef]
- Garcia-Carbonero, R.; Mayordomo, J.I.; Tornamira, M.V.; Lopez-Brea, M.; Rueda, A.; Guillem, V.; Arcediano, A.; Yubero, A.; Ribera, F.; Gomez, C.; et al. Granulocyte Colony-Stimulating Factor in the Treatment of High-Risk Febrile Neutropenia: A Multicenter Randomized Trial. JNCI J. Natl. Cancer Inst. 2001, 93, 31–38. [Google Scholar] [CrossRef]
- Rodgers, G.M.; Becker, P.S.; Blinder, M.; Cella, D.; Chanan-Khan, A.; Cleeland, C.; Coccia, P.F.; Djulbegovic, B.; Gilreath, J.A.; Kraut, E.H.; et al. Cancer- and Chemotherapy- Induced Anemia. J. Natl. Compr. Cancer Netw. 2012, 10, 628–653. [Google Scholar] [CrossRef]
- Family, L.; Xu, L.; Xu, H.; Cannavale, K.; Sattayapiwat, O.; Page, J.H.; Bohac, C.; Chao, C. The effect of chemotherapy-induced anemia on dose reduction and dose delay. Support. Care Cancer 2016, 24, 4263–4271. [Google Scholar] [CrossRef]
- Xu, H.; Xu, L.; Page, J.H.; Cannavale, K.; Sattayapiwat, O.; Rodriguez, R.; Chao, D. Incidence of anemia in patients diagnosed with solid tumors receiving chemotherapy, 2010–2013. Clin. Epidemiol. 2016, 8, 61–71. [Google Scholar] [CrossRef]
- Juneja, V.; Keegan, P.; Gootenberg, J.E.; Rothmann, M.D.; Shen, Y.L.; Lee, K.Y.; Weiss, K.D.; Pazdur, R. Continuing Reassessment of the Risks of Erythropoiesis-Stimulating Agents in Patients with Cancer. Clin. Cancer Res. 2008, 14, 3242–3247. [Google Scholar] [CrossRef]
- Elliott, S.; Pham, E.; Macdougall, I.C. Erythropoietins: A common mechanism of action. Exp. Hematol. 2008, 36, 1573–1584. [Google Scholar] [CrossRef] [PubMed]
- Aapro, M.; Jelkmann, W.; Constantinescu, S.N.; Leyland-Jones, B. Effects of erythropoietin receptors and erythropoiesis-stimulating agents on disease progression in cancer. Br. J. Cancer 2012, 106, 1249–1258. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Ye, Z.; Civan, J.M.; Wang, C.; Cristofanilli, M.; Mu, Z.; Austin, L.; Palazzo, J.P.; Myers, R.E.; Yang, H. The effects of erythropoiesis-stimulating agents on the short-term and long-term survivals in metastatic breast cancer patients receiving chemotherapy: A SEER population-based study. Breast Cancer Res. Treat. 2015, 153, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Bohlius, J.; Bohlke, K.; Castelli, R.; Djulbegovic, B.; Lustberg, M.B.; Martino, M.; Mountzios, G.; Peswani, N.; Porter, L.; Tanaka, T.N.; et al. Management of cancer-associated anemia with erythropoiesis-stimulating agents: ASCO/ASH clinical practice guideline update. Blood Adv. 2019, 3, 1197–1210. [Google Scholar] [CrossRef] [PubMed]
- Hoque, S.; Chen, B.J.; Schoen, M.W.; Carson, K.R.; Keller, J.; Witherspoon, B.J.; Knopf, K.B.; Yang, Y.T.; Schooley, B.; Nabhan, C.; et al. End of an era of administering erythropoiesis stimulating agents among Veterans Administration cancer patients with chemotherapy-induced anemia. PLoS ONE 2020, 15, e0234541. [Google Scholar] [CrossRef]
- Hershman, D.L.; Buono, D.L.; Malin, J.; McBride, R.; Tsai, W.Y.; Neugut, A.I. Patterns of Use and Risks Associated With Erythropoiesis-Stimulating Agents Among Medicare Patients With Cancer. JNCI J. Natl. Cancer Inst. 2009, 101, 1633–1641. [Google Scholar] [CrossRef]
