Early Recurrence after Upfront Surgery for Pancreatic Ductal Adenocarcinoma
Abstract
:1. Introduction
2. Material and Methods
Statistical Analysis
3. Results
3.1. Long-Term Outcomes
3.2. Optimal Cut-Off for Definition of ER
3.3. Predictive Factors of Recurrence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Comprehensive Cancer Network. Clinical Practice Guidelines in Oncology Pancreatic Adenocarcinoma. Available online: http://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf (accessed on 31 October 2018).
- Ferrone, C.R.; Pieretti-Vanmarcke, R.; Bloom, J.P.; Zheng, H.; Szymonifka, J.; Wargo, J.A.; Thayer, S.P.; Lauwers, G.Y.; Deshpande, V.; Mino-Kenudson, M.; et al. Pancreatic ductal adenocarcinoma: Long-term survival does not equal cure. Surgery 2012, 152 (Suppl. 1), S43–S49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, K.; Amano, R.; Nakata, B.; Yamazoe, S.; Hirata, K.; Murata, A.; Miura, K.; Nishio, K.; Hirakawa, T. Clinical and pathological features of five-year survivors after pancreatectomy for pancreatic adenocarcinoma. World J. Surg. Oncol. 2014, 12, 360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smeenk, H.G.; Tran, T.C.; Erdmann, J.; van Eijck, C.H.J.; Jeekel, J. Survival after surgical management of pancreatic adenocarcinoma: Does curative and radical surgery truly exist? Langenbecks Arch. Surg. 2005, 390, 94–103. [Google Scholar] [CrossRef] [PubMed]
- La Torre, M.; Nigri, G.; Lo Conte, A.; Mazzuca, F.; Tierno, S.M.; Salaj, A.; Marchetti, P.; Ziparo, V.; Ramacciato, G. Is a preoperative assessment of the early recurrence of pancreatic cancer possible after complete surgical resection? Gut Liver 2014, 8, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Groot, V.; Gemenetzis, G.; Blair, A.B.; Rivero-Soto, R.J.; Yu, J.; Javed, A.A.; Burkhart, R.A.; Rinkes, I.H.M.B.; Molenaar, I.Q.; Cameron, J.L.; et al. Defining and predicting early recurrence in 957 patients with resected pancreatic ductal adenocarcinoma. Ann. Surg. 2019, 269, 1154–1162. [Google Scholar] [CrossRef]
- Sugiura, T.; Uesaka, K.; Kanemoto, H.; Mizuno, T.; Sasaki, K.; Furukawa, H.; Matsunaga, K.; Maeda, A. Serum CA 19-9 is a significant predictor among preoperative parameters for early recurrence after resection of pancreatic adenocarcinoma. J. Gastrointest. Surg. 2012, 16, 977–985. [Google Scholar] [CrossRef]
- Matsumoto, I.; Murakami, Y.; Shinzeki, M.; Asari, S.; Goto, T.; Tani, M.; Motoi, F.; Uemura, K.; Sho, M.; Satoi, S.; et al. Proposed preoperative risk factors for early recurrence in patients with resectable pancreatic ductal adenocarcinoma after surgical resection: A multi-center retrospective study. Pancreatology 2015, 15, 674–680. [Google Scholar] [CrossRef]
- Niedergethmann, M.; Hildebrand, R.; Wostbrock, B.; Hartel, M.; Sturm, J.W.; Richter, A.; Post, S. High expression of vascular endothelial growth factor predicts early recurrence and poor prognosis after curative resection for ductal adenocarcinoma of the pancreas. Pancreas 2002, 25, 122–129. [Google Scholar] [CrossRef]
- Zhai, L.L.; Wu, Y.; Huang, D.W.; Tang, Z.-G. Increased matrix metalloproteinase-2 expression and reduced tissue factor pathway inhibitor-2 expression correlate with angiogenesis and early post-operative recurrence of pancreatic carcinoma. Am. J. Transl. Res. 2015, 7, 2412–2422. [Google Scholar]
