Ritonavir’s Evolving Role: A Journey from Antiretroviral Therapy to Broader Medical Applications
Abstract
:1. Introduction
2. Pharmacological Profile of Ritonavir
3. Current Clinical Uses
4. Potential for Repurposing for Infectious Diseases
4.1. COVID-19
4.2. Hepatitis
4.3. Toxoplasmosis
5. Cancer Therapy: Mechanisms and Studies Exploring Ritonavir’s Role
5.1. Prostate Cancer
5.2. Ovarian Cancer
5.3. Lung Cancer
5.4. Breast Cancer
5.5. Bladder Cancer
5.6. Pancreatic Cancer
5.7. Multiple Myeloma
5.8. Glioblastoma
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DrugBank. Ritonavir. Available online: https://go.drugbank.com/drugs/DB00503 (accessed on 9 July 2024).
- Schmit, J.C.; Ruiz, L.; Clotet, B.; Raventos, A.; Tor, J.; Leonard, J.; Desmyter, J.; De Clercq, E.; Vandamme, A.M. Resistance-related mutations in the HIV-1 protease gene of patients treated for 1 year with the protease inhibitor ritonavir (ABT-538). Aids 1996, 10, 995–999. [Google Scholar] [CrossRef]
- Kempf, D.J.; Norbeck, D.W.; Codacovi, L.; Wang, X.C.; Kohlbrenner, W.E.; Wideburg, N.E.; Paul, D.A.; Knigge, M.F.; Vasavanonda, S.; Craig-Kennard, A.; et al. Structure-based, C2 symmetric inhibitors of HIV protease. J. Med. Chem. 1990, 33, 2687–2689. [Google Scholar] [CrossRef] [PubMed]
- Whitesell, J.K. C2 symmetry and asymmetric induction. Chem. Rev. 1989, 89, 1581–1590. [Google Scholar] [CrossRef]
- Hull, M.W.; Montaner, J.S. Ritonavir-boosted protease inhibitors in HIV therapy. Ann. Med. 2011, 43, 375–388. [Google Scholar] [CrossRef]
- FDA. NORVIR (Ritonavir). Available online: www.accessdata.fda.gov/drugsatfda_docs/label/2017/209512lbl.pdf (accessed on 9 July 2024).
- Lledó-García, R.; Nácher, A.; Prats-García, L.; Casabó, V.G.; Merino-Sanjuán, M. Bioavailability and pharmacokinetic model for ritonavir in the rat. J. Pharm. Sci. 2007, 96, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Danner, S.A.; Carr, A.; Leonard, J.M.; Lehman, L.M.; Gudiol, F.; Gonzales, J.; Raventos, A.; Rubio, R.; Bouza, E.; Pintado, V.; et al. A short-term study of the safety, pharmacokinetics, and efficacy of ritonavir, an inhibitor of HIV-1 protease. European-Australian Collaborative Ritonavir Study Group. N. Engl. J. Med. 1995, 333, 1528–1533. [Google Scholar] [CrossRef]
- Larson, K.B.; Wang, K.; Delille, C.; Otofokun, I.; Acosta, E.P. Pharmacokinetic enhancers in HIV therapeutics. Clin. Pharmacokinet. 2014, 53, 865–872. [Google Scholar] [CrossRef]
- EMA. Norvir. Available online: www.ema.europa.eu/en/documents/product-information/norvir-epar-product-information_en.pdf (accessed on 11 July 2024).
