Genetic Variants in the Mitochondrial Thymidylate Biosynthesis Pathway Increase Colorectal Cancer Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Collection
2.3. Genomic DNA Extraction and Quality Control
2.4. Polymerase Chain Reaction
2.5. Polymorphism Analysis Using the RFLP Assay
2.6. Statistical Analysis
3. Results
3.1. The Physical Characteristics of the Study Groups
3.2. The Lys27Gln Variant in the CDA Gene
3.3. The Ala70Thr Variant in the CDA Gene
3.4. The S471L Variant in the TP Gene
3.5. The C677T Variant in the MTHFR Gene
3.6. The A1298C Variant in the MTHFR Gene
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz. Gastroenterol. 2019, 14, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Globocan 2020. Colorectal Cancer. International Agency for Research on Caner; World Health Oraganization: The Global Cancer Observatory, Lyon, France. Available online: https://gco.iarc.fr/today/data/factsheets/cancers/10_8_9-Colorectum-fact-sheet.pdf (accessed on 22 April 2021).
- Globocan 2021. Saudi Arabia. International Agency for Research on Caner; World Health Oraganization: The Global Cancer Observatory, Lyon, France. Available online: https://gco.iarc.fr/today/data/factsheets/populations/682-saudi-arabia-fact-sheets.pdf (accessed on 22 April 2021).
- Zhu, J.; Kong, W.; Huang, L.; Bi, S.; Jiao, X.; Zhu, S. Identification of immunotherapy and chemotherapy-related molecular subtypes in colon cancer by integrated multi-omics data analysis. Front. Immunol. 2023, 14, 1142609. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.H.; Chen, Y.X.; Fang, J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 2020, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- DrugBank 2005. Capecitabine. Available online: https://www.drugbank.ca/drugs/DB01101 (accessed on 18 August 2020).
- National Library of Medicine, NIH. Capecitabine. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012; pp. 5–9. Available online: https://www.ncbi.nlm.nih.gov/books/NBK547986/ (accessed on 18 August 2020).
- Mizumoto, Y.; Yokoyama, S.; Matsuda, K.; Iwamoto, H.; Mitani, Y.; Tamura, K.; Nakamura, Y.; Murakami, D.; Oka, M.; Kobayashi, Y.; et al. Modulation of capecitabine administration to improve continuity of adjuvant chemotherapy for patients with colorectal cancer: A phase II study. Mol. Clin. Oncol. 2020, 12, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Sassano, M.; Mariani, M.; Quaranta, G.; Pastorino, R.; Boccia, S. Polygenic risk prediction models for colorectal cancer: A systematic review. BMC Cancer 2022, 22, 65. [Google Scholar] [CrossRef]
- McGeoch, L.; Saunders, C.L.; Griffin, S.J.; Emery, J.D.; Walter, F.M.; Thompson, D.J.; Antoniou, A.C.; Usher-Smith, J.A. Risk prediction models for colorectal cancer incorporating common genetic variants: A systematic review. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1580–1593. [Google Scholar] [CrossRef]
- Kumagai, Y.; Sugiura, Y.; Sugeno, H.; Takebayashi, Y.; Takenoshita, S.; Yamamoto, T. Thymidine phosphorylase gene mutation is not a primary cause of mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). Intern. Med. 2006, 45, 443–446. [Google Scholar] [CrossRef]
- Zhou, M.; Wan, H.Y.; Gao, B.L.; Ding, Y.J.; Jun, R.X. Genetic polymorphisms of XPD and CDA and lung cancer risk. Oncol. Lett. 2012, 4, 247–251. [Google Scholar] [CrossRef]
- Nefic, H.; Mackic-Djurovic, M.; Eminovic, I. The Frequency of the 677C>T and 1298A>C polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene in the population. Med. Arch. 2018, 72, 164–169. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Sauer, A.G.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yang, F.; Chen, S.; Tai, J. Mechanisms on chemotherapy resistance of colorectal cancer stem cells and research progress of reverse transformation: A mini-review. Front. Med. 2022, 9, 995882. [Google Scholar] [CrossRef]
- FDA. Xeloda (Capecitabine). 2000. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2001/20896S6lbl.pdf (accessed on 18 August 2020).