- Nishio, K.; Kimura, K.; Amano, R.; Yamazoe, S.; Ohrira, G.; Nakata, B.; Hirawaka, K.; Ohira, M. Preoperative predictors for early recurrence of resectable pancreatic cancer. World J. Surg. Oncol. 2017, 15, 16. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, L.; Vernerey, D.; Bachet, J.B.; Tuech, J.J.; Portales, F.; Michel, P.; Cunha, A.S. Resectable pancreatic adenocarcinoma neo-adjuvant FOLF(IRIN)OX-based chemotherapy—A multicenter, noncomparative, randomized, phase II trial (PANACHE01-PRODIGE48 study. BMC Cancer 2018, 18, 762. [Google Scholar] [CrossRef] [PubMed]
- Labori, K.J.; Lassen, K.; Hoem, D.; Grønbech, J.H.; Søreide, J.A.; Mortensen, K.; Smaaland, R.; Sorbye, H.; Verbeke, C.; Dueland, S. Neoadjuvant chemotherapy versus surgery first for resectable pancreatic cancer (Norwegian Pancreatic Cancer Trial—1 (NorPACT-1))—Study protocol for a national multicentre randomized controlled trial. BMC Surg. 2017, 17, 94. [Google Scholar] [CrossRef] [PubMed]
- Versteijne, E.; van Eijck, C.H.J.; Punt, C.J.A.; Suker, M.; Zwinderman, A.H.; Cohmen, M.A.C.; Groothuis, K.B.C.; Busch, O.R.C. Preoperative radiochemotherapy versus immediate surgery for resectable and borderline resectable pancreatic cancer (PREOPANC trial): Study protocol for a multicentre randomized controlled trial. Trials 2016, 17, 127. [Google Scholar] [CrossRef] [Green Version]
- Tachezy, M.; Gebauer, F.; Petersen, C.; Arnold, D.; Trepel, M.; Wegscheider, K.; Schafhausen, P.; Bockhorn, M.; Izbicki, J.R.; Yekebas, E. Sequential neoadjuvant chemoradiotherapy (CRT) followed by curative surgery vs. primary surgery alone for resectable, non-metastasized pancreatic adenocarcinoma: NEOPA—A randomized multicenter phase III study (NCT01900327, DRKS00003893, ISRCTN82191749). BMC Cancer 2014, 14, 411. [Google Scholar] [CrossRef] [Green Version]
- De Geus, S.W.; Evans, D.B.; Bliss, L.A.; Eskander, M.F.; Smith, J.K.; Wolff, R.A.; Miksad, R.A.; Weinstein, M.C.; Tseng, J.F. Neoadjuvan therapy versus upfront surgical strategies in resectable pancreatic cancer: A Markov decision analysis. Eur. J. Surg. Oncol. 2016, 42, 1552–1560. [Google Scholar] [CrossRef]
- Dhir, M.; Malhotra, G.K.; Sohal, D.P.; Hein, N.A.; Smith, L.M.; O’Reilly, E.M.; Bahary, N.; Are, C. Neoadjuvan treatment of pancreatic adenocarcinoma: A systematic review and meta-analysis of 5520 patients. World J. Surg. Oncol. 2017, 15, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurahara, H.; Maemura, K.; Mataki, Y.; Sakoda, M.; Iino, S.; Kawasaki, Y.; Arigami, T.; Mori, S.; Kijima, Y.; Ueno, S.; et al. A therapeutic strategy for resectable pancreatic cancer based on risk factors of early recurrence. Pancreas 2018, 47, 753–758. [Google Scholar] [CrossRef]
- Tol, J.A.; Gouma, D.J.; Bassi, C.; Dervenis, C.; Montorsi, M.; Adham, M.; Andrén-Sandberg, A.; Asbun, H.J.; Bockhorn, M.; Büchler, M.W.; et al. Definition of a standard lymphadenectomy in surgery for pancreatic ductal adenocarcinoma: A consensus statement by the International Study Group on Pancreatic Surgery (ISGPS). Surgery 2014, 156, 591–600. [Google Scholar] [CrossRef]
