Oncological Outcomes of Open Versus Minimally Invasive Surgery for Ductal Adenocarcinomas of Pancreatic Head: A Propensity Score Matching Analysis
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Overview
2.2. Surgical Technique and Perioperative Management
2.3. Follow-Up
2.4. Variables and Definitions
2.5. Study Endpoints
2.6. Statistical Analysis
3. Results
3.1. Surgical Outcomes
3.2. Oncological Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kleeff, J.; Korc, M.; Apte, M.; La Vecchia, C.; Johnson, C.D.; Biankin, A.V.; Neale, R.E.; Tempero, M.; Tuveson, D.A.; Hruban, R.H.; et al. Pancreatic cancer. Nat. Rev. Dis. Primers 2016, 2, 16022. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.; Herman, J.; Schulick, R.; Hruban, R.H.; Goggins, M. Pancreatic cancer. Lancet 2011, 378, 607–620. [Google Scholar] [CrossRef]
- Winer, L.K.; Dhar, V.K.; Wima, K.; Morris, M.C.; Lee, T.C.; Shah, S.A.; Ahmad, S.A.; Patel, S.H. The Impact of Tumor Location on Resection and Survival for Pancreatic Ductal Adenocarcinoma. J. Surg. Res. 2019, 239, 60–66. [Google Scholar] [CrossRef]
- Choi, S.H.; Kuchta, K.; Rojas, A.E.; Paterakos, P.; Talamonti, M.S.; Hogg, M.E. Does minimally invasive surgery have a different impact on recurrence and overall survival in patients with pancreatic head versus body/tail cancer? J. Surg. Oncol. 2023, 128, 23–32. [Google Scholar] [CrossRef] [PubMed]
- De Rooij, T.; Lu, M.Z.; Steen, M.W.; Gerhards, M.F.; Dijkgraaf, M.G.; Busch, O.R.; Lips, D.J.; Festen, S.; Besslink, M.G. Minimally Invasive Versus Open Pancreatoduodenectomy: Systematic Review and Meta-analysis of Comparative Cohort and Registry Studies. Ann. Surg. 2016, 264, 257–267. [Google Scholar] [CrossRef]
- Klompmaker, S.; van Hilst, J.; Wellner, U.F.; Busch, O.R.; Coratti, A.; D’Hondt, M.; Dokmak, S.; Festen, S.; Kerem, M.; Khatkov, I.; et al. Outcomes after Minimally-invasive Versus Open Pancreatoduodenectomy: A Pan-European Propensity Score Matched Study. Ann. Surg. 2020, 271, 356–363. [Google Scholar] [CrossRef]
- Torphy, R.J.; Friedman, C.; Halpern, A.; Chapman, B.C.; Ahrendt, S.S.; McCarter, M.M.; Edil, B.H.; Schulick, R.D.; Gleisner, A. Comparing Short-term and Oncologic Outcomes of Minimally Invasive Versus Open Pancreaticoduodenectomy Across Low and High Volume Centers. Ann. Surg. 2019, 270, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Isaji, S.; Mizuno, S.; Windsor, J.A.; Bassi, C.; Fernández-del Castillo, C.; Hackert, T.; Hayasaki, A.; Katz, M.H.; Kim, S.W.; Kishiwada, M.; et al. International consensus on definition and criteria of borderline resectable pancreatic ductal adenocarcinoma 2017. Pancreatology 2018, 18, 2–11. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Prev. Med. 2007, 45, 247–251. [Google Scholar] [CrossRef]
- Chun, Y.S.; Pawlik, T.M.; Vauthey, J.N. 8th Edition of the AJCC Cancer Staging Manual: Pancreas and Hepatobiliary Cancers. Ann. Surg. Oncol. 2018, 25, 845–847. [Google Scholar] [CrossRef]