- Greenblatt, D.J.; Harmatz, J.S. Ritonavir is the best alternative to ketoconazole as an index inhibitor of cytochrome P450-3A in drug–drug interaction studies. Br. J. Clin. Pharmacol. 2015, 80, 342–350. [Google Scholar] [CrossRef]
- Loos, N.H.C.; Beijnen, J.H.; Schinkel, A.H. The Mechanism-Based Inactivation of CYP3A4 by Ritonavir: What Mechanism? Int. J. Mol. Sci. 2022, 23, 9866. [Google Scholar] [CrossRef]
- Marzolini, C.; Gibbons, S.; Khoo, S.; Back, D. Cobicistat versus ritonavir boosting and differences in the drug–drug interaction profiles with co-medications. J. Antimicrob. Chemother. 2016, 71, 1755–1758. [Google Scholar] [CrossRef]
- Loos, N.H.C.; Beijnen, J.H.; Schinkel, A.H. The inhibitory and inducing effects of ritonavir on hepatic and intestinal CYP3A and other drug-handling proteins. Biomed. Pharmacother. 2023, 162, 114636. [Google Scholar] [CrossRef] [PubMed]
- Drewe, J.; Gutmann, H.; Fricker, G.; Török, M.; Beglinger, C.; Huwyler, J. HIV protease inhibitor ritonavir: A more potent inhibitor of P-glycoprotein than the cyclosporine analog SDZ PSC 833. Biochem. Pharmacol. 1999, 57, 1147–1152. [Google Scholar] [CrossRef] [PubMed]
- Storch, C.H.; Theile, D.; Lindenmaier, H.; Haefeli, W.E.; Weiss, J. Comparison of the inhibitory activity of anti-HIV drugs on P-glycoprotein. Biochem. Pharmacol. 2007, 73, 1573–1581. [Google Scholar] [CrossRef]
- Gupta, A.; Zhang, Y.; Unadkat, J.D.; Mao, Q. HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J. Pharmacol. Exp. Ther. 2004, 310, 334–341. [Google Scholar] [CrossRef]
- Annaert, P.; Ye, Z.W.; Stieger, B.; Augustijns, P. Interaction of HIV protease inhibitors with OATP1B1, 1B3, and 2B1. Xenobiotica 2010, 40, 163–176. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, L.V. Overview of Targets and Potential Drugs of SARS-CoV-2 According to the Viral Replication. J. Proteome Res. 2021, 20, 49–59. [Google Scholar] [CrossRef]
- Reis, S.; Metzendorf, M.I.; Kuehn, R.; Popp, M.; Gagyor, I.; Kranke, P.; Meybohm, P.; Skoetz, N.; Weibel, S. Nirmatrelvir combined with ritonavir for preventing and treating COVID-19. Cochrane Database Syst. Rev. 2023, 11, Cd015395. [Google Scholar] [CrossRef] [PubMed]
- Hammond, J.; Leister-Tebbe, H.; Gardner, A.; Abreu, P.; Bao, W.; Wisemandle, W.; Baniecki, M.; Hendrick, V.M.; Damle, B.; Simón-Campos, A.; et al. Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with Covid-19. N. Engl. J. Med. 2022, 386, 1397–1408. [Google Scholar] [CrossRef]
- FDA. Fact Sheet for Healthcare Providers: Emergency Use Authorization for Paxlovid. Available online: www.fda.gov/media/155050/download (accessed on 16 July 2024).
- WHO. Therapeutics and COVID-19: Living Guideline, 10 November 2023. Available online: https://app.magicapp.org/#/guideline/nBkO1E (accessed on 16 July 2024).
- Shah, M.M.; Joyce, B.; Plumb, I.D.; Sahakian, S.; Feldstein, L.R.; Barkley, E.; Paccione, M.; Deckert, J.; Sandmann, D.; Hagen, M.B.; et al. Combined Protection of Vaccination and Nirmatrelvir-Ritonavir against Hospitalization in Adults with Coronavirus Disease 2019. Clin. Infect. Dis. 2024, 79, 108–110. [Google Scholar] [CrossRef]
- Li, H.; Xiang, H.; He, B.; Zhang, Q.; Peng, W. Nirmatrelvir plus ritonavir remains effective in vaccinated patients at risk of progression with COVID-19: A systematic review and meta-analysis. J. Glob. Health 2023, 13, 06032. [Google Scholar] [CrossRef]
- Miyasaka, A.; Yoshida, Y.; Yoshida, T.; Murakami, A.; Abe, K.; Ohuchi, K.; Kawakami, T.; Watanabe, D.; Hoshino, T.; Sawara, K.; et al. The Real-world Efficacy and Safety of Ombitasvir/Paritaprevir/Ritonavir for Hepatitis C Genotype 1. Intern. Med. 2018, 57, 2807–2812. [Google Scholar] [CrossRef] [PubMed]