- Bohlius, J.; Schmidlin, K.; Brillant, C.; Schwarzer, G.; Trelle, S.; Seidenfeld, J.; Zwahlen, M.; Clarke, M.; Weingart, O.; Kluge, S.; et al. Recombinant human erythropoiesis-stimulating agents and mortality in patients with cancer: A meta-analysis of randomised trials. Lancet 2009, 373, 1532–1542. [Google Scholar] [CrossRef]
- Thavarajah, S.; Choi, M.J. The Use of Erythropoiesis-Stimulating Agents in Patients With CKD and Cancer: A Clinical Approach. Am. J. Kidney Dis. 2019, 74, 667–674. [Google Scholar] [CrossRef]
- Shaw, J.L.; Nielson, C.M.; Park, J.K.; Marongiu, A.; Soff, G.A. The incidence of thrombocytopenia in adult patients receiving chemotherapy for solid tumors or hematologic malignancies. Eur. J. Haematol. 2021, 106, 662–672. [Google Scholar] [CrossRef]
- Berg, M.J.T.; van den Bemt, P.M.; Shantakumar, S.; Bennett, D.; Voest, E.E.; Huisman, A.; van Solinge, W.W.; Egberts, T.C.G. Thrombocytopenia in Adult Cancer Patients Receiving Cytotoxic Chemotherapy. Drug Saf. 2011, 34, 1151–1160. [Google Scholar] [CrossRef]
- Elting, L.S.; Rubenstein, E.B.; Martin, C.G.; Kurtin, D.; Rodriguez, S.; Laiho, E.; Kanesan, K.; Cantor, S.B.; Benjamin, R.S. Incidence, Cost, and Outcomes of Bleeding and Chemotherapy Dose Modification Among Solid Tumor Patients With Chemotherapy-Induced Thrombocytopenia. J. Clin. Oncol. 2001, 19, 1137–1146. [Google Scholar] [CrossRef] [PubMed]
- Al-Samkari, H. Optimal management of chemotherapy-induced thrombocytopenia with thrombopoietin receptor agonists. Blood Rev. 2024, 63, 101139. [Google Scholar] [CrossRef] [PubMed]
- Denduluri, N.; Patt, D.A.; Wang, Y.; Bhor, M.; Li, X.; Favret, A.M.; Morrow, P.K.; Barron, R.L.; Asmar, L.; Saravanan, S.; et al. Dose Delays, Dose Reductions, and Relative Dose Intensity in Patients With Cancer Who Received Adjuvant or Neoadjuvant Chemotherapy in Community Oncology Practices. J. Natl. Compr. Cancer Netw. 2015, 13, 1383–1393. [Google Scholar] [CrossRef] [PubMed]
- Aspinall, S.L.; Good, C.B.; Zhao, X.; Cunningham, F.E.; Heron, B.B.; Geraci, M.; Passero, V.; Stone, R.A.; Smith, K.J.; Rogers, R.; et al. Adjuvant chemotherapy for stage III colon cancer: Relative dose intensity and survival among veterans. BMC Cancer 2015, 15, 62. [Google Scholar] [CrossRef]
- Havrilesky, L.J.; Reiner, M.; Morrow, P.K.; Watson, H.; Crawford, J. A review of relative dose intensity and survival in patients with metastatic solid tumors. Crit. Rev. Oncol. Hematol. 2015, 93, 203–210. [Google Scholar] [CrossRef]
- Hanna, R.K.; Poniewierski, M.S.; Laskey, R.A.; Lopez, M.A.; Shafer, A.; Le, V.L.; Crawford, J.; Dale, D.C.; Gehrig, P.A.; Secord, A.A.; et al. Predictors of reduced relative dose intensity and its relationship to mortality in women receiving multi-agent chemotherapy for epithelial ovarian cancer. Gynecol. Oncol. 2013, 129, 74–80. [Google Scholar] [CrossRef]
- Nakayama, G.; Tanaka, C.; Uehara, K.; Mashita, N.; Hayashi, N.; Kobayashi, D.; Kanda, M.; Yamada, S.; Fujii, T.; Sugimoto, H.; et al. The impact of dose/time modification in irinotecan- and oxaliplatin-based chemotherapies on outcomes in metastatic colorectal cancer. Cancer Chemother. Pharmacol. 2014, 73, 847–855. [Google Scholar] [CrossRef]