- Horvat, M.; Potočnik, U.; Repnik, K.; Kavalar, R.; Štabuc, B. Single nucleotide polymorphisms as prognostic and predictive factors of adjuvant chemotherapy in colorectal cancer of stages I and II. Gastroenterol. Res. Pract. 2016, 2016, 2139489. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, T.; Song, X.; Dong, G.; Xu, L.; Jiang, F. SNP-target genes interaction perturbing the cancer risk in the post-GWAS. Cancers 2022, 14, 5636. [Google Scholar] [CrossRef]
- Deng, N.; Zhou, H.; Fan, H.; Yuan, Y. Single nucleotide polymorphisms and cancer susceptibility. Oncotarget 2017, 8, 110635–110649. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Su, N.; Cui, M.; Li, H.; Zhang, Q.; Yu, N.; Wu, S.; Cao, Z. Activation-induced cytidine deaminase expression in colorectal cancer. Int. J. Clin. Exp. Pathol. 2019, 12, 4119–4124. [Google Scholar]
- Peters, G.J.; Giovannetti, E.; Honeywell, R.J.; Ciccolini, J. Can cytidine deaminase be used as predictive biomarker for gemcitabine toxicity and response? Br. J. Clin. Pharmacol. 2019, 85, 1213–1214. [Google Scholar] [CrossRef]
- Cura, Y.; Pérez-Ramírez, C.; Sánchez-Martín, A.; Membrive-Jimenez, C.; Valverde-Merino, M.I.; González-Flores, E.; Morales, A.J. Influence of single-nucleotide polymorphisms on clinical outcomes of capecitabine-based chemotherapy in colorectal cancer patients: A systematic review. Cancers 2023, 15, 1821. [Google Scholar] [CrossRef]
- Sugiyama, E.; Lee, S.-J.; Lee, S.S.; Kim, W.-Y.; Kim, S.-R.; Tohkin, M.; Hasegawa, R.; Okuda, H.; Kawamoto, M.; Kamatani, N.; et al. Ethnic differences of two non-synonymous single nucleotide polymorphisms in CDA gene. Drug Metab. Pharmacokinet. 2009, 24, 553–556. [Google Scholar] [CrossRef]
- Jia, X.; Zhang, T.; Sun, J.; Lin, H.; Bai, T.; Qiao, Y.; Li, Y.; Li, G.; Li, G.; Peng, X.; et al. Rs11479 in thymidine phosphorylase associated with prognosis of patients with colorectal cancer who received capecitabine-based adjuvant chemotherapy. Pharmacogenomics Pers. Med. 2023, 16, 277–289. [Google Scholar] [CrossRef]
- Jennings, B.A.; Loke, Y.K.; Skinner, J.; Keane, M.; Chu, G.S.; Turner, R.; Epurescu, D.; Barrett, A.; Willis, G. Evaluating predective pharmacogenetic signature of adverse events in colorectal cancer patients treated with fluoropyrimidines. PLoS ONE 2013, 8, e78053. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Kim, J.O.; Shim, S.H.; Lee, Y.; Kim, J.H.; Jeon, Y.J.; Ko, J.J.; Lee, W.S.; Kim, N.K. Genetic variation of methylenetetrahydrofolate reductase (MTHFR) and thymidylate synthase (TS) genes is associated with idiopathic recurrent implantation failure. PLoS ONE 2016, 11, e0160884. [Google Scholar] [CrossRef] [PubMed]
- Derwinger, K.; Wettergren, Y.; Odin, E.; Carlsson, G.; Gustavsson, B. A study of the MTHFR gene polymorphism C677T in colorectal cancer. Clin. Color. Cancer 2009, 8, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Rai, V. Evaluation of the MTHFR C677T polymorphism as a risk factor for colorectal cancer in Asian populations. Asian Pac. J. Cancer Prev. 2015, 16, 8093–8100. [Google Scholar] [CrossRef]
- Li, H.; Xu, W.; Shen, H.; Chen, Q.; Hui, L.; Long, L.; Zhu, X. Methylenetetrahydrofolate reductase genotypes and haplotypes associated with susceptibility to colorectal cancer in an eastern Chinese Han population. Genet. Mol. Res. 2011, 10, 3738–3746. [Google Scholar] [CrossRef]