- Flisiak, R.; Flisiak-Jackiewicz, M. Ombitasvir and paritaprevir boosted with ritonavir and combined with dasabuvir for chronic hepatitis C. Expert. Rev. Gastroenterol. Hepatol. 2017, 11, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Poordad, F.; Agarwal, K.; Younes, Z.; Cohen, D.; Xie, W.; Podsadecki, T. Low relapse rate leads to high concordance of sustained virologic response (SVR) at 12 weeks with SVR at 24 weeks after treatment with ABT-450/ritonavir, ombitasvir, and dasabuvir plus ribavirin in subjects with chronic hepatitis C virus genotype 1 infection in the AVIATOR study. Clin. Infect. Dis. 2015, 60, 608–610. [Google Scholar] [CrossRef]
- Abd-Elsalam, S.; Abo-Amer, Y.E.; El-Abgeegy, M.; Elshweikh, S.A.; Elsergany, H.F.; Ahmed, R.; Elkadeem, M.; Hawash, N.; Soliman, S.; Badawi, R.; et al. Efficacy and safety of ombitasvir/paritaprevir/ritonavir/ribavirin in management of Egyptian chronic hepatitis C virus patients with chronic kidney disease: A real-life experience. Medicine 2020, 99, e21972. [Google Scholar] [CrossRef]
- Tronina, O.; Durlik, M.; Wawrzynowicz-Syczewska, M.; Buivydiene, A.; Katzarov, K.; Kupcinskas, L.; Tolmane, I.; Karpińska, E.; Pisula, A.; Karwowska, K.M.; et al. Real-World Safety and Efficacy of Ombitasvir/Paritaprevir/Ritonavir/+Dasabuvir±Ribavirin (OBV/PTV/r/+DSV±RBV) Therapy in Recurrent Hepatitis C Virus (HCV) Genotype 1 Infection Post-Liver Transplant: AMBER-CEE Study. Ann. Transpl. 2017, 22, 199–207. [Google Scholar] [CrossRef]
- Ma, Z.; de Man, R.A.; Kamar, N.; Pan, Q. Chronic hepatitis E: Advancing research and patient care. J. Hepatol. 2022, 77, 1109–1123. [Google Scholar] [CrossRef]
- Primadharsini, P.P.; Nagashima, S.; Nishiyama, T.; Takahashi, M.; Murata, K.; Okamoto, H. Development of Recombinant Infectious Hepatitis E Virus Harboring the nanoKAZ Gene and Its Application in Drug Screening. J. Virol. 2022, 96, e0190621. [Google Scholar] [CrossRef] [PubMed]
- Primadharsini, P.P.; Nagashima, S.; Takahashi, M.; Murata, K.; Okamoto, H. Ritonavir Blocks Hepatitis E Virus Internalization and Clears Hepatitis E Virus In Vitro with Ribavirin. Viruses 2022, 14, 2440. [Google Scholar] [CrossRef]
- Pereira-Chioccola, V.L.; Vidal, J.E.; Su, C. Toxoplasma gondii infection and cerebral toxoplasmosis in HIV-infected patients. Future Microbiol. 2009, 4, 1363–1379. [Google Scholar] [CrossRef]
- Abou-El-Naga, I.F.; El Kerdany, E.D.; Mady, R.F.; Shalaby, T.I.; Zaytoun, E.M. The effect of lopinavir/ritonavir and lopinavir/ritonavir loaded PLGA nanoparticles on experimental toxoplasmosis. Parasitol. Int. 2017, 66, 735–747. [Google Scholar] [CrossRef]
- Beld, L.; Jung, H.; Bulman, C.A.; Rosa, B.A.; Fischer, P.U.; Janetka, J.W.; Lustigman, S.; Sakanari, J.A.; Mitreva, M. Aspartyl Protease Inhibitors as Anti-Filarial Drugs. Pathogens 2022, 11, 707. [Google Scholar] [CrossRef] [PubMed]
- Alves, É.A.R.; de Miranda, M.G.; Borges, T.K.; Magalhães, K.G.; Muniz-Junqueira, M.I. Anti-HIV drugs, lopinavir/ritonavir and atazanavir, modulate innate immune response triggered by Leishmania in macrophages: The role of NF-κB and PPAR-γ. Int. Immunopharmacol. 2015, 24, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Brilhante, R.S.; Caetano, É.P.; Riello, G.B.; Guedes, G.M.; Castelo-Branco Dde, S.; Fechine, M.A.; Oliveira, J.S.; Camargo, Z.P.; Mesquita, J.R.; Monteiro, A.J.; et al. Antiretroviral drugs saquinavir and ritonavir reduce inhibitory concentration values of itraconazole against Histoplasma capsulatum strains in vitro. Braz. J. Infect. Dis. 2016, 20, 155–159. [Google Scholar] [CrossRef] [PubMed]
- van der Putten, E.; Wosikowski, K.; Beijnen, J.H.; Imre, G.; Freund, C.R. Ritonavir reverses resistance to docetaxel and cabazitaxel in prostate cancer cells with acquired resistance to docetaxel. Cancer Drug Resist. 2024, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Ikezoe, T.; Hisatake, Y.; Takeuchi, T.; Ohtsuki, Y.; Yang, Y.; Said, J.W.; Taguchi, H.; Koeffler, H.P. HIV-1 protease inhibitor, ritonavir: A potent inhibitor of CYP3A4, enhanced the anticancer effects of docetaxel in androgen-independent prostate cancer cells in vitro and in vivo. Cancer Res. 2004, 64, 7426–7431. [Google Scholar] [CrossRef]