- Lu, R.; Lin, Q.; Chen, S.; Ye, X. Chemotherapy-induced thrombocytopenia and platelet transfusion in patients with diffuse large B-cell lymphoma. Transl. Cancer Res. 2020, 9, 1640–1651. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Huang, Y.; Liang, C.; Qiang, M.; Cai, Z.; Zhan, Z.; Deng, Y.; Zhou, J.; Huang, H.; et al. Incidence, consequences, and predictors of serious chemotherapy-induced thrombocytopenia in nasopharyngeal carcinoma. Cancer Med. 2023, 12, 14084–14093. [Google Scholar] [CrossRef]
- Leader, A.; Hofstetter, L.; Spectre, G. Challenges and Advances in Managing Thrombocytopenic Cancer Patients. J. Clin. Med. 2021, 10, 1169. [Google Scholar] [CrossRef]
- Kuter, D.J. Managing thrombocytopenia associated with cancer chemotherapy. Oncology 2015, 29, 282–294. [Google Scholar] [PubMed]
- Winer, E.S.; Safran, H.; Karaszewska, B.; Richards, D.A.; Hartner, L.; Forget, F.; Ramlau, R.; Kumar, K.; Mayer, B.; Johnson, B.M.; et al. Eltrombopag with gemcitabine-based chemotherapy in patients with advanced solid tumors: A randomized phase I study. Cancer Med. 2015, 4, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Al-Samkari, H. Thrombopoietin receptor agonists for chemotherapy-induced thrombocytopenia: A new solution for an old problem. Hematology 2022, 2022, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Huang, X.; Liu, S.; Liu, W.; Wang, H.; Wang, W.; Lu, Y. Elevated BNP caused by recombinant human interleukin-11 treatment in patients with chemotherapy-induced thrombocytopenia. Support. Care Cancer 2019, 27, 4293–4298. [Google Scholar] [CrossRef] [PubMed]
- Soff, G.A.; Al-Samkari, H.; Leader, A.; Eisen, M.; Saad, H. Romiplostim in chemotherapy-induced thrombocytopenia: A review of the literature. Cancer Med. 2024, 13, e7429. [Google Scholar] [CrossRef] [PubMed]
- Kuter, D.J. Thrombopoietin and Thrombopoietin Mimetics in the Treatment of Thrombocytopenia. Annu. Rev. Med. 2009, 60, 193–206. [Google Scholar] [CrossRef]
- Bussel, J.; Kulasekararaj, A.; Cooper, N.; Verma, A.; Steidl, U.; Semple, J.W.; Will, B. Mechanisms and therapeutic prospects of thrombopoietin receptor agonists. Semin. Hematol. 2019, 56, 262–278. [Google Scholar] [CrossRef]
- Food and Drug Administration. NPLATE-Romiplostim Injection, Powder, Lyophilized, for Solution Amgen Inc. highlights of prescribing information. 2022. Available online: www.fda.gov/medwatch (accessed on 5 October 2024).
- Soff, G.A.; Miao, Y.; Bendheim, G.; Batista, J.; Mones, J.V.; Parameswaran, R.; Wilkins, C.R.; Devlin, S.M.; Abou-Alfa, G.K.; Cercek, A.; et al. Romiplostim Treatment of Chemotherapy-Induced Thrombocytopenia. J. Clin. Oncol. 2019, 37, 2892–2898. [Google Scholar] [CrossRef]
- Food and Drug Administration. PROMACTA-Eltrombopag Olamine; Food and Drug Administration: Prince Georges Counties, MD, USA, 2020.
- Food and Drug Administration. ALVAIZ-Eltrombopag Tablet, Film Coated Teva Pharmaceuticals, Inc. Highlights of Prescribing Information Full Prescribing Information: Contents. 2024. Available online: www.fda.gov/medwatch (accessed on 5 October 2024).
