Impact of Race on Outcomes of Advanced Stage Non-Small Cell Lung Cancer Patients Receiving Immunotherapy
Abstract
:1. Introduction
2. Methods
3. Results
Characteristics | Frequency (n) | % |
---|---|---|
Sex | ||
Female | 87 | 44.8 |
Male | 107 | 55.2 |
Age at diagnosis a | 64.5 (35.4–92.6) | |
Race | ||
White | 105 | 54.1 |
Black | 82 | 42.3 |
Asian | 1 | 0.5 |
Other/Unknown | 6 | 3.1 |
Insurance type | ||
Medicare | 117 | 60.6 |
Medicaid | 39 | 20.2 |
Private | 31 | 16.1 |
VA | 3 | 1.6 |
None | 3 | 1.6 |
Missing | 1 | |
ECOG at ICI initiation | ||
0 | 23 | 14.9 |
1 | 78 | 50.6 |
2 | 46 | 29.9 |
3 | 7 | 4.5 |
Missing | 40 | |
Histological type | ||
Adenocarcinoma | 149 | 76.8 |
Squamous cell carcinoma | 34 | 17.5 |
Other | 11 | 5.7 |
Marital Status | ||
Married | 89 | 46.1 |
Widowed | 34 | 17.6 |
Single | 33 | 17.1 |
Divorced/Legally Separated | 37 | 19.2 |
Missing | 1 | |
CCI | ||
0 | 9 | 4.6 |
1 | 28 | 14.4 |
2 | 47 | 24.2 |
≥3 | 110 | 56.7 |
Smoker at diagnosis | ||
Yes | 77 | 39.7 |
No | 117 | 60.3 |
Former smoker | ||
Yes | 178 | 91.8 |
No | 16 | 8.2 |
Pack-years | 30 (0–160) | |
0–30 | 94 | 50.5 |
31–60 | 64 | 34.4 |
>60 | 28 | 15.1 |
Missing | 8 | |
Hospice enrollment | ||
Yes | 98 | 64.5 |
No | 54 | 35.5 |
Not applicable | 42 | |
If enrolled, hospice enrollment for at least a week prior to day of death | ||
Yes | 54 | 55.1 |
No | 44 | 44.9 |
Unknown | 3 | |
Experienced irAE | ||
Yes | 123 | 63.4 |
No | 71 | 36.6 |
Cumulative brain metastasis | ||
Yes | 95 | 49.0 |
No | 99 | 51.0 |
ICI selection | ||
Pembrolizumab | 145 | 74.7 |
Nivolumab | 26 | 13.4 |
Nivolumab plus Ipilimumab | 3 | 1.5 |
Atezolizumab | 17 | 8.8 |
Durvalumab | 3 | 1.5 |
Platinum-based combination ICI therapy | ||
Yes | 129 | 66.5 |
No | 65 | 33.5 |
PD-L1 status | ||
<1% | 66 | 44.3 |
1–49% | 29 | 19.5 |
≥50% | 54 | 36.2 |
Missing | 45 | |
Metformin use | ||
Y | 15 | 7.7 |
N | 179 | 92.3 |
Statin use | ||
Y | 90 | 46.4 |
N | 104 | 53.6 |
n, % | |||
---|---|---|---|
Characteristics | Black (n = 82) | White (n = 105) | p-Value c |
Sex | |||
Female | 37 (45.1) | 45 (42.9) | 0.757 |
Male | 45 (54.9) | 60 (57.1) | |
Age at diagnosis | |||
<65 | 45 (54.9) | 51 (48.6) | 0.036 |
65–74 | 28 (34.1) | 27 (25.7) | |
≥75 | 9 (11.0) | 27 (25.7) | |
Age at diagnosis | 63.9 (35.4–89.7) | 65.6 (45.0–92.6) | 0.600 |
Insurance type | |||
Medicare | 48 (58.5) | 64 (61.5) | 0.047 |
Medicaid | 23 (28.0) | 15 (14.4) | |
Private | 9 (11.0) | 21 (20.2) | |
VA | 0 (0.0) | 3 (2.9) | |
None | 2 (2.4) | 1 (1.0) | |
Missing = 1 | |||
ECOG at ICI initiation | |||
0 | 11 (16.9) | 11 (13.3) | 0.123 |
1 | 28 (43.1) | 45 (54.2) | |
2 | 25 (38.5) | 21 (25.3) | |
3 | 1 (1.5) | 6 (7.2) | |
Missing = 39 | |||
Histological type | |||
Adenocarcinoma | 63 (76.8) | 81 (77.1) | 0.994 |
Squamous cell carcinoma | 14 (17.1) | 18 (17.1) | |
Other | 5 (6.1) | 6 (5.7) | |
Marital Status | |||
Married | 26 (31.7) | 60 (57.1) | <0.001 |