- Staal, J.; Beyaert, R. Inflammation and NF-κB Signaling in Prostate Cancer: Mechanisms and Clinical Implications. Cells 2018, 7, 122. [Google Scholar] [CrossRef]
- Skinner, K.T.; Palkar, A.M.; Hong, A.L. Genetics of ABCB1 in Cancer. Cancers 2023, 15, 4236. [Google Scholar] [CrossRef]
- Lima, T.S.; Souza, L.O.; Iglesias-Gato, D.; Elversang, J.; Jørgensen, F.S.; Kallunki, T.; Røder, M.A.; Brasso, K.; Moreira, J.M.A. Itraconazole Reverts ABCB1-Mediated Docetaxel Resistance in Prostate Cancer. Front. Pharmacol. 2022, 13, 869461. [Google Scholar] [CrossRef]
- Mita, A.C.; Figlin, R.; Mita, M.M. Cabazitaxel: More than a new taxane for metastatic castrate-resistant prostate cancer? Clin. Cancer Res. 2012, 18, 6574–6579. [Google Scholar] [CrossRef]
- de Weger, V.A.; Stuurman, F.E.; Hendrikx, J.J.M.A.; Moes, J.J.; Sawicki, E.; Huitema, A.D.R.; Nuijen, B.; Thijssen, B.; Rosing, H.; Keessen, M.; et al. A dose-escalation study of bi-daily once weekly oral docetaxel either as ModraDoc001 or ModraDoc006 combined with ritonavir. Eur. J. Cancer 2017, 86, 217–225. [Google Scholar] [CrossRef]
- Vaishampayan, U.N.; Keessen, M.; Heath, E.I.; Dreicer, R.; Buchler, T.; Árkosy, P.F.; Csoszi, T.; Wiechno, P.J.; Kholtobin, D.; Kopyltsov, E.; et al. A phase 2 randomized study of oral docetaxel plus ritonavir (ModraDoc006/r) in patients with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2022, 40, 5016. [Google Scholar] [CrossRef]
- Li, X.; Ng, A.S.N.; Mak, V.C.Y.; Chan, K.K.L.; Cheung, A.N.Y.; Cheung, L.W.T. Strategic Combination Therapies for Ovarian Cancer. Curr. Cancer Drug Targets 2020, 20, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Bryant, C.S.; Chamala, S.; Qazi, A.; Seward, S.; Pal, J.; Steffes, C.P.; Weaver, D.W.; Morris, R.; Malone, J.M.; et al. Ritonavir blocks AKT signaling, activates apoptosis and inhibits migration and invasion in ovarian cancer cells. Mol. Cancer 2009, 8, 26. [Google Scholar] [CrossRef] [PubMed]
- Vélez-Cruz, R.; Johnson, D.G. The Retinoblastoma (RB) Tumor Suppressor: Pushing Back against Genome Instability on Multiple Fronts. Int. J. Mol. Sci. 2017, 18, 1776. [Google Scholar] [CrossRef]
- Narasimha, A.M.; Kaulich, M.; Shapiro, G.S.; Choi, Y.J.; Sicinski, P.; Dowdy, S.F. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. eLife 2014, 3, e02872. [Google Scholar] [CrossRef]
- Winterhoff, B.; Teoman, A.; Freyer, L.; Von Bismarck, A.; Dowdy, S.; Schmalfeldt, B.; Kumar, S.; Shridhar, V. The HIV protease inhibitor ritonavir induces cell cycle arrest and apoptosis in the A2780 ovarian cancer cell line in vitro and in vivo. Gynecol. Oncol. 2013, 130, e138. [Google Scholar] [CrossRef]
- Rascio, F.; Spadaccino, F.; Rocchetti, M.T.; Castellano, G.; Stallone, G.; Netti, G.S.; Ranieri, E. The Pathogenic Role of PI3K/AKT Pathway in Cancer Onset and Drug Resistance: An Updated Review. Cancers 2021, 13, 3949. [Google Scholar] [CrossRef]
- Momenimovahed, Z.; Tiznobaik, A.; Taheri, S.; Salehiniya, H. Ovarian cancer in the world: Epidemiology and risk factors. Int. J. Womens Health 2019, 11, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Srirangam, A.; Wang, M.; Blum, J.; Einhorn, L.; Potter, D.A. Ritonavir causes G1 arrest in non-small cell lung cancer (NSCLC), in part, by binding hsp90 and down-regulating Cdk4 and other Hsp90 client proteins. Cancer Res. 2005, 65, 534. [Google Scholar]
- Rong, B.; Yang, S. Molecular mechanism and targeted therapy of Hsp90 involved in lung cancer: New discoveries and developments (Review). Int. J. Oncol. 2018, 52, 321–336. [Google Scholar] [CrossRef]