- Hu, R.; Guo, S.; Liu, M. Knowledge map of thrombopoietin receptor agonists: A bibliometric analysis. Heliyon 2024, 10, e24051. [Google Scholar] [CrossRef]
- Kuter, D.J. The structure; function, and clinical use of the thrombopoietin receptor agonist avatrombopag. Blood Rev. 2022, 53, 100909. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Q.; Shen, Y.; Li, Y.; Shao, K.; Ye, B.; Shen, Y.; Zhou, Y.; Wu, D. Effect of avatrombopag in the management of severe and refractory chemotherapy-induced thrombocytopenia (CIT) in patients with solid tumors. Platelets 2022, 33, 1024–1030. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; He, Y.; Hu, C.; Tu, C.; Huang, J.; Zhu, X.; Zang, C.; Ding, K.; Zhan, B.; Zhao, Y.; et al. Avatrombopag for the treatment of thrombocytopenia induced by chemotherapy in patients with solid tumors: A multicenter, open-label, single-arm trial. Front. Pharmacol. 2022, 13, 970978. [Google Scholar] [CrossRef] [PubMed]
- Gilreath, J.; Lo, M.; Bubalo, J. Thrombopoietin Receptor Agonists (TPO-RAs): Drug Class Considerations for Pharmacists. Drugs 2021, 81, 1285–1305. [Google Scholar] [CrossRef]
- Vadhan-Raj, S. Recombinant human thrombopoietin: Clinical experience and in vivo biology. Semin. Hematol. 1998, 35, 261–268. [Google Scholar]
- Vadhan-Raj, S. Clinical experience with recombinant human thrombopoietin in chemotherapy-induced thrombocytopenia. Semin. Hematol. 2000, 37 (Suppl. S4), ashem0370028. [Google Scholar] [CrossRef]
- Wolff, S.; Herzig, R.; Lynch, J.; Ericson, S.G.; Greer, J.P.; Stein, R.; Goodman, S.; Benyunes, M.C.; Ashby, M.; Jones, D.V.; et al. Recombinant human thrombopoietin (rhTPO) after autologous bone marrow transplantation: A phase I pharmacokinetic and pharmacodynamic study. Bone Marrow Transplant. 2001, 27, 261–268. [Google Scholar] [CrossRef]
- Yu, J.; Miao, P.; Qian, S. Application of recombinant human thrombopoietin in pregnant women with immune thrombocytopenia: A single-center experience of four patients and literature review. J. Int. Med. Res. 2023, 51, 03000605231187950. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, Z.; Ji, J.; Yang, C.; Chen, M.; Han, B. Recombinant Human Thrombopoietin Accelerates the Recovery of Platelet in Patients With Lower-Risk Myelodysplastic Syndrome: A Proof-of-Concept Study. Front. Oncol. 2021, 11, 721764. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Wu, L.; Zhang, J.; Wang, J.; Yan, L. Recombinant human thrombopoietin is an effective treatment for thrombocytopenia in hemophagocytic lymphohistiocytosis. Ann. Hematol. 2013, 92, 1695–1699. [Google Scholar] [CrossRef]
- Kong, Z.; Qin, P.; Xiao, S.; Zhou, H.; Li, H.; Yang, R.; Liu, X.; Luo, J.; Li, Z.; Ji, G.; et al. A novel recombinant human thrombopoietin therapy for the management of immune thrombocytopenia in pregnancy. Blood 2017, 130, 1097–1103. [Google Scholar] [CrossRef]
- Liu, X.; Bai, Y.; Wang, T.; Song, Y.; Sun, F.; Xia, R.; Zhu, F.; Ma, J.; Lu, Q.; Ye, X.; et al. Recombinant human thrombopoietin (rhTPO) of different dosing regimens for refractory/relapsed primary immune thrombocytopenia: A multicenter, randomized controlled trial and pharmacokinetics study. Platelets 2023, 34, 2157806. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Li, J.; Yang, L.; Lv, Y.; Wang, C.; Jin, Z.; Ni, X.; Xia, H. Development and validation of a novel reporter gene assay for determination of recombinant human thrombopoietin. Int. Immunopharmacol. 2021, 99, 107982. [Google Scholar] [CrossRef] [PubMed]
- Vadhan-Raj, S.; Patel, S.; Bueso-Ramos, C.; Folloder, J.; Papadopolous, N.; Burgess, A.; Broemeling, L.D.; Broxmeyer, H.E.; Benjamin, R.S. Importance of Predosing of Recombinant Human Thrombopoietin to Reduce Chemotherapy-Induced Early Thrombocytopenia. J. Clin. Oncol. 2003, 21, 3158–3167. [Google Scholar] [CrossRef] [PubMed]
- Al-Samkari, H.; Parnes, A.D.; Goodarzi, K.; Weitzman, J.I.; Connors, J.M.; Kuter, D.J. A multicenter study of romiplostim for chemotherapy-induced thrombocytopenia in solid tumors and hematologic malignancies. Haematologica 2021, 106, 1148–1157. [Google Scholar] [CrossRef]