Widowed | 17 (20.7) | 16 (15.2) | |
Single | 25 (30.5) | 7 (6.7) | |
Divorced/Legally separated | 14 (17.1) | 22 (21.0) | |
CCI | |||
0 | 5 (6.1) | 4 (3.8) | 0.030 |
1 | 14 (17.1) | 13 (12.4) | |
2 | 25 (30.5) | 17 (16.2) | |
≥3 | 38 (46.3) | 71 (67.6) | |
Smoker at diagnosis | |||
Yes | 36 (43.9) | 39 (37.1) | 0.349 |
No | 46 (56.1) | 66 (62.9) | |
Former smoker | |||
Yes | 74 (90.2) | 98 (93.3) | 0.440 |
No | 8 (9.8) | 7(6.7) | |
Pack-years range | |||
0-30 | 48 (60.0) | 40 (40.4) | 0.023 |
31–60 | 24 (30.0) | 39 (39.4) | |
>60 | 8 (10.0) | 20 (20.2) | |
Pack-years | 25/(0–100) | 40/(0–160) | 0.025 |
Missing = 8 | |||
Hospice enrollment | |||
Yes | 39 (60.9) | 57 (69.5) | 0.279 |
No | 25 (39.1) | 25 (30.5) | |
Missing or not applicable = 41 | |||
Experienced irAE | |||
Yes | 53 (64.6) | 66 (62.9) | 0.802 |
No | 29 (35.4) | 39 (37.1) | |
Cumulative brain metastasis | |||
Yes | 43 (52.4) | 48 (45.7) | 0.361 |
No | 39 (47.6) | 57 (54.3) | |
Platinum-based combination ICI therapy | |||
Yes | 59 (72.0) | 67 (63.8) | 0.239 |
No | 23 (28.0) | 38 (36.2) | |
ICI Selection d | |||
Pembrolizumab | 65 (79.3) | 76 (72.4) | 0.363 |
Nivolumab | 8 (9.8) | 17 (16.2) | |
Nivolumab plus Ipilimumab | 1 (1.2) | 1 (1.0) | |
Atezolizumab | 8 (9.8) | 8 (7.6) | |
Durvalumab | 0 (0.0) | 3 (2.9) | |
PDL-1 status | |||
<1% | 31 (47.7) | 33 (42.3) | 0.222 |
1–49% | 15 (23.1) | 12 (15.4) | |
≥50% | 19 (29.2) | 33 (42.3) | |
Missing = 44 | |||
Metformin use at diagnosis | |||
Y | 7 (8.5) | 8 (7.6) | 0.819 |
N | 75 (91.5) | 97 (92.4) | |
Statin use at diagnosis | |||
Y | 34 (41.5) | 53 (50.5) | 0.220 |
N | 48 (58.5) | 52 (49.5) | |
Time to ICI initiation (days) | 27 (2–318) | 37 (0–278) | 0.030 |
Time to overall treatment initiation (days) | 22 (1–141) | 27 (0–183) | 0.201 |
Covariate | Level | Number | Multivariate Model | |
---|---|---|---|---|
HR (95% CI) | HR p-Value | |||
Race | Black | 78 | 0.96 (0.66, 1.40) | 0.846 |
White | 93 | Reference | Reference | |
Type of Cancer | Squamous | 28 | 2.08 (1.34, 3.23) | 0.001 |
Non-squamous | 143 | Reference | Reference | |
Sex | Male | 97 | Reference | Reference |
Female | 74 | 0.81 (0.57, 1.15) | 0.238 | |
CCI | 0,1 | 31 | Reference | Reference |
2 | 39 | 0.74 (0.41, 1.33) | 0.308 | |
≥3 | 101 | 0.75 (0.40, 1.39) | 0.355 | |
Insurance | Government | 143 | Reference | Reference |
Private | 28 | 1.03 (0.61, 1.75) | 0.906 | |
Marital Status | Married | 77 | Reference | Reference |
Single | 30 | 0.91 (0.53, 1.57) | 0.731 | |
Widowed | 32 | 0.66 (0.40, 1.07) | 0.091 | |
Divorced/Legally separated | 32 | 1.56 (0.97, 2.52) | 0.068 | |
Age at diagnosis | 171 | 1.03 (1.01, 1.06) | 0.011 | |
Pack-years | 171 | 1.00 (0.99, 1.00) | 0.339 |
Covariate | Level | Number | Multivariate Model | |
---|---|---|---|---|
HR (95% CI) | HR p-Value | |||
Race | Black | 78 | 0.99 (0.66, 1.48) | 0.966 |
White | 92 | Reference | Reference | |
Type of Cancer | Squamous | 28 | 1.68 (1.06, 2.66) | 0.026 |