- Srirangam, A.; Milani, M.; Mitra, R.; Guo, Z.; Rodriguez, M.; Kathuria, H.; Fukuda, S.; Rizzardi, A.; Schmechel, S.; Skalnik, D.G.; et al. The Human Immunodeficiency Virus Protease Inhibitor Ritonavir Inhibits Lung Cancer Cells, in Part, by Inhibition of Survivin. J. Thorac. Oncol. 2011, 6, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Hu, C.; Li, H. Survivin as a novel target protein for reducing the proliferation of cancer cells. Biomed. Rep. 2018, 8, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Arora, L.; Kumar, A.P.; Arfuso, F.; Chng, W.J.; Sethi, G. The Role of Signal Transducer and Activator of Transcription 3 (STAT3) and Its Targeted Inhibition in Hematological Malignancies. Cancers 2018, 10, 327. [Google Scholar] [CrossRef]
- Courtney, D.; Davey, M.G.; Moloney, B.M.; Barry, M.K.; Sweeney, K.; McLaughlin, R.P.; Malone, C.M.; Lowery, A.J.; Kerin, M.J. Breast cancer recurrence: Factors impacting occurrence and survival. Ir. J. Med. Sci. 2022, 191, 2501–2510. [Google Scholar] [CrossRef]
- Srirangam, A.; Mitra, R.; Wang, M.; Gorski, J.C.; Badve, S.; Baldridge, L.; Hamilton, J.; Kishimoto, H.; Hawes, J.; Li, L.; et al. Effects of HIV protease inhibitor ritonavir on Akt-regulated cell proliferation in breast cancer. Clin. Cancer Res. 2006, 12, 1883–1896. [Google Scholar] [CrossRef]
- Li, H.; Prever, L.; Hirsch, E.; Gulluni, F. Targeting PI3K/AKT/mTOR Signaling Pathway in Breast Cancer. Cancers 2021, 13, 3517. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, H.; Yao, J. ERα, A Key Target for Cancer Therapy: A Review. Onco Targets Ther. 2020, 13, 2183–2191. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Hendrikx, J.J.; Rottenberg, S.; Schellens, J.H.; Beijnen, J.H.; Huitema, A.D. Development of a Tumour Growth Inhibition Model to Elucidate the Effects of Ritonavir on Intratumoural Metabolism and Anti-tumour Effect of Docetaxel in a Mouse Model for Hereditary Breast Cancer. AAPS J. 2016, 18, 362–371. [Google Scholar] [CrossRef]
- Schellens, J.H.; Malingré, M.M.; Kruijtzer, C.M.; Bardelmeijer, H.A.; van Tellingen, O.; Schinkel, A.H.; Beijnen, J.H. Modulation of oral bioavailability of anticancer drugs: From mouse to man. Eur. J. Pharm. Sci. 2000, 12, 103–110. [Google Scholar] [CrossRef]
- Hendrikx, J.J.; Lagas, J.S.; Song, J.Y.; Rosing, H.; Schellens, J.H.; Beijnen, J.H.; Rottenberg, S.; Schinkel, A.H. Ritonavir inhibits intratumoral docetaxel metabolism and enhances docetaxel antitumor activity in an immunocompetent mouse breast cancer model. Int. J. Cancer 2016, 138, 758–769. [Google Scholar] [CrossRef]
- Gote, V.; Sharma, A.D.; Pal, D. Hyaluronic Acid-Targeted Stimuli-Sensitive Nanomicelles Co-Encapsulating Paclitaxel and Ritonavir to Overcome Multi-Drug Resistance in Metastatic Breast Cancer and Triple-Negative Breast Cancer Cells. Int. J. Mol. Sci. 2021, 22, 1257. [Google Scholar] [CrossRef] [PubMed]
- Asano, M.; Tanaka, S.; Sakaguchi, M. Effects of normothermic microwave irradiation on CD44(+)/CD24(−) in breast cancer MDA-MB-231 and MCF-7 cell lines. Biosci. Biotechnol. Biochem. 2020, 84, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Al-Othman, N.; Alhendi, A.; Ihbaisha, M.; Barahmeh, M.; Alqaraleh, M.; Al-Momany, B.Z. Role of CD44 in breast cancer. Breast Dis. 2020, 39, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Snyder, S.; Murundi, S.; Crawford, L.; Putnam, D. Enabling P-glycoprotein inhibition in multidrug resistant cancer through the reverse targeting of a quinidine-PEG conjugate. J. Control. Release 2020, 317, 291–299. [Google Scholar] [CrossRef]
- Tabas, I.; Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 2011, 13, 184–190. [Google Scholar] [CrossRef]