- Melloul, E.; Lassen, K.; Roulin, D.; Grass, F.; Perinel, J.; Adham, M.; Wellge, E.B.; Kunzler, F.; Besselink, M.G.; Asbun, H.; et al. Guidelines for Perioperative Care for Pancreatoduodenectomy: Enhanced Recovery After Surgery (ERAS) Recommendations 2019. World J. Surg. 2020, 44, 2056–2084. [Google Scholar] [CrossRef] [PubMed]
- Mazzola, M.; Morini, L.; Crippa, J.; Maspero, M.; Zironda, A.; Giani, A.; De Martini, P.; Ferrari, G. Totally Laparoscopic Pancreaticoduodenectomy: Technical Notes. Chirurgia 2020, 115, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Mazzola, M.; Giani, A.; Crippa, J.; Morini, L.; Zironda, A.; Bertoglio, C.L.; De Martini, P.; Magistro, C.; Ferrari, G. Totally laparoscopic versus open pancreaticoduodenectomy: A propensity score matching analysis of short-term outcomes. Eur. J. Surg. Oncol. 2021, 47, 674–680. [Google Scholar] [CrossRef]
- Abu Hilal, M.; van Ramshorst, T.M.E.; Boggi, U.; Dokmak, S.; Edwin, B.; Keck, T.; Khatkov, I.; Ahmad, J.; Al Saati, H.; Alseidi, A.; et al. The Brescia Internationally Validated European Guidelines on Minimally Invasive Pancreatic Surgery (EGUMIPS). Ann. Surg. 2024, 279, 45–57. [Google Scholar] [CrossRef]
- Callery, M.P.; Pratt, W.B.; Kent, T.S.; Chaikof, E.L.; Vollmer, C.M., Jr. A prospectively validated clinical risk score accurately predicts pancreatic fistula after pancreatoduodenectomy. J. Am. Coll. Surg. 2013, 216, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Mazzola, M.; Giani, A.; Veronesi, V.; Bernasconi, D.P.; Benedetti, A.; Magistro, C.; Bertoglio, C.L.; De Martini, P.; Ferrari, G. Multidimensional evaluation of the learning curve for totally laparoscopic pancreaticoduodenectomy: A risk-adjusted cumulative summation analysis. HPB 2023, 25, 507–517. [Google Scholar] [CrossRef]
- Mazzola, M.; Bertoglio, C.L.; Giani, A.; Zironda, A.; Carnevali, P.; Lombardi, P.M.; De Martini, P.; Magistro, C.; Ferrari, G. Novel biodegradable internal stent as a mitigation strategy in high-risk pancreaticojejunostomy: Technical notes and preliminary results. Surg. Today 2022, 52, 1115–1119. [Google Scholar] [CrossRef]
- Salvia, R.; Marchegiani, G.; Andrianello, S.; Balduzzi, A.; Masini, G.; Casetti, L.; Esposito, A.; Landoni, L.; Malleo, G.; Paiella, S.; et al. Redefining the Role of Drain Amylase Value for a Risk-Based Drain Management after Pancreaticoduodenectomy: Early Drain Removal Still Is Beneficial. J. Gastrointest. Surg. 2021, 25, 1461–1470. [Google Scholar] [CrossRef]
- Ducreux, M.; Cuhna, A.S.; Caramella, C.; Hollebecque, A.; Burtin, P.; Goéré, D.; Seufferlein, T.; Haustermans, K.; Van Laethem, J.L.; Conroy, T.; et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26 (Suppl. S5), v56–v68. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; Ronald MacKenzie, C. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.-A. Classification of Surgical Complications. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Bassi, C.; Marchegiani, G.; Dervenis, C.; Sarr, M.; Hilal, M.A.; Adham, M.; Allen, P.; Andersson, R.; Asbun, H.J.; Besselink, M.G.; et al. The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 Years After. Surgery 2017, 161, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Wente, M.N.; Bassi, C.; Dervenis, C.; Fingerhut, A.; Gouma, D.J.; Izbicki, J.R.; Neoptolemos, J.P.; Padbury, R.T.; Sarr, M.G.; Traverso, L.W.; et al. Delayed gastric emptying (DGE) after pancreatic surgery: A suggested definition by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 2007, 142, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Wente, M.N.; Veit, J.A.; Bassi, C.; Dervenis, C.; Fingerhut, A.; Gouma, D.J.; Izbicki, J.R.; Neoptolemos, J.P.; Padbury, R.T.; Sarr, M.G.; et al. Postpancreatectomy hemorrhage (PPH)–An International Study Group of Pancreatic Surgery (ISGPS) definition. Surgery 2007, 142, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B.; Edge, S.B.; Greene, F.L.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.; Compton, C.C.; Hess, K.R.; Sullivan, D.C.; et al. AJCC Cancer Staging Manual; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- The Royal College of Pathologists. Standards and minimum datasets for reporting cancers. In Minimum Dataset for the Histopathological Reporting of Pancreatic, Ampulla of Vater and Bile Duct Carcinoma; The Royal College of Pathologists: London, UK, 2002. [Google Scholar]
- Austin, P.C. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivar. Behav. Res. 2011, 46, 399–424. [Google Scholar] [CrossRef] [PubMed]
- Asbun, H.J.; Moekotte, A.L.; Vissers, F.L.; Kunzler, F.; Cipriani, F.; Alseidi, A.; D’angelica, M.I.; Balduzzi, A.; Bassi, C.; Björnsson, B.; et al. The Miami International Evidence-based Guidelines on Minimally Invasive Pancreas Resection. Ann. Surg. 2020, 271, 1–14. [Google Scholar] [CrossRef]
- Van Hilst, J.; de Graaf, N.; Abu Hilal, M.; Besselink, M.G. The landmark series: Minimally invasive pancreatic resection. Ann. Surg. Oncol. 2021, 28, 1447–1456. [Google Scholar] [CrossRef]
- Scholten, L.; Klompmaker, S.; Van Hilst, J.; Annecchiarico, M.M.; Balzano, G.; Casadei, R.; Fabre, J.-M.; Falconi, M.; Ferrari, G.; Kerem, M.; et al. Outcomes after Minimally Invasive Versus Open Total Pancreatectomy: A Pan-European Propensity Score Matched Study. Ann. Surg. 2023, 277, 313–320. [Google Scholar] [CrossRef]
- Korrel, M.; Jones, L.R.; van Hilst, J.; Balzano, G.; Björnsson, B.; Boggi, U.; Bratlie, S.O.; Busch, O.R.; Butturini, G.; Capretti, G.; et al. Minimally invasive versus open distal pancreatectomy for resectable pancreatic cancer (DIPLOMA): An international randomised non-inferiority trial. Lancet Reg. Health Eur. 2023, 31, 100673. [Google Scholar] [CrossRef]
- Pfister, M.; Probst, P.; Müller, P.C.; Antony, P.; Klotz, R.; Kalkum, E.; Merz, D.; Renzulli, P.; Hauswirth, F.; Muller, M.K.; et al. Minimally invasive versus open pancreatic surgery: Meta-analysis of randomized clinical trials. BJS Open 2023, 7, zrad007. [Google Scholar] [CrossRef]