- Zhou, D.; Mei, Q.; Luo, H.; Tang, B.; Yu, P. The polymorphisms in methylenetetrahydrofolate reductase, methionine synthase, methionine synthase reductase, and the risk of colorectal cancer. Int. J. Biol. Sci. 2012, 8, 819–830. [Google Scholar] [CrossRef]
- Zhao, M.; Li, X.; Xing, C.; Zhou, B. Association of methylenetetrahydrofolate reductase C677T and A1298C polymorphisms with colorectal cancer risk: A meta analysis. Biomed. Rep. 2013, 1, 781–791. [Google Scholar] [CrossRef]
- Ströhle, A.; Wolters, M.; Hahn, A. Folic acid and colorectal cancer prevention: Molecular mechanisms and epidemiological evidence. Int. J. Oncol. 2005, 26, 1449–1464. [Google Scholar] [CrossRef]
- Ozen, F.; Sen, M.; Ozdemir, O. Methylenetetrahydrofolate reductase gene germ-line C677T and A1298C SNPs are associated with colorectal cancer risk in the Turkish population. Asian Pac. J. Cancer Prev. 2014, 15, 7731–7735. [Google Scholar] [CrossRef]
- Teng, Z.; Wang, L.; Cai, S.; Yu, P.; Wang, J.; Gong, J.; Liu, Y. The 677C>T (rs1801133) polymorphism in the MTHFR gene contributes to colorectal cancer risk: A meta-analysis based on 71 research studies. PLoS ONE 2013, 8, e55332. [Google Scholar] [CrossRef]
- Küry, S.; Buecher, B.; Robiou-Du-Pont, S.; Scoul, C.; Colman, H.; Le Neel, T.; Le Houérou, C.; Faroux, R.; Ollivry, J.; Lafraise, B.; et al. Low-penetrance alleles predisposing to sporadic colorectal cancers: A French case-controlled genetic association study. BMC Cancer 2008, 8, 326. [Google Scholar] [CrossRef] [PubMed]
- Lightfoot, T.J.; Barrett, J.H.; Bishop, T.; Northwood, E.L.; Smith, G.; Wilkie, M.J.; Steele, R.J.; Carey, F.A.; Key, T.J.; Wolf, R.; et al. Methylene tetrahydrofolate reductase genotype modifies the chemopreventive effect of folate in colorectal adenoma, but not colorectal cancer. Cancer Epidemiol. Biomark. Prev. 2008, 17, 2421–2430. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.-M.; Yang, M.-D.; Tsai, C.-W.; Chang, W.-S.; Hsiao, C.-L.; Jeng, L.-B.; Yueh, T.-C.; Lee, M.-C.; Bau, D.-T. The role of MTHFR genotype in colorectal cancer susceptibility in Taiwan. Anticancer. Res. 2018, 38, 2001–2006. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Li, X.; Li, X.; Zhang, M.; Zhang, J.; Hou, D.; Tong, Z.; Dong, M. CDA and MTHFR polymorphisms are associated with clinical outcomes in gastroenteric cancer patients treated with capecitabine-based chemotherapy. Cancer Chemother. Pharmacol. 2019, 83, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, J.; Padmanabhan, S. Fundamentals of complex trait genetics and association studies. In Handbook of Pharmacogenomics and Stratified Medicine; Academic Press: Cambridge, MA, USA, 2014; pp. 235–257. [Google Scholar]
Gene | SNP ID | PCR Conditions | PCR Product Sizes | Restriction Enzyme RFLP Sizes |
---|---|---|---|---|
CDA | Lys27Gln (rs2072671) |
| 129 bp |
|
Ala70Thr (rs60369023) |
| 300 bp |
| |
TP | S471L (rs11479) |
| 121 bp |
|
MTHFR | C677T (rs1801133) |
| 198 bp |
|
A1298C (rs1801131) | 163 bp |
|
Lys27Gln Variant | Ala70Thr Variant | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Genotypes | Alleles | Genotypes | Alleles | |||||||
Wild (AA) | Heterozygous (AC) | Homozygous (CC) | Dominant (A) | Recessive (C) | Wild (GG) | Heterozygous (GA) | Homozygous (AA) | Dominant (G) | Recessive (A) | |
Patient group frequency % (n = 66) | 42.4% (n = 28) | 39.4% (n = 26) | 18.2% (n = 12) | 62% (n = 41) | 38% (n = 25) | 32% (n = 21) | 59% (n = 39) | 9% (n = 6) | 62% (n = 40) | 38% (n = 26) |