- Al-Samkari, H.; Marshall, A.L.; Goodarzi, K.; Kuter, D.J. The use of romiplostim in treating chemotherapy-induced thrombocytopenia in patients with solid tumors. Haematologica 2018, 103, e169–e172. [Google Scholar] [CrossRef]
- Al-Samkari, H.; Van Cott, E.M.; Kuter, D.J. Platelet aggregation response in immune thrombocytopenia patients treated with romiplostim. Ann. Hematol. 2019, 98, 581–588. [Google Scholar] [CrossRef]
- Psaila, B.; Bussel, J.B.; Linden, M.D.; Babula, B.; Li, Y.; Barnard, M.R.; Tate, C.; Mathur, K.; Frelinger, A.L.; Michelson, A.D. In vivo effects of eltrombopag on platelet function in immune thrombocytopenia: No evidence of platelet activation. Blood 2012, 119, 4066–4072. [Google Scholar] [CrossRef]
- Michelson, A.D.; Koganov, E.S.; Forde, E.E.; Carmichael, S.L.; Frelinger, A.L. Avatrombopag increases platelet count but not platelet activation in patients with thrombocytopenia resulting from liver disease. J. Thromb. Haemost. 2018, 16, 2515–2519. [Google Scholar] [CrossRef]
- Ghanima, W.; Geyer, J.T.; Lee, C.S.; Boiocchi, L.; Imahiyerobo, A.A.; Orazi, A.; Bussel, J.B. Bone marrow fibrosis in 66 patients with immune thrombocytopenia treated with thrombopoietin-receptor agonists: A single-center, long-term follow-up. Haematologica 2014, 99, 937–944. [Google Scholar] [CrossRef]
- Değirmenci, B.B.; Yegin, Z.A.; Dikyar, A.; Kaynar, L.A.; Ozkurt, Z.N.; Gocun, P.U.; Akyurek, N. Eltrombopag may induce bone marrow fibrosis in allogeneic hematopoietic stem cell transplant recipients with prolonged thrombocytopenia. Leuk. Res. 2022, 118, 106870. [Google Scholar] [CrossRef]
- Ghanima, W.; Cooper, N.; Rodeghiero, F.; Godeau, B.; Bussel, J.B. Thrombopoietin receptor agonists: Ten years later. Haematologica 2019, 104, 1112–1123. [Google Scholar] [CrossRef] [PubMed]
- Lyman, G.H.; Yau, L.; Nakov, R.; Krendyukov, A. Overall survival and risk of second malignancies with cancer chemotherapy and G-CSF support. Ann. Oncol. 2018, 29, 1903–1910. [Google Scholar] [CrossRef] [PubMed]
- Jabagi, M.J.; Goncalves, A.; Vey, N.; Le Tri, T.; Zureik, M.; Dray-Spira, R. Risk of Hematologic Malignant Neoplasms after Postoperative Treatment of Breast Cancer. Cancers 2019, 11, 1463. [Google Scholar] [CrossRef] [PubMed]
- Jabagi, M.J.; Vey, N.; Goncalves, A.; Le Tri, T.; Zureik, M.; Dray-Spira, R. Risk of secondary hematologic malignancies associated with breast cancer chemotherapy and G-CSF support: A nationwide population-based cohort. Int. J. Cancer 2021, 148, 375–384. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Neulasta (Pegfilgrastim) for Injection. 2021. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2021/125031Orig1s202ltr.pdf (accessed on 20 October 2024).
- U.S. Food and Drug Administration. Neupogen (Filgrastim) for Injection. 2021. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2021/103353orig1s5196ltr.pdf (accessed on 20 October 2024).
- Lyman, G.H.; Dale, D.C.; Wolff, D.A.; Culakova, E.; Poniewierski, M.S.; Kuderer, N.M.; Crawford, J. Acute Myeloid Leukemia or Myelodysplastic Syndrome in Randomized Controlled Clinical Trials of Cancer Chemotherapy With Granulocyte Colony-Stimulating Factor: A Systematic Review. J. Clin. Oncol. 2010, 28, 2914–2924. [Google Scholar] [CrossRef]
- Erickson-Miller, C.L.; Pillarisetti, K.; Kirchner, J.; Figueroa, D.J.; Ottesen, L.; Martin, A.; Liu, Y.; Kamel, Y.M.; Messam, C. Low or undetectable TPO receptor expression in malignant tissue and cell lines derived from breast, lung, and ovarian tumors. BMC Cancer 2012, 12, 405. [Google Scholar] [CrossRef]
- Columbyova, L.; Loda, M.; Scadden, D.T. Thrombopoietin receptor expression in human cancer cell lines and primary tissues. Cancer Res. 1995, 55, 3509–3512. [Google Scholar]
- Debeljak, N.; Solár, P.; Sytkowski, A.J. Erythropoietin and cancer: The unintended consequences of anemia correction. Front. Immunol. 2014, 5, 563. [Google Scholar] [CrossRef]