- Moekotte, A.; Lof, S.; van Roessel, S.; Fontana, M.; Dreyer, S.; Shablak, A.; Casciani, F.; Mavroeidis, V.; Robinson, S.; Khalil, K.; et al. Predictors of Survival and Recurrence in Resected Ampullary Adenocarcinoma: International Multicenter Cohort Study. Ann. Surg. 2020, 272, 1086–1093. [Google Scholar] [CrossRef] [PubMed]
- Van Geenen, R.; van Gulik, T.; Offerhaus, G.; de Wit, L.; Busch, O.; Obertop, H.; Gouma, D. Survival after pancreaticoduodenectomy for periampullary adenocarcinoma: An update. Eur. J. Surg. Oncol. 2001, 27, 549–557. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Mao, Y.; Wang, J.; Duan, F.; Lin, X.; Li, S. Nomograms predict long-term survival for patients with periampullary adenocarcinoma after pancreatoduodenectomy. BMC Cancer 2018, 18, 327. [Google Scholar] [CrossRef]
- Nagakawa, T.; Kayahara, M.; Ohta, T.; Ueno, K.; Konishi, I.; Miyazaki, I. Patterns of neural and plexus invasion of human pancreatic cancer and experimental cancer. Int. J. Pancreatol. 1991, 10, 113–119. [Google Scholar] [CrossRef]
- Kaltenmeier, C.; Nassour, I.; Hoehn, R.S.; Khan, S.; Althans, A.; Geller, D.A.; Paniccia, A.; Zureikat, A.; Tohme, S. Impact of Resection Margin Status in Patients with Pancreatic Cancer: A National Cohort Study. J. Gastrointest. Surg. 2021, 25, 2307–2316. [Google Scholar] [CrossRef]
- Nassour, I.; Tohme, S.; Hoehn, R.; Adam, M.A.; Zureikat, A.H.; Alessandro, P. Safety and oncologic efficacy of robotic compared to open pancreaticoduodenectomy after neoadjuvant chemotherapy for pancreatic cancer. Surg. Endosc. 2021, 35, 2248–2254. [Google Scholar] [CrossRef] [PubMed]
- Chapman, B.C.; Gajdos, C.; Hosokawa, P.; Henderson, W.; Paniccia, A.; Overbey, D.M.; Gleisner, A.; Schulick, R.D.; McCarter, M.D.; Edil, B.H. Comparison of laparoscopic to open pancreaticoduodenectomy in elderly patients with pancreatic adenocarcinoma. Surg. Endosc. 2018, 32, 2239–2248. [Google Scholar] [CrossRef]
- Mazzola, M.; Giani, A.; Bertoglio, C.L.; Carnevali, P.; De Martini, P.; Benedetti, A.; Giusti, I.; Magistro, C.; Ferrari, G. Standardized right artery first approach during laparoscopic pancreaticoduodenectomy for periampullary neoplasms: Technical aspects and perioperative outcomes. Surg. Endosc. 2023, 37, 759–765. [Google Scholar] [CrossRef]
- Lau, W.Y. Current controversies and challenges for resection of pancreatic ductal adenocarcinoma in pancreatic head aiming at cure. Hepatobiliary Pancreat. Dis. Int. 2023, 22, 111–112. [Google Scholar] [CrossRef]
- Sun, R.; Yu, J.; Zhang, Y.; Liang, Z.; Han, X. Perioperative and oncological outcomes following minimally invasive versus open pancreaticoduodenectomy for pancreatic duct adenocarcinoma. Surg. Endosc. 2021, 35, 2273–2285. [Google Scholar] [CrossRef]