- Sato, A. The human immunodeficiency virus protease inhibitor ritonavir is potentially active against urological malignancies. Onco Targets Ther. 2015, 8, 761–768. [Google Scholar] [CrossRef]
- Gaedicke, S.; Firat-Geier, E.; Constantiniu, O.; Lucchiari-Hartz, M.; Freudenberg, M.; Galanos, C.; Niedermann, G. Antitumor effect of the human immunodeficiency virus protease inhibitor ritonavir: Induction of tumor-cell apoptosis associated with perturbation of proteasomal proteolysis. Cancer Res. 2002, 62, 6901–6908. [Google Scholar]
- Sato, A.; Asano, T.; Okubo, K.; Isono, M.; Asano, T. Ritonavir and ixazomib kill bladder cancer cells by causing ubiquitinated protein accumulation. Cancer Sci. 2017, 108, 1194–1202. [Google Scholar] [CrossRef]
- Xie, J.; Wan, N.; Liang, Z.; Zhang, T.; Jiang, J. Ixazomib—The first oral proteasome inhibitor. Leuk. Lymphoma 2019, 60, 610–618. [Google Scholar] [CrossRef]
- Chen, X.; Shi, C.; He, M.; Xiong, S.; Xia, X. Endoplasmic reticulum stress: Molecular mechanism and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 352. [Google Scholar] [CrossRef]
- Sato, A.; Asano, T.; Okubo, K.; Isono, M.; Asano, T. Nelfinavir and Ritonavir Kill Bladder Cancer Cells Synergistically by Inducing Endoplasmic Reticulum Stress. Oncol. Res. 2018, 26, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Okubo, K.; Isono, M.; Asano, T.; Sato, A. Lopinavir-Ritonavir Combination Induces Endoplasmic Reticulum Stress and Kills Urological Cancer Cells. Anticancer. Res. 2019, 39, 5891–5901. [Google Scholar] [CrossRef] [PubMed]
- Okubo, K.; ReßIng, N.; Schulz, W.A.; Hansen, F.K.; Asano, T.; Sato, A. The Dual Histone Deacetylase-Proteasome Inhibitor RTS-V5 Acts Synergistically With Ritonavir to Induce Endoplasmic Reticulum Stress in Bladder Cancer Cells. Anticancer. Res. 2021, 41, 5987–5996. [Google Scholar] [CrossRef] [PubMed]
- Batchu, R.B.; Gruzdyn, O.V.; Bryant, C.S.; Qazi, A.M.; Kumar, S.; Chamala, S.; Kung, S.T.; Sanka, R.S.; Puttagunta, U.S.; Weaver, D.W.; et al. Ritonavir-Mediated Induction of Apoptosis in Pancreatic Cancer Occurs via the RB/E2F-1 and AKT Pathways. Pharmaceuticals 2014, 7, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Mandigo, A.C.; Yuan, W.; Xu, K.; Gallagher, P.; Pang, A.; Guan, Y.F.; Shafi, A.A.; Thangavel, C.; Sheehan, B.; Bogdan, D.; et al. RB/E2F1 as a Master Regulator of Cancer Cell Metabolism in Advanced Disease. Cancer Discov. 2021, 11, 2334–2353. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, Y.; Schwarz, B.; Mysliwietz, J.; Hartig, R.; Camaj, P.; Bao, Q.; Jauch, K.W.; Guba, M.; Ellwart, J.W.; et al. Verapamil inhibits tumor progression of chemotherapy-resistant pancreatic cancer side population cells. Int. J. Oncol. 2016, 49, 99–110. [Google Scholar] [CrossRef]
- Pontious, C.; Kaul, S.; Hong, M.; Hart, P.A.; Krishna, S.G.; Lara, L.F.; Conwell, D.L.; Cruz-Monserrate, Z. Cathepsin E expression and activity: Role in the detection and treatment of pancreatic cancer. Pancreatology 2019, 19, 951–956. [Google Scholar] [CrossRef]
- Keliher, E.J.; Reiner, T.; Earley, S.; Klubnick, J.; Tassa, C.; Lee, A.J.; Ramaswamy, S.; Bardeesy, N.; Hanahan, D.; Depinho, R.A.; et al. Targeting cathepsin E in pancreatic cancer by a small molecule allows in vivo detection. Neoplasia 2013, 15, 684–693. [Google Scholar] [CrossRef]
- Spencer, N.Y.; Stanton, R.C. The Warburg Effect, Lactate, and Nearly a Century of Trying to Cure Cancer. Semin. Nephrol. 2019, 39, 380–393. [Google Scholar] [CrossRef]
- McBrayer, S.K.; Cheng, J.C.; Singhal, S.; Krett, N.L.; Rosen, S.T.; Shanmugam, M. Multiple myeloma exhibits novel dependence on GLUT4, GLUT8, and GLUT11: Implications for glucose transporter-directed therapy. Blood 2012, 119, 4686–4697. [Google Scholar] [CrossRef]
- Weir, P.; Donaldson, D.; McMullin, M.F.; Crawford, L. Metabolic Alterations in Multiple Myeloma: From Oncogenesis to Proteasome Inhibitor Resistance. Cancers 2023, 15, 1682. [Google Scholar] [CrossRef]