- Wente, M.N.; Veit, J.A.; Bassi, C.; Dervenis, C.; Fingerhut, A.; Gouma, D.J.; Izbicki, J.R.; Neoptolemos, J.P.; Padbury, R.T.; Sarr, M.G.; et al. Postpancreatectomy hemorrhage (PPH): An International Study Group of Pancreatic Surgery (ISGPS) definition. Surgery 2007, 142, 20–25. [Google Scholar] [CrossRef]
- Bassi, C.; Marchegiani, G.; Dervenis, C.; Sarr, M.; Abu Hilal, M.; Adham, M.; Allen, P.; Andersson, R.; Asbun, H.J.; Besselink, M.G.; et al. International Study Group on Pancreatic Surgery (ISGPS): The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 Years After. Surgery 2017, 161, 584–591. [Google Scholar] [CrossRef] [Green Version]
- Wente, M.N.; Bassi, C.; Dervenis, C.; Fingerhut, A.; Gouma, D.J.; Izbicki, J.R.; Neoptolemos, J.P.; Padbury, R.T.; Sarr, M.G.; Traverso, L.W.; et al. Delayed gastric emptying (DGE) after pancreatic surgery: A suggested definition by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 2007, 142, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Clavien, P.A.; Barkun, J.; de Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; de Santibañes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C. The Clavien-Dindo classification of surgical complications: Five year experience. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Royal College of Pathologists. Standards and Minimun Datasets for Reporting Cancers. Minimum Dataset for the Histopathological Reporting of Pancreatic, Ampulla of Vater and Bile Duct Carcinoma; The Royal College of Pathologists: London, UK, 2002. [Google Scholar]
- NCCN guidelines. Available online: https://www.nccn.org/professionals/physician_gls/default.aspx (accessed on 1 February 2022).
- Groot, V.P.; Rezaee, N.; Wu, W.; Cameron, J.L.; Fishman, E.; Hruban, R.H.; Weiss, M.J.; Zheng, L.; Wolfgang, C.L.; He, J. Patterns, timing, and predictors of recurrence following pancreatectomy for pancreatic ductal adenocarcinoma. Ann. Surg. 2018, 267, 936–945. [Google Scholar] [CrossRef] [PubMed]
- Suto, H.; Okano, K.; Oshima, M.; Ando, Y.; Takahashi, S.; Shibata, T.; Kamada, H.; Kobara, H.; Masaki, T.; Suzuki, Y. The predictors and patterns of the early recurrence of pancreatic ductal adenocarcinoma after pancreatectomy: The influence of pre-operative and post-operative adjuvant therapy. BMC Surg. 2019, 19, 186. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Huang, X.; Zhang, Y.; Cai, Z.; Lin, X.; Li, S. A quantitative clinicopathological signature for predicting recurrence risk of pancreatic ductal adenocarcinoma after radical resection. Front. Oncol. 2019, 9, 1197. [Google Scholar] [CrossRef] [Green Version]
- Fischer, R.; Breidert, M.; Keck, T.; Makowiec, F.; Lohrmann, C.; Harder, J. Early recurrence of pancreatic cancer after resection and during adjuvant chemotherapy. Saudi J. Gastroenterol. 2012, 18, 118–121. [Google Scholar]
- Varadhachary, G.R.; Tamm, E.P.; Abbruzzese, J.L.; Xiong, H.Q.; Crane, C.H.; Wang, H.; Lee, J.E.; Pisters, P.W.T.; Evans, D.B.; Wolff, R.A. Borderline Resectable Pancreatic Cancer: Definitions, Management, and Role of Preoperative Therapy. Ann. Surg. Oncol. 2006, 13, 1035–1046. [Google Scholar] [CrossRef]