- Kauffmann, E.F.; Napoli, N.; Ginesini, M.; Gianfaldoni, C.; Asta, F.; Salamone, A.; Amorese, G.; Vistoli, F.; Boggi, U. Feasibility of “cold” triangle robotic pancreatoduodenectomy. Surg. Endosc. 2022, 36, 9424–9434. [Google Scholar] [CrossRef]
- Pędziwiatr, M.; Pisarska, M.; Małczak, P.; Major, P.; Wierdak, M.; Radkowiak, D.; Kulawik, J.; Dembiński, M.; Budzyński, A. Laparoscopic uncinate process first pancreatoduodenectomy-feasibility study of a modified “artery first” approach to pancreatic head cancer. Langenbecks Arch. Surg. 2017, 402, 917–923. [Google Scholar] [CrossRef]
- Jamieson, N.B.M.; Foulis, A.K.; Oien, K.A.; Going, J.J.; Glen, P.; Dickson, E.J.; Imrie, C.W.F.; McKay, C.J.; Carter, R. Positive mobilization margins alone do not influence survival following pancreatico-duodenectomy for pancreatic ductal adenocarcinoma. Ann. Surg. 2010, 251, 1003–1010. [Google Scholar] [CrossRef]
- Ironside, N.; Barreto, S.G.; Loveday, B.; Shrikhande, S.V.; Windsor, J.A.; Pandanaboyana, S. Meta-analysis of an artery-first approach versus standard pancreatoduodenectomy on perioperative outcomes and survival. Br. J. Surg. 2018, 105, 628–636. [Google Scholar] [CrossRef]
- Tol, J.A.; Gouma, D.J.; Bassi, C.; Dervenis, C.; Montorsi, M.; Adham, M.; Andrén-Sandberg, A.; Asbun, H.J.; Bockhorn, M.; Büchler, M.W.; et al. Definition of a standard lymphadenectomy in surgery for pancreatic ductal adenocarcinoma: A consensus statement by the International Study Group on Pancreatic Surgery (ISGPS). Surgery 2014, 156, 591–600. [Google Scholar] [CrossRef]
- Kabir, T.; Tan, H.L.; Syn, N.L.; Wu, E.J.; Kam, J.H.; Goh, B.K.P. Outcomes of laparoscopic, robotic, and open pancreatoduodenectomy: A network meta-analysis of randomized controlled trials and propensity-score matched studies. Surgery 2022, 171, 476–489. [Google Scholar] [CrossRef]
- Zhou, W.; Jin, W.; Wang, D.; Lu, C.; Xu, X.; Zhang, R.; Kuang, T.; Zhou, Y.; Wu, W.; Jin, D.; et al. Laparoscopic versus open pancreaticoduodenectomy for pancreatic ductal adenocarcinoma: A propensity score matching analysis. Cancer Commun. 2019, 39, 66. [Google Scholar] [CrossRef]
- Uijterwijk, B.A.; Wei, K.; Kasai, M.; Ielpo, B.; van Hilst, J.; Chinnusamy, P.; Lemmers, D.H.; Burdio, F.; Senthilnathan, P.; Besselink, M.G.; et al. Minimally invasive versus open pancreatoduodenectomy for pancreatic ductal adenocarcinoma: Individual patient data meta-analysis of randomized trials. Eur. J. Surg. Oncol. 2023, 49, 1351–1361. [Google Scholar] [CrossRef]
- Neoptolemos, J.P.; Palmer, D.H.; Ghaneh, P.; Psarelli, E.E.; Valle, J.W.; Halloran, C.M.; Faluyi, O.; O’Reilly, D.A.; Cunningham, D.; Wadsley, J.; et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): A multicentre, open-label, randomised, phase 3 trial. Lancet 2017, 389, 1011–1024. [Google Scholar] [CrossRef] [PubMed]