Non-squamous | 142 | Reference | Reference | |
Sex | Male | 97 | Reference | Reference |
Female | 73 | 0.89 (0.61, 1.31) | 0.566 | |
CCI | 0,1 | 31 | Reference | Reference |
2 | 39 | 0.75 (0.39, 1.45) | 0.394 | |
≥3 | 100 | 0.93 (0.49, 1.79) | 0.835 | |
Insurance | Government | 142 | Reference | Reference |
Private | 28 | 1.27 (0.74, 2.17) | 0.384 | |
Marital Status | Married | 77 | Reference | Reference |
Single | 30 | 0.70 (0.38, 1.31) | 0.269 | |
Widowed | 31 | 0.78 (0.46, 1.32) | 0.349 | |
Divorced/Legally separated | 32 | 1.85 (1.14, 3.02) | 0.013 | |
Age at diagnosis | 170 | 1.02 (0.99, 1.05) | 0.138 | |
Pack-years | 170 | 1.00 (0.99, 1.00) | 0.529 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef]
- Gupta, A.; Zhang, D.; Braithwaite, D.; Karanth, S.D.; Tailor, T.D.; Clarke, J.M.; Akinyemiju, T. Racial Differences in Survival Among Advanced-stage Non-small-Cell Lung Cancer Patients Who Received Immunotherapy: An Analysis of the US National Cancer Database (NCDB). J. Immunother. 2022, 45, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Simeone, J.C.; Nordstrom, B.L.; Patel, K.; Klein, A.B. Treatment patterns and overall survival in metastatic non-small-cell lung cancer in a real-world, US setting. Future Oncol. 2019, 15, 3491–3502. [Google Scholar] [CrossRef]
- Imyanitov, E.N.; Iyevleva, A.G.; Levchenko, E.V. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives. Crit. Rev. Oncol. Hematol. 2021, 157, 103194. [Google Scholar] [CrossRef]
- Yan, Y.; Kumar, A.B.; Finnes, H.; Markovic, S.N.; Park, S.; Dronca, R.S.; Dong, H. Combining Immune Checkpoint Inhibitors With Conventional Cancer Therapy. Front. Immunol. 2018, 9, 1739. [Google Scholar] [CrossRef]
- Morganti, S.; Curigliano, G. Combinations using checkpoint blockade to overcome resistance. Ecancermedicalscience 2020, 14, 1148. [Google Scholar] [CrossRef]
- Dafni, U.; Tsourti, Z.; Vervita, K.; Peters, S. Immune checkpoint inhibitors, alone or in combination with chemotherapy, as first-line treatment for advanced non-small cell lung cancer. A systematic review and network meta-analysis. Lung Cancer 2019, 134, 127–140. [Google Scholar] [CrossRef]
- Lolic, M.; Araojo, R.; Okeke, M.; Woodcock, J. Racial and Ethnic Representation in US Clinical Trials of New Drugs and Biologics, 2015–2019. JAMA 2021, 326, 2201–2203. [Google Scholar] [CrossRef] [PubMed]
- Nazha, B.; Mishra, M.; Pentz, R.; Owonikoko, T.K. Enrollment of Racial Minorities in Clinical Trials: Old Problem Assumes New Urgency in the Age of Immunotherapy. Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 3–10. [Google Scholar] [CrossRef]
- Shi, H.; Zhou, K.; Cochuyt, J.; Hodge, D.; Qin, H.; Manochakian, R.; Zhao, Y.; Ailawadhi, S.; Adjei, A.A.; Lou, Y. Survival of Black and White Patients With Stage IV Small Cell Lung Cancer. Front. Oncol. 2021, 11, 773958. [Google Scholar] [CrossRef] [PubMed]