- Dalva-Aydemir, S.; Bajpai, R.; Martinez, M.; Adekola, K.U.; Kandela, I.; Wei, C.; Singhal, S.; Koblinski, J.E.; Raje, N.S.; Rosen, S.T.; et al. Targeting the metabolic plasticity of multiple myeloma with FDA-approved ritonavir and metformin. Clin. Cancer Res. 2015, 21, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Schaff, L.R.; Mellinghoff, I.K. Glioblastoma and Other Primary Brain Malignancies in Adults: A Review. JAMA 2023, 329, 574–587. [Google Scholar] [CrossRef]
- Kast, R.E.; Ramiro, S.; Lladó, S.; Toro, S.; Coveñas, R.; Muñoz, M. Antitumor action of temozolomide, ritonavir and aprepitant against human glioma cells. J. Neurooncol 2016, 126, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Rauschenbach, L.; Wieland, A.; Reinartz, R.; Kebir, S.; Till, A.; Darkwah Oppong, M.; Dobersalske, C.; Ullrich, V.; Ahmad, A.; Jabbarli, R.; et al. Drug repositioning of antiretroviral ritonavir for combinatorial therapy in glioblastoma. Eur. J. Cancer 2020, 140, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Gratton, R.; Tricarico, P.M.; Guimaraes, R.L.; Celsi, F.; Crovella, S. Lopinavir/Ritonavir Treatment Induces Oxidative Stress and Caspaseindependent Apoptosis in Human Glioblastoma U-87 MG Cell Line. Curr. HIV Res. 2018, 16, 106–112. [Google Scholar] [CrossRef]
- Hsu, A.; Granneman, G.R.; Bertz, R.J. Ritonavir: Clinical pharmacokinetics and interactions with other anti-HIV agents. Clin. Pharmacokinet. 1998, 35, 275–291. [Google Scholar] [CrossRef]
Disease | Model | Main findings | Ref |
COVID-19 | Clinical trials and observational studies in high-risk, unvaccinated, and vaccinated COVID-19 outpatients | - Reduced hospitalization and death in high-risk patients when combined with nirmatrelvir (Paxlovid). - Effective when administered within five days of symptom onset. - Beneficial for vaccinated patients, especially those between 50 and 65. | [19,22,23] |
Hepatitis C | Patients with chronic hepatitis or compensated hepatic cirrhosis and genotype 1 HCV infection | - Ritonavir-boosted paritaprevir and ombitasvir with 96.6% sustained virological response at 24 weeks in HCV genotype 1 infection. - Effective, with manageable safety profiles. | [24,25,26] |
Hepatitis E | Cell culture studies with HEV-3 and HEV-4 genotypes | - Inhibited HEV growth and internalization when combined with ribavirin. - Reduced HEV RNA levels to undetectable amounts without significant cytotoxicity. | [30,31] |
Toxoplasmosis | Mouse model infected with virulent RH strain of T. gondii | - Lopinavir boosted with ritonavir (L/r), both alone and in PLGA nanoparticles, significantly reduced mortality. - Reduced parasite numbers and induced morphological changes leading to apoptosis and autophagy in the parasite. | [33] |
Cancer Type | Model | Main Findings | Ref |
Prostate Cancer | Normal (22Rv1, DU-145, PC-3, PC-3M) and resistant (DU-145DOC10, 22Rv1DOC8) prostate cancer cell lines | - No synergy in prostate cells non-resistant to docetaxel. - Reversal of resistance to docetaxel and cabazitaxel via P-gp inhibition. | [37] |
Phase I cancer patients and phase II mCRPC patients | - New formulation of docetaxel/ritonavir for oral administration (ModraDoc006). | [42,43] | |
Ovarian Cancer | Ovarian cancer cell lines (e.g., MDAH- 2774, SKOV-3, A2780) | - Elevated levels of under-phosphorylated RB in ritonavir-treated cells indicate reduced CDK-2, 4, and 6 activities, leading to cell cycle arrest in the G1 phase. - Inhibition of AKT phosphorylation, sensitizing chemoresistant cells to cisplatin-induced apoptosis and inhibiting Bcl-2. - Reduction in migration. | [45,48] |