- Baek, B.; Lee, H. Prediction of survival and recurrence in patients with pancreatic cancer by integrating multi-omics data. Sci. Rep. 2020, 10, 18951. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Liao, W.; Xin, Z.; Jin, H.; Du, J.; Cai, Y.; Liao, M.; Yuan, K.; Zeng, Y. Laparoscopic Pancreaticoduodenectomy Conventional Open Approach for Patients with Pancreatic Duct Adenocarcinoma: An Up-to-Date Systematic Review and Meta-Analysis. Front. Oncol. 2021, 11, 749140. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.; Jiang, Y.; Fu, N.; Jin, J.; Shi, Y.; Huo, Z.; Deng, X.; Peng, C.; Shen, B. Oncological outcomes of robotic-assisted versus open pancreatoduodenectomy for pancreatic ductal adenocarcinoma: A propensity score-matched analysis. Surg. Endosc. 2021, 35, 3437–3448. [Google Scholar] [CrossRef] [PubMed]
- Conroy, T.; Hammel, P.; Hebbar, M.; Ben Abdelghani, M.; Wei, A.C.; Raoul, J.-L.; Choné, L.; Francois, E.; Artru, P.; Biagi, J.J.; et al. FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. N. Engl. J. Med. 2018, 379, 2395–2406. [Google Scholar] [CrossRef] [PubMed]
- Kantor, O.; Talamonti, M.S.; Sharpe, S.; Lutfi, W.; Winchester, D.J.; Roggin, K.K.; Bentrem, D.J.; Prinz, R.A.; Baker, M.S. Laparoscopic pancreaticoduodenectomy for adenocarcinoma provides short-term oncologic outcomes and long-term overall survival rates similar to those for open pancreaticoduodenectomy. Am. J. Surg. 2017, 213, 512–515. [Google Scholar] [CrossRef]
- Girgis, M.D.; Zenati, M.S.; King, J.C.; Hamad, A.; Zureikat, A.H.; Zeh, H.J.; Hogg, M.E. Oncologic Outcomes After Robotic Pancreatic Resections Are Not Inferior to Open Surgery. Ann. Surg. 2021, 274, e262–e268. [Google Scholar] [CrossRef]
- Conroy, T.; Bosset, J.-F.; Etienne, P.-L.; Rio, E.; François, E.; Mesgouez-Nebout, N.; Vendrely, V.; Artignan, X.; Bouché, O.; Gargot, D.; et al. Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 702–715. [Google Scholar] [CrossRef]
- Diener, M.K.; Knaebel, H.-P.; Heukaufer, C.; Antes, G.; Büchler, M.W.; Seiler, C.M. A systematic review and meta-analysis of pylorus-preserving versus classical pancreaticoduodenectomy for surgical treatment of periampullary and pancreatic carcinoma. Ann. Surg. 2007, 245, 187–200. [Google Scholar] [CrossRef]
Characteristic | Original Cohort | p | Matched Cohort | p | ||
---|---|---|---|---|---|---|
OPR (139) | MIPR (81) | OPR (81) | MIPR (81) | |||
Sex (Female) | 74 (53.2) | 44 (54.3) | 0.876 | 45 (55.6) | 44 (54.3) | 0.874 |
Age (years) | 72 (61–77) | 71 (62.5–78) | 0.347 | 73 (62.5–77) | 71 (62.5–78) | 0.504 |
BMI (kg/m2) | 23.9 (22.0–26.0) | 24.7 (22.5–27.4) | 0.118 | 24 (22.0–26) | 24.7 (22.5–27.4) | 0.136 |
ACCI | 5 (4–6) | 5 (4–6) | 0.545 | 5 (4–6) | 5 (4–6) | 0.527 |
ASA | 0.116 | 0.586 | ||||
ASA 1 | 13 (9.3) | 3 (3.7) | 6 (7.4) | 3 (3.7) | ||
ASA 2 | 93 (66.9) | 64 (79.0) | 62 (76.5) | 64 (79.0) | ||
ASA 3 | 33 (23.7) | 14 (17.3) | 13 (16.1) | 14 (17.3) | ||
Previous abdominal surgery | 51 (36.7) | 30 (37.0) | 0.959 | 22 (27.2) | 30 (37.0) | 0.178 |
Neoadjuvant therapy | 27 (19.4) | 7 (8.6) | 0.032 | 8 (9.9) | 7 (8.6) | 0.786 |
Preoperative radiological vascular involvement | 44 (31.7) | 12 (14.8) | 0.005 | 20 (24.7) | 12 (14.8) | 0.114 |