- DeSantis, C.E.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Cancer statistics for African Americans, 2019. CA Cancer J. Clin. 2019, 69, 211–233. [Google Scholar] [CrossRef]
- Shusted, C.S.; Evans, N.R.; Juon, H.S.; Kane, G.C.; Barta, J.A. Association of Race With Lung Cancer Risk Among Adults Undergoing Lung Cancer Screening. JAMA Netw. Open 2021, 4, e214509. [Google Scholar] [CrossRef] [PubMed]
- Aldrich, M.C.; Mercaldo, S.F.; Sandler, K.L.; Blot, W.J.; Grogan, E.L.; Blume, J.D. Evaluation of USPSTF Lung Cancer Screening Guidelines Among African American Adult Smokers. JAMA Oncol. 2019, 5, 1318–1324. [Google Scholar] [CrossRef]
- Mitchell, K.A.; Zingone, A.; Toulabi, L.; Boeckelman, J.; Ryan, B.M. Comparative Transcriptome Profiling Reveals Coding and Noncoding RNA Differences in NSCLC from African Americans and European Americans. Clin. Cancer Res. 2017, 23, 7412–7425. [Google Scholar] [CrossRef]
- Hsiehchen, D.; Espinoza, M.; Valero, C.; Ahn, C.; Morris, L.G.T. Impact of tumor mutational burden on checkpoint inhibitor drug eligibility and outcomes across racial groups. J. Immunother. Cancer 2021, 9, e003683. [Google Scholar] [CrossRef]
- Meaney, C.L.; Mitchell, K.A.; Zingone, A.; Brown, D.; Bowman, E.; Yu, Y.; Wenzlaff, A.S.; Neslund-Dudas, C.; Pine, S.R.; Cao, L.; et al. Circulating Inflammation Proteins Associated With Lung Cancer in African Americans. J. Thorac. Oncol. 2019, 14, 1192–1203. [Google Scholar] [CrossRef]
- Farjah, F.; Wood, D.E.; Yanez, N.D., III; Vaughan, T.L.; Symons, R.G.; Krishnadasan, B.; Flum, D.R. Racial disparities among patients with lung cancer who were recommended operative therapy. Arch. Surg. 2009, 144, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.; Judd, J.; Chin, S.; Ragin, C. Disparities in Lung Cancer Treatment. Curr. Oncol. Rep. 2022, 24, 241–248. [Google Scholar] [CrossRef]
- Coughlin, S.S.; Matthews-Juarez, P.; Juarez, P.D.; Melton, C.E.; King, M. Opportunities to address lung cancer disparities among African Americans. Cancer Med. 2014, 3, 1467–1476. [Google Scholar] [CrossRef]
- Lin, J.J.; Mhango, G.; Wall, M.M.; Lurslurchachai, L.; Bond, K.T.; Nelson, J.E.; Berman, A.R.; Salazar-Schicchi, J.; Powell, C.; Keller, S.M.; et al. Cultural factors associated with racial disparities in lung cancer care. Ann. Am. Thorac. Soc. 2014, 11, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Enewold, L.; Zahm, S.H.; Shriver, C.D.; Zhou, J.; Marrogi, A.; McGlynn, K.A.; Zhu, K. Lung cancer survival among black and white patients in an equal access health system. Cancer Epidemiol. Biomark. Prev. 2012, 21, 1841–1847. [Google Scholar] [CrossRef]
- Nazha, B.; Goyal, S.; Chen, Z.; Engelhart, A.; Carlisle, J.W.; Beardslee, T.J.; Gill, H.; Odikadze, L.; Liu, Y.; Mishra, M.K.; et al. Efficacy and safety of immune checkpoint blockade in self-identified Black patients with advanced non-small cell lung cancer. Cancer 2020, 126, 5040–5049. [Google Scholar] [CrossRef] [PubMed]