Control group frequency % (n = 65) | 51% (n = 33) | 25% (n = 16) | 24% (n = 16) | 64% (n = 31) | 36% (n = 24) | 42% (n = 27) | 54% (n = 35) | 4% (n = 3) | 69% (n = 44) | 31% (n = 21) |
Fisher’s exact test p-value | 0.16 | 0.82 | 1 | 0.36 | 0.28 | 0.47 | ||||
Odds ratio (OR) (95% CI) | 1 (Reference) | 1.92 (0.86–4.27) | 0.88 (0.36–2.18) | 1 (Reference) | 1.04 (0.51–2.11) | 1 (Reference) | 1.43 (0.69–2.97) | 2.57 (0.57–11.51) | 1 (Reference) | 1.36 (0.66–2.79) |
Risk ratio (RR) (95% CI) | 1 (Reference) | 1.47 (0.91–2.4) | 0.92 (0.49–1.71) | 1 (Reference) | 1.03 (0.66–1.6) | 1 (Reference) | 1.15 (0.86–1.53) | 2.22 (0.62–8.03) | 1 (Reference) | 1.22 (0.77–1.94) |
S471L Variant | |||||
---|---|---|---|---|---|
Genotypes | Alleles | ||||
Wild (CC) | Heterozygous (CT) | Homozygous (TT) | Dominant (C) | Recessive (T) | |
Patient group frequency % (n = 66) | 3% (n = 2) | 95.5% (n = 63) | 1.5% (n = 1) | 51% (n = 34) | 49% (n = 32) |
Control group frequency % (n = 65) | 100% (n = 65) | 0% (n = 0) | 0% (n = 0) | 100% (n = 65) | 0% (n = 0) |
Fisher’s exact test p-value | ˂0.0001 | 0.03 | 1 | ||
Odds ratio (OR) (95% CI) | 1 (Reference) | Not applicable | Not applicable | 1 (Reference) | Not applicable |
Risk ratio (RR) (95% CI) | 1 (Reference) | Not applicable | Not applicable | 1 (Reference) | Not applicable |
C677T Variant | A1298C Variant | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Genotypes | Alleles | Genotypes | Alleles | |||||||
Wild (CC) | Heterozygous (CT) | Homozygous (TT) | Dominant (C) | Recessive (T) | Wild (AA) | Heterozygous (AC) | Homozygous (CC) | Dominant (A) | Recessive (C) | |
Patient group frequency % (n = 66) | 82% (n = 54) | 9% (n = 6) | 9% (n = 6) | 87% (n = 57) | 13% (n = 9) | 64% (n = 42) | 5% (n = 3) | 31% (n = 21) | 67% (n = 43) | 33% (n = 23) |
Control group frequency % (n = 65) | 94% (n = 61) | 6% (n = 4) | 0% (n = 0) | 97% (n = 63) | 3% (n = 2) | 59% (n = 38) | 29% (n = 19) | 12% (n = 8) | 73% (n = 47) | 27% (n = 18) |
Fisher’s exact test p-value | 0.52 | 0.01 | 0.05 | 0.001 | 0.08 | 0.45 | ||||
Odds ratio (OR) (95% CI) | 1 (Reference) | 1.69 (0.45–6.32) | Not applicable | 1 (Reference) | 4.97 (1.03–23.99) | 1 (Reference) | 0.14 (0.04–0.52) | 2.38 (0.94–5.99) | 1 (Reference) | 1.4 (0.66–2.94) |
Risk ratio (RR) (95% CI) | 1 (Reference) | 1.63 (0.48–5.48) | Not applicable | 1 (Reference) | 4.43 (1–19.73) | 1 (Reference) | 0.2 (0.06–0.63) | 1.92 (0.93–3.94) | 1 (Reference) | 1.26 (0.75–2.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arrait, E.M.; Al-Ghafari, A.B.; Al Doghaither, H.A. Genetic Variants in the Mitochondrial Thymidylate Biosynthesis Pathway Increase Colorectal Cancer Risk. Curr. Oncol. 2023, 30, 8039-8053. https://doi.org/10.3390/curroncol30090583
Arrait EM, Al-Ghafari AB, Al Doghaither HA. Genetic Variants in the Mitochondrial Thymidylate Biosynthesis Pathway Increase Colorectal Cancer Risk. Current Oncology. 2023; 30(9):8039-8053. https://doi.org/10.3390/curroncol30090583
Chicago/Turabian StyleArrait, Entesar M., Ayat B. Al-Ghafari, and Huda A. Al Doghaither. 2023. "Genetic Variants in the Mitochondrial Thymidylate Biosynthesis Pathway Increase Colorectal Cancer Risk" Current Oncology 30, no. 9: 8039-8053. https://doi.org/10.3390/curroncol30090583
APA StyleArrait, E. M., Al-Ghafari, A. B., & Al Doghaither, H. A. (2023). Genetic Variants in the Mitochondrial Thymidylate Biosynthesis Pathway Increase Colorectal Cancer Risk. Current Oncology, 30(9), 8039-8053. https://doi.org/10.3390/curroncol30090583