Hepatic vascular anomalies | 36 (25.9) | 21 (25.9) | 0.996 | 19 (23.5) | 21 (25.9) | 0.715 |
Preop biliary drainage | 75 (54.0) | 37 (45.7) | 0.236 | 47 (58.0) | 37 (45.7) | 0.115 |
Preoperative CA 19.9 | 171.2 (34.9–508) | 124.5 (15.8–385) | 0.148 | 204.7 (27.5–536.6) | 124.5 (15.8–385) | 0.109 |
Type of surgery | 0.026 | 0.754 | ||||
PD | 116 (83.4) | 76 (93.8) | 75 (92.6) | 76 (93.8) | ||
TP | 23 (16.5) | 5 (6.2) | 6 (7.4) | 5 (6.2) | ||
Vascular resection | 0.765 | 0.589 | ||||
PV | 2 (1.4) | 2 (2.5) | 1 (1.2) | 2 (2.5) | ||
SMV | 5 (3.6) | 4 (4.9) | 2 (2.5) | 4 (4.9) | ||
Grading | 0.075 | 0.0001 | ||||
G1 (well) | 11 (7.9) | 2 (2.5) | 10 (12.3) | 2 (2.5) | ||
G2 (moderately) | 82 (59.0) | 42 (51.8) | 57 (70.4) | 42 (51.8) | ||
G3 (poorly) | 46 (33.1) | 37 (45.7) | 14 (17.3) | 37 (45.7) | ||
Tumor size (mm) | 30 (23–35) | 25 (20.5–30) | 0.032 | 27 (22–31) | 25 (20.5–30) | 0.422 |
pT | 0.193 | 0.494 | ||||
pT1 | 22 (15.8) | 19 (23.5) | 13 (16.0) | 19 (23.5) | ||
pT2 | 96 (69.1) | 55 (67.9) | 60 (74.1) | 55 (67.9) | ||
pT3 | 21 (15.1) | 7 (8.6) | 8 (9.9) | 7 (8.6) | ||
pN+ | 95 (68.4) | 48 (59.3) | 0.173 | 51 (63.0) | 48 (59.3) | 0.628 |
pN | 0.364 | 0.727 | ||||
pN0 | 44 (31.6) | 33 (40.7) | 30 (37.0) | 33 (40.7) | ||
pN1 | 60 (43.2) | 32 (39.5) | 37 (45.7) | 32 (39.5) | ||
pN2 | 35 (25.2) | 16 (19.8) | 14 (17.3) | 16 (19.8) | ||
Wirsung diameter (mm) * | 3 (2–5) | 4 (2–5) | 0.557 | 3 (2–5) | 4 (2–5) | 0.071 |
FRS * | 2 (1–5) | 3 (1–5) | 0.479 | 3 (1–5) | 3 (1–5) | 0.428 |
Class of FRS * | 0.261 | 0.163 | ||||
Negligible (0 pts) | 25 (21.6) | 14 (18.4) | 11 (14.7) | 14 (18.4) | ||
Low (1–2 pts) | 37 (31.9) | 23 (30.3) | 22 (29.3) | 23 (30.3) | ||
Moderate (3–6 pts) | 50 (43.1) | 31 (40.8) | 40 (53.3) | 31 (40.8) | ||
High (7–10 pts) | 4 (3.4) | 8 (10.5) | 2 (2.7) | 8 (10.5) |
Characteristic | OPR (81) | MIPR (81) | p |
---|---|---|---|
Operative time | 420 (357.5–470) | 565 (510–607.5) | <0.0001 |
Surgical approach | |||
Laparoscopy | - | 48 (59.3) | |
Robot | - | 33 (40.7) | |
Conversion to open surgery | 5 (6.2) | ||
Cause of conversion | |||
Adhesions | 1/5 (20.0) | ||
Bleeding | 1/5 (20.0) | ||
Vascular invasion | 2/5 (40.0) | ||
Other | 1/5 (20.0) | ||
Degree of stomach resection | 0.0001 | ||
Pylorus-preserving | 0 | 27 (33.3) | |
Classic Whipple | 81 (100.0) | 54 (66.7) | |
Blood loss (ml) | 290 (200–340) | 300 (200–575) | 0.149 |
Length of stay (day) | 18 (15–27) | 12 (8–18) | 0.0001 |
Overall complications | 47 (58.0) | 35 (43.2) | 0.059 |
Reoperation | 3 (3.7) | 6 (7.4) | 0.303 |
Necessity of ICU | 9 (11.1) | 8 (9.9) | 0.798 |
Severe complications | 18 (22.2) | 19 (23.5) | 0.851 |
Complications C-D: | 0.587 | ||
1 | 44 (54.3) | 47 (58.0) | |
2 | 19 (23.5) | 15 (18.5) | |
3a | 9 (11.1) | 8 (10.0) | |
3b | 0 (0) | 3 (3.7) | |
4 | 4 (4.9) | 4 (4.9) | |
90-day mortality | 5 (6.2) | 3 (3.7) | 0.468 |
CCI | 8.7 (0–26.2) | 0 (0–25.7) | 0.218 |