- Peravali, M.; Ahn, J.; Chen, K.; Rao, S.; Veytsman, I.; Liu, S.V.; Kim, C. Safety and Efficacy of First-Line Pembrolizumab in Black Patients with Metastatic Non-Small Cell Lung Cancer. Oncologist 2021, 26, 694–700. [Google Scholar] [CrossRef]
- Deng, W.; Wang, Y.; Yang, M.; Liu, X.; Yang, Z.; Jiang, W. Racial Disparities in Time to Treatment Initiation for Stage IV Non-Small Cell Lung Cancer Patients Receiving Immunotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, e154. [Google Scholar] [CrossRef]
- Lee, M.; Yu, K.; Kuo, H.Y.; Liu, T.H.; Ko, J.C.; Tsai, J.S.; Wang, J.Y. Outcome of stage IV cancer patients receiving in-hospital cardiopulmonary resuscitation: A population-based cohort study. Sci. Rep. 2019, 9, 9478. [Google Scholar] [CrossRef]
- Azzouqa, A.; Chen, R.; Lou, Y.; Ailawadhi, S.; Manochakian, R. Impact of time to treatment initiation (TTI) on survival of patients with newly diagnosed non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2019, 37, 9058. [Google Scholar] [CrossRef]
- Zhou, Y.; Lin, Z.; Zhang, X.; Chen, C.; Zhao, H.; Hong, S.; Zhang, L. First-line treatment for patients with advanced non-small cell lung carcinoma and high PD-L1 expression: Pembrolizumab or pembrolizumab plus chemotherapy. J. Immunother. Cancer 2019, 7, 120. [Google Scholar] [CrossRef]
- Ayers, K.L.; Mullaney, T.; Zhou, X.; Liu, J.J.; Lee, K.; Ma, M.; Jones, S.; Li, L.; Redfern, A.; Jappe, W.; et al. Analysis of Real-World Data to Investigate the Impact of Race and Ethnicity on Response to Programmed Cell Death-1 and Programmed Cell Death-Ligand 1 Inhibitors in Advanced Non-Small Cell Lung Cancers. Oncologist 2021, 26, e1226–e1239. [Google Scholar] [CrossRef]
- Klarenbeek, S.E.; Aarts, M.J.; van den Heuvel, M.M.; Prokop, M.; Tummers, M.; Schuurbiers, O.C.J. Impact of time-to-treatment on survival for advanced non-small cell lung cancer patients in the Netherlands: A nationwide observational cohort study. Thorax 2023, 78, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.R.; Liao, K.P.; Swisher, S.G.; Blumenschein, G.R.; Erasmus, J.J., Jr.; Buchholz, T.A.; Giordano, S.H.; Smith, B.D. Time to treatment as a quality metric in lung cancer: Staging studies, time to treatment, and patient survival. Radiother. Oncol. 2015, 115, 257–263. [Google Scholar] [CrossRef]
- Khorana, A.A.; Tullio, K.; Elson, P.; Pennell, N.A.; Grobmyer, S.R.; Kalady, M.F.; Raymond, D.; Abraham, J.; Klein, E.A.; Walsh, R.M.; et al. Time to initial cancer treatment in the United States and association with survival over time: An observational study. PLoS ONE 2019, 14, e0213209. [Google Scholar] [CrossRef]
- Cone, E.B.; Marchese, M.; Paciotti, M.; Nguyen, D.D.; Nabi, J.; Cole, A.P.; Molina, G.; Molina, R.L.; Minami, C.A.; Mucci, L.A.; et al. Assessment of Time-to-Treatment Initiation and Survival in a Cohort of Patients With Common Cancers. JAMA Netw. Open 2020, 3, e2030072. [Google Scholar] [CrossRef]