- Cao, Y.; Lathia, J.D.; Eyler, C.E.; Wu, Q.; Li, Z.; Wang, H.; McLendon, R.E.; Hjelmeland, A.B.; Rich, J.N. Erythropoietin Receptor Signaling Through STAT3 Is Required For Glioma Stem Cell Maintenance. Genes. Cancer 2010, 1, 50–61. [Google Scholar] [CrossRef]
- Zhou, B.; Damrauer, J.S.; Bailey, S.T.; Hadzic, T.; Jeong, Y.; Clark, K.; Fan, C.; Murphy, L.; Lee, C.Y.; Troester, M.A.; et al. Erythropoietin promotes breast tumorigenesis through tumor-initiating cell self-renewal. J. Clin. Investig. 2014, 124, 553–563. [Google Scholar] [CrossRef]
- Todaro, M.; Turdo, A.; Bartucci, M.; Iovino, F.; Dattilo, R.; Biffoni, M.; Stassi, G.; Federici, G.; Maria, R.D.; Zeuner, A. Erythropoietin activates cell survival pathways in breast cancer stem-like cells to protect them from chemotherapy. Cancer Res. 2013, 73, 6393–6400. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.-Y.; Feldman, L.; Solar, P.; Szenajch, J.; Sytkowski, A.J. Characterization of erythropoietin receptor and erythropoietin expression and function in human ovarian cancer cells. Int. J. Cancer 2008, 122, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Solár, P.; Hrckova, G.; Varinska, L.; Solarova, Z.; Kriska, J.; Uhrinova, I.; Kello, M.; Mojzis, J.; Fedorocko, P.; Sytkowski, A.J. Location and the functionality of erythropoietin receptor(s) in A2780 cells. Oncol. Rep. 2012, 28, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Henke, M.; Laszig, R.; Rube, C.; Schafer, U.; Haase, K.; Schilcher, B.; Mose, S.; Beer, K.T.; Burger, U.; Dougherty, C.; et al. Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotherapy: Randomised, double-blind, placebo-controlled trial. Lancet 2003, 362, 1255–1260. [Google Scholar] [CrossRef]
- Overgaard, J.; Hoff, C.M.; Hansen, H.S.; Specht, L.; Overgaard, M.; Lassen, P.; Andersen, E.; Johansen, J.; Andersen, L.J.; Evensen, J.F.; et al. DAHANCA 10—Effect of darbepoetin alfa and radiotherapy in the treatment of squamous cell carcinoma of the head and neck. A multicenter, open-label, randomized, phase 3 trial by the Danish head and neck cancer group. Radiother. Oncol. 2018, 127, 12–19. [Google Scholar] [CrossRef]
- Leyland-Jones, B.; BEST Investigators and Study Group. Breast cancer trial with erythropoietin terminated unexpectedly. Lancet Oncol. 2003, 4, 459–460. [Google Scholar] [CrossRef]
- Straka, C.; Sandherr, M.; Salwender, H.; Wandt, H.; Metzner, B.; Hubel, K.; Silling, G.; Hentrich, M.; Franke, D.; Schwerdtfeger, R.; et al. Testing G-CSF responsiveness predicts the individual susceptibility to infection and consecutive treatment in recipients of high-dose chemotherapy. Blood 2011, 117, 2121–2128. [Google Scholar] [CrossRef]
- Park, S.; Kosmider, O.; Maloisel, F.; Drenou, B.; Chapuis, N.; Lefebvre, T.; Karim, Z.; Puy, H.; Alary, A.S.; Ducamp, S.; et al. Dyserythropoiesis evaluated by the RED score and hepcidin:ferritin ratio predicts response to erythropoietin in lower-risk myelodysplastic syndromes. Haematologica 2019, 104, 497–504. [Google Scholar] [CrossRef]
- Beguin, Y. Prediction of response to optimize outcome of treatment with erythropoietin. Semin. Oncol. 1998, 25 (Suppl. S7), 27–34. [Google Scholar]
- Song, A.B.; Goodarzi, K.; Leaf, R.K.; Kuter, D.J.; Al-Samkari, H. Thrombopoietin level predicts response to treatment with romiplostim in chemotherapy-induced thrombocytopenia. Am. J. Hematol. 2021, 96, 1563–1568. [Google Scholar] [CrossRef]
- Lu, S.; Wu, J.; Jiang, J.; Guo, Q.; Yu, Y.; Liu, Y.; Zhang, H.; Qian, L.; Dai, X.; Xie, Y.; et al. Efficacy and Safety of Roxadustat for Anemia in Patients Receiving Chemotherapy for Nonmyeloid Malignancies: A Randomized, Open-Label, Active-Controlled Phase III Study. J. Clin. Oncol. 2024. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Leonard, R.C.F.; Mansi, J.L.; Keerie, C.; Yellowless, A.; Crawford, S.; Benstead, K.; Matthew, R.; Adamson, D.; Chan, S.; Grieve, R.; et al. A randomised trial of secondary prophylaxis using granulocyte colony-stimulating factor (‘SPROG’ trial) for maintaining dose intensity of standard adjuvant chemotherapy for breast cancer by the Anglo-Celtic Cooperative Group and NCRN. Ann. Oncol. 2015, 26, 2437–2441. [Google Scholar] [CrossRef] [PubMed]