Postoperative RBC transfusion | 14 (17.3) | 21 (26.3) | 0.181 |
POPF * | 11 (14.7) | 7 (9.2) | 0.301 |
POPF grade * | 0.146 | ||
Grade B | 9 (12.0) | 3 (3.9) | |
Grade C | 2 (2.7) | 4 (5.3) | |
DGE | 19 (23.5) | 12 (14.8) | 0.162 |
DGE grade | 0.069 | ||
Grade A | 12 (14.8) | 5 (6.2) | |
Grade B | 4 (4.9) | 7 (8.6) | |
Grade C | 3 (3.7) | 0 (0) | |
BL | 4 (4.9) | 6 (7.1) | 0.513 |
BL | 0.567 | ||
Grade A | 0 (0) | 2 (2.5) | |
Grade B | 3 (3.7) | 3 (3.7) | |
Grade C | 1 (1.2) | 1 (1.2) | |
PPH | 6 (7.4) | 9 (11.1) | 0.416 |
PPH grade | 0.243 | ||
Grade A | 1 (1.2) | 1 (1.2) | |
Grade B | 5 (6.2) | 4 (4.9) | |
Grade C | 0 (0) | 4 (4.9) | |
90-day readmission | 2 (2.5) | 9 (8.6) | 0.086 |
Characteristic | OPR (81) | MIPR (81) | p |
---|---|---|---|
LNs harvested | 16 (12–22) | 22 (15–27) | <0.001 |
Positive LNs | 1 (0–3) | 1 (0–3) | 0.877 |
LN ratio | 0.07 (0–0.17) | 0.04 (0–0.12) | 0.149 |
R0 | 68 (83.9) | 62 (76.5) | 0.236 |
Site of positive margin | 0.552 | ||
Posterior | 8/13 (61.5) | 15/19 (78.9) | |
Medial | 4/13 (30.8) | 3/19 (15.8) | |
Anterior | 1/13 (7.7) | 1/19 (5.3) | |
Performed adjuvant therapy | 51 (63.0) | 46 (56.8) | 0.423 |
Type of adjuvant therapy | 0.361 | ||
Chemotherapy | 37/51 (72.6) | 37/46 (80.4) | |
Chemo-radiotherapy | 14/51 (27.4) | 9/46 (19.6) | |
Adjuvant therapy protocol | <0.001 | ||
mFOLFIRINOX | 0 (0) | 23/41 (56.1) | |
Gem | 40/50 (80.0) | 5/41 (12.2) | |
Gem + Capecitabine | 5/50 (10.0) | 10/41 (24.4) | |
Other | 5/50 (10.0) | 3/41 (7.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giani, A.; Mazzola, M.; Paterno, M.; Zironda, A.; Calcagno, P.; Zuppi, E.; De Martini, P.; Ferrari, G. Oncological Outcomes of Open Versus Minimally Invasive Surgery for Ductal Adenocarcinomas of Pancreatic Head: A Propensity Score Matching Analysis. Curr. Oncol. 2024, 31, 6096-6109. https://doi.org/10.3390/curroncol31100455
Giani A, Mazzola M, Paterno M, Zironda A, Calcagno P, Zuppi E, De Martini P, Ferrari G. Oncological Outcomes of Open Versus Minimally Invasive Surgery for Ductal Adenocarcinomas of Pancreatic Head: A Propensity Score Matching Analysis. Current Oncology. 2024; 31(10):6096-6109. https://doi.org/10.3390/curroncol31100455
Chicago/Turabian StyleGiani, Alessandro, Michele Mazzola, Michele Paterno, Andrea Zironda, Pietro Calcagno, Emma Zuppi, Paolo De Martini, and Giovanni Ferrari. 2024. "Oncological Outcomes of Open Versus Minimally Invasive Surgery for Ductal Adenocarcinomas of Pancreatic Head: A Propensity Score Matching Analysis" Current Oncology 31, no. 10: 6096-6109. https://doi.org/10.3390/curroncol31100455
APA StyleGiani, A., Mazzola, M., Paterno, M., Zironda, A., Calcagno, P., Zuppi, E., De Martini, P., & Ferrari, G. (2024). Oncological Outcomes of Open Versus Minimally Invasive Surgery for Ductal Adenocarcinomas of Pancreatic Head: A Propensity Score Matching Analysis. Current Oncology, 31(10), 6096-6109. https://doi.org/10.3390/curroncol31100455