Lung Cancer | NSCLC cell lines (H522, A549, H460) | - G1 arrest via reduction in Hsp90 levels, leading to decreased CDK4 activity. - Increased sensibilization to gemcitabine and synergism with gemcitabine and cisplatin. - Downregulates CDKs, cyclin D1, phosphorylated retinoblastoma protein (pRb), and survivin mRNA/protein. - Inhibiting phosphorylation of c-Src and STAT3, reducing survivin expression, crucial for inhibiting apoptosis and regulating cell division. | [51,53] |
Breast Cancer | Breast cancer cell lines (MDA-MB-231, MCF7, and T47D) | - Growth inhibition and apoptosis, especially in ER-positive cells. - G1 cell cycle arrest. - Lowers Akt phosphorylation and reduces Hsp90 activity, leading to decreased CDK levels. - Reduces survivin mRNA/protein levels and decreases intratumoral Akt activation. | [57] |
Mouse models with implanted breast cancer tumors | - Enhanced docetaxel’s antitumor activity by increasing intratumoral concentration. - Co-administration leads to smaller tumors and longer survival in mouse models. - Reduced systemic clearance of docetaxel and blocked its metabolism within tumors. | [60,62] | |
MBC and TNBC cancer cell lines | - Co-encapsulates ritonavir and paclitaxel in HA-targeted nanomicelles. - Targets CD44 receptors on cancer cells, delivering drugs efficiently and reducing impact on healthy cells. - Increases cancer cell apoptosis and overcomes P-gp-mediated drug resistance. | [63] | |
Bladder Cancer | Bladder cancer cell lines (UMUC3, J82, 5637) | - Inhibits both Hsp90 and the proteasome, leading to ER stress and accumulation of p21, promoting apoptosis. - Increased apoptosis-related proteins (cleaved PARP, caspase 3, NOXA) and ER stress indicators (GRP78, Hsp70). - Combinations with ixazomib or nelfinavir or lopinavir or RTS-V5 all decreased cell viability and caused ER stress. | [68,69,72,73,74] |
Pancreatic Cancer | Pancreatic ductal adenocarcinoma cell lines (BxPC-3, MIA PaCa-2, PANC-1) | -. Inhibits phosphorylation of RB, sequestering E2F-1 and preventing S-phase progression, reducing cell proliferation. - Blocks the AKT pathway, enhancing antitumor effects. - Synergy with gemcitabine. | [75] |
In vivo tumor models | - Modified ritonavir compound (RIT-TMB) developed for imaging PDAC during surgery. - Targets cathepsin E and enables precise imaging of cancer cells in in vivo tumor models. | [78] | |
Multiple Myeloma | Multiple myeloma cell lines (KMS11, L363, JJN3) | - Inhibition of GLUT4, reducing Mcl-1 expression, leading to cell death and increased chemosensitivity. - Combination with metformin decreases ritonavir resistance and inhibits AKT and mTORC1, key for cancer survival. | [80,82] |
Glioblastoma | Glioblastoma cell lines (e.g., U-87 MG, primary glioma cells) and mouse model | - In combination with TMZ, aprepitant, or radiation, significantly reduces cell viability and proliferation. - Induces ER stress and autophagy. - Combination with lopinavir enhances ROS generation and apoptosis in glioma cells. | [84,85,86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, M.; Vale, N. Ritonavir’s Evolving Role: A Journey from Antiretroviral Therapy to Broader Medical Applications. Curr. Oncol. 2024, 31, 6032-6049. https://doi.org/10.3390/curroncol31100450
Pereira M, Vale N. Ritonavir’s Evolving Role: A Journey from Antiretroviral Therapy to Broader Medical Applications. Current Oncology. 2024; 31(10):6032-6049. https://doi.org/10.3390/curroncol31100450
Chicago/Turabian StylePereira, Mariana, and Nuno Vale. 2024. "Ritonavir’s Evolving Role: A Journey from Antiretroviral Therapy to Broader Medical Applications" Current Oncology 31, no. 10: 6032-6049. https://doi.org/10.3390/curroncol31100450
APA StylePereira, M., & Vale, N. (2024). Ritonavir’s Evolving Role: A Journey from Antiretroviral Therapy to Broader Medical Applications. Current Oncology, 31(10), 6032-6049. https://doi.org/10.3390/curroncol31100450