- Khorana, A.A.; Tullio, K.; Elson, P.; Pennell, N.; Kalady, M.; Raymond, D.; Klein, E.; Abraham, J.; Grobmyer, S.; Monteleone, E.; et al. Increase in time to initiating cancer therapy and association with worsened survival in curative settings: A U.S. analysis of common solid tumors. J. Clin. Oncol. 2017, 35, 6557. [Google Scholar] [CrossRef]
- Zyczynski, T.M.; Smith, C.B.; Zhang, Y.; Hao, Y. Analysis of racial disparities in time to treatment initiation and survival among patients with advanced cancers. J. Clin. Oncol. 2021, 39, 127. [Google Scholar] [CrossRef]
- Scheff, R.J.; Schneider, B.J. Non-small-cell lung cancer: Treatment of late stage disease: Chemotherapeutics and new frontiers. Semin. Intervent. Radiol. 2013, 30, 191–198. [Google Scholar] [CrossRef]
- Pakkala, S.; Ramalingam, S.S. Personalized therapy for lung cancer: Striking a moving target. JCI Insight 2018, 3, e120858. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Health. Available online: https://www.cancer.gov/news-events/cancer-currents-blog/2019/lung-cancer-screening-criteria-african-americans (accessed on 23 March 2023).
- Dy, S.M.; Shugarman, L.R.; Lorenz, K.A.; Mularski, R.A.; Lynn, J. RAND-Southern California Evidence-Based Practice Center. A systematic review of satisfaction with care at the end of life. J. Am. Geriatr. Soc. 2008, 56, 124–129. [Google Scholar] [CrossRef]
- Smith, A.K.; Earle, C.C.; McCarthy, E.P. Racial and ethnic differences in end-of-life care in fee-for-service Medicare beneficiaries with advanced cancer. J. Am. Geriatr. Soc. 2009, 57, 153–158. [Google Scholar] [CrossRef]
- Parajuli, J.; Tark, A.; Jao, Y.L.; Hupcey, J. Barriers to palliative and hospice care utilization in older adults with cancer: A systematic review. J. Geriatr. Oncol. 2020, 11, 8–16. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasli, M.; Kannaiyan, R.; Namireddy, P.; Walker, P.; Muzaffar, M. Impact of Race on Outcomes of Advanced Stage Non-Small Cell Lung Cancer Patients Receiving Immunotherapy. Curr. Oncol. 2023, 30, 4208-4221. https://doi.org/10.3390/curroncol30040321
Pasli M, Kannaiyan R, Namireddy P, Walker P, Muzaffar M. Impact of Race on Outcomes of Advanced Stage Non-Small Cell Lung Cancer Patients Receiving Immunotherapy. Current Oncology. 2023; 30(4):4208-4221. https://doi.org/10.3390/curroncol30040321
Chicago/Turabian StylePasli, Melisa, Radhamani Kannaiyan, Praveen Namireddy, Paul Walker, and Mahvish Muzaffar. 2023. "Impact of Race on Outcomes of Advanced Stage Non-Small Cell Lung Cancer Patients Receiving Immunotherapy" Current Oncology 30, no. 4: 4208-4221. https://doi.org/10.3390/curroncol30040321
APA StylePasli, M., Kannaiyan, R., Namireddy, P., Walker, P., & Muzaffar, M. (2023). Impact of Race on Outcomes of Advanced Stage Non-Small Cell Lung Cancer Patients Receiving Immunotherapy. Current Oncology, 30(4), 4208-4221. https://doi.org/10.3390/curroncol30040321