- Papakonstantinou, A.; Hedayati, E.; Hellström, M.; Johansson, H.; Gnant, M.; Steger, G.; Greil, R.; Untch, M.; Moebus, V.; Loibl, S.; et al. Neutropenic complications in the PANTHER phase III study of adjuvant tailored dose-dense chemotherapy in early breast cancer. Acta Oncol. 2020, 59, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Najafi, S.; Ansari, M.; Kaveh, V.; Haghighat, S. Comparing the efficacy and side-effects of PDLASTA® (Pegfilgrastim) with PDGRASTIM® (Filgrastim) in breast cancer patients: A non-inferiority randomized clinical trial. BMC Cancer 2021, 21, 454. [Google Scholar] [CrossRef]
- Frey, N.; Jang, J.H.; Szer, J.; Illes, A.; Kim, H.; Ram, R.; Chong, B.H.; Rowe, J.M.; Borisenkova, E.; Liesveld, J.; et al. Eltrombopag treatment during induction chemotherapy for acute myeloid leukaemia: A randomised, double-blind, phase 2 study. Lancet Haematol. 2019, 6, e122–e131. [Google Scholar] [CrossRef]
- Shin, J.; Kim, M.; Quan, X.; Kim, J.W.; Lee, S.; Park, S.; Jeong, J.; Yea, K. Thrombopoietin receptor agonist antibody for treating chemotherapy-induced thrombocytopenia. BMC Cancer 2023, 23, 490. [Google Scholar] [CrossRef]
Risk Factors | Details |
---|---|
Disease-related factors | Hematological malignancies [1]. Certain solid tumors; lung and bladder cancers [11,12]. Pre-existing cytopenia before starting treatment [1]. Massive splenomegaly [1]. Bone marrow involvement by disease or extensive fibrosis [13]. |
Patient-related factors | Age > 65 years [1,11,13,14]. Baseline cytopenia [13]. Renal or liver impairment [1,11,13,14,15] *. Medications that may interact with chemotherapy [1,15,16]. Malnutrition and hypoalbuminemia [1,14,17,18]. Concurrent or recent infections which can lead to myelosuppression [12]. Genetic factors ** [19]. |
Treatment-related factors | High doses and combination therapies [1,20,21]. Combining chemotherapy with radiation [1]. Previous use of chemotherapy or radiotherapy [11]. Type of cytotoxic agent *** [1,18,21,22,23]. |
Cancer Types/ Chemotherapy | Details | Percentage of Patients with CIT (by Chemotherapy Regimen) | Intervention Used for CIT | |
---|---|---|---|---|
Cancer types | Diffuse Large B-cell Lymphoma (DLBCL) with the following regimens [83] | DHAP | 92.3% | Platelet transfusion |
ICE | 89.7% | |||
GDP | 89.7% | |||
Bladder cancer; especially with the use of cisplatin/gemcitabine [12] | 57% | Platelet transfusion, chemotherapy dose reduction, delay or cessation | ||
Lung cancer; with the following treatments [12] | Carboplatin/gemcitabine | 29% | ||
Cisplatin/etoposide | 18% | |||
Nasopharyngeal carcinoma with gemcitabine and platinum compounds [84] | 5.21% | Change, reduction in or cessation of chemotherapy | ||
Chemotherapy regimens | Platinum-based regimens [75] | Carboplatin monotherapy | 81.8% | Not detailed |
Combination therapies involving carboplatin | 58.2% | |||
Oxaliplatin combination regimens [75] | 28.6% | |||
Gemcitabine-based regimens [6] | 13.5% | Platelet transfusion, TPO-RA (eltrombopag, used in a small number), glucocorticoids, and immunoglobulin |
Growth Factor | Source/Trial | Study Details | Outcomes |
---|---|---|---|
GSCF | SPROG Trial, 2015 [142] | Assessed secondary prophylaxis with GCSF in breast cancer patients | GCSF significantly improved the achieved of planned RDI and reduced post-randomization neutropenic events. |
Huang et al., 2018 [60] | Compared the efficacy and safety of PEG-rhG-CSF with daily rhG-CSF in breast cancer patients | Single injection of PEG-rhG-CSF had similar efficacy to daily rhG-CSF in the reduction of the occurrence and duration of profound neutropenia (grade 4). | |
PANTHER phase III Trial, 2020 [143] | Explored FN, chemotherapy dose reduction and delays with GCSF administration in two groups of breast cancer patients | GCSF use significantly reduced neutropenic events and chemotherapy delays, which allowed increased relative dose intensity. | |
Najafi et al., 2021 [144] | Compared efficacy and side effects of pegfilgrastim with filgrastim in breast cancer patients | Pegfilgrastim is non-inferior to filgrastim, with less toxicity. | |
ADVANCE Trial, 2022 (NCT02643420) | Compared the efficacy and safety of SPI-2012 (eflapegrastim) vs. pegfilgrastim in breast cancer patients treated with TC to assess the duration of severe neutropenia in cycle 1 | Eflapegrastim was non-inferior to pegfilgrastim. | |
ESA | Henke et al., 2003 [134] | Compared epoetin beta versus placebo in head and neck cancer patients with anemia who received curative radiotherapy +/− resection | Epoetin corrected anemia but increased tumor progression, and reduced PFS. |
BEST Trial, 2003 [136] | Investigated the effect of epoetin alfa to prevent anemia in patients with metastatic breast cancer | Terminated early due to higher mortality in the ESA group. | |
DAHANCA 10 Trial, 2018 [135] | Patients with squamous cell carcinoma of the head and neck randomized to receive darbepoetin alfa vs. no ESA | Correction of Hgb levels with ESA during radiotherapy resulted in a significantly poorer tumor control and survival. | |
TPO-RA | Vadhan-Raj et al., 2003 [103] | The use of rhTPO before and/or after cycle 2 of chemotherapy in sarcoma patients | rhTPO given early (day −5) significantly reduced the severity of CIT. |
Soff et al., 2019 [94] | Phase II trial to studied romiplostim in patients with solid tumors and CIT | The majority of the romiplostim-treated group achieved platelet correction and resumed chemotherapy without recurrent CIT. | |
Frey et al., 2019 [145] | Studied combining eltrombopag with induction chemotherapy in AML, except for M3 and M7 subtypes | Higher rates of side effects and mortality were observed in patients who received eltrombopag. | |
Shin et al., 2023 [146] | Murine study, innvestigated a novel TPOr agonist in a mouse model with CIT | 2R13 significantly increased platelet counts and sustained higher platelet levels compared to rhTPO. | |
RECITE Trial (NCT03362177) | The use of romiplostim to treat CIT in patients with GI, pancreatic, or colorectal cancers | Ongoing trial | |
PROCLAIM Trial (NCT03937154) | The use of romiplostim for CIT in adults with non-small cell lung cancer, ovarian cancer, or breast cancer. | Ongoing trial | |
ACT-GI Trial (NCT05772546) | The use of Avatrombopag in CIT in patients with GI malignancies | Ongoing trial (recruiting) | |
NCT06099925 | The use of Hetrombopag in CIT in gynecological malignancies | Ongoing trial (not yet recruiting) | |
NCT06521931 | The safety, tolerability, pharmacodynamic and kinetics, along with immunogenicity of the novel TPO-RA (PN20) to prevent CIT in patients with lymphoma and solid tumors | Ongoing trial (recruiting) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alyamany, R.; Alnughmush, A.; Alzahrani, H.; Alfayez, M. Let It Grow: The Role of Growth Factors in Managing Chemotherapy-Induced Cytopenia. Curr. Oncol. 2024, 31, 8094-8109. https://doi.org/10.3390/curroncol31120596
Alyamany R, Alnughmush A, Alzahrani H, Alfayez M. Let It Grow: The Role of Growth Factors in Managing Chemotherapy-Induced Cytopenia. Current Oncology. 2024; 31(12):8094-8109. https://doi.org/10.3390/curroncol31120596
Chicago/Turabian StyleAlyamany, Ruah, Ahmed Alnughmush, Hazzaa Alzahrani, and Mansour Alfayez. 2024. "Let It Grow: The Role of Growth Factors in Managing Chemotherapy-Induced Cytopenia" Current Oncology 31, no. 12: 8094-8109. https://doi.org/10.3390/curroncol31120596
APA StyleAlyamany, R., Alnughmush, A., Alzahrani, H., & Alfayez, M. (2024). Let It Grow: The Role of Growth Factors in Managing Chemotherapy-Induced Cytopenia. Current Oncology, 31(12), 8094-8109. https://doi.org/10.3390/curroncol31120596