- da Costa, W.Z., Jr.; Cao, H.S.T.; Sheetz, K.H.; Gu, X.; Norton, E.C.; Massarweh, N.N. Comparative Effectiveness of Neoadjuvant Therapy and Upfront Resection for Patients with Resectable Pancreatic Adenocarcinoma: An Instrumental Variable Analysis. Ann. Surg. Oncol. 2020, 28, 3186–3195. [Google Scholar] [CrossRef]
- Oba, A.; Ho, F.; Bao, Q.R.; Al-Musawi, M.H.; Schulick, R.D.; Del Chiaro, M. Neoadjuvant Treatment in Pancreatic Cancer. Front. Oncol. 2020, 10, 245. [Google Scholar] [CrossRef]
- Ikuta, S.; Sonoda, T.; Aihara, T.; Yamanaka, N. A combination of platelet-to lymphocyte ratio and carbohydrate antigen 19-9 predict early recurrence after resection of pancreatic ductal adenocarcinoma. Ann. Transl. Med. 2019, 7, 461. [Google Scholar] [CrossRef]
- Marrelli, D.; Caruso, S.; Pedrazzani, C.; Neri, A.; Fernandes, E.; Marini, M.; Pinto, E.; Roviello, F. CA 19-9 serum levels in obstructive jaundice: Clinical value in benign and malignant conditions. Am. J. Surg. 2009, 198, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Tempero, M.A.; Uchida, E.; Takasaki, H.; Burnett, D.A.; Steplewski, Z.; Pour, P.M. Relationship of carbohydrate antigen 19-9 and Lewis antigens in pancreati cancer. Cancer Res. 1987, 47, 5501–5503. [Google Scholar] [PubMed]
- Oettle, H.; Neuhaus, P.; Hochhaus, A.; Hartmann, J.T.; Gellert, K.; Ridwelski, K.; Niedergethmann, M.; Zulke, C.; Fahlke, J.; Arning, M.B.; et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: The CONKO-001 randomized trial. JAMA Surg. 2013, 310, 1473–1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uesaka, K.; Boku, N.; Fukutomi, A.; Okamura, Y.; Konishi, M.; Matsumoto, I.; Kaneoka, Y.; Shimizu, Y.; Nakamori, S.; Sakamoto, H.; et al. Adjuvant chemotherapy of S-1 versus gemcitabine for resected pancreatic cancer: A phase 3, open-label, randomized, non-inferiority trial (JASPAC01). Lancet 2016, 388, 248–257. [Google Scholar] [CrossRef] [PubMed]
Preoperative Data | |
Sex: | |
(a) male, n. (%) | 189 (53.8%) |
(b) female, n. (%) | 162 (42.1%) |
Age, mean (± SD) | 64.7 (±13.6) |
BMI, mean (± SD) | 24.0 (±3.9) |
Diabetes mellitus, n. (%) | 117 (33.3%) |
Biliary stent, n. (%) | 147 (41.9%) |
C-reactive protein (CRP) (mg/dL) mean (± SD) | 1.6 (±3.6) |
Albumin (g/dL), mean (± SD) | 4.1 (±2.1) |
Neutrophil/lymphocyte ratio (NLR), mean (± SD) | 3.2 (±2.2) |
Platelet/lymphocyte ratio (PLR), mean (± SD) | 157.9 (±71.8) |
CA 19-9 value (IU/), median (range) | 141 (0–32,387) |
Tumor size (mm), mean (± SD) | 2.8 (±1.6) |
Time from diagnosis to surgery, months (mean) | 1.2 (±0.9) |
Operative data | |
Operation procedure: | |
(a) PD, n. (%) | 247 (70.4%) |
(b) DP, n. (%) | 67 (19.1%) |
(c) TP, n. (%) | 37 (10.5%) |
Length of operation (min), mean (± SD) | 451.3 (±112.7) |
Vascular resection, n. (%) | 39 (11.1%) |
Blood loss, mean (± SD) | 449.4 (±350.0) |
Postoperative data | |
Overall morbidity, n. (%) | 170 (48.4%) |
Severe morbidity, n. (%) | 47 (13.4%) |
POPF, n. (%) **: | 46 (14.6%) |
(a) grade B, n. (%) | 38 (12.1%) |
(b) grade C, n. (%) | 8 (2.5%) |
Readmission, n. (%) | 28 (8.0%) |
CA-19.9 value (UI/L), median (range) | 26.5 (0–15,350) |
Adjuvant treatment, n. (%) | 239 (68.1%) |
Pathological data | |
T status: | |
(a) T1, n. (%) | 22 (6.3%) |
(b) T2, n. (%) | 37 (10.5%) |
(c) T3, n. (%) | 290 (82.6%) |
(d) T4, n. (%) | 2 (0.6%) |
Nodal involvement (N+), n. (%) | 273 (77.8%) |
Grading: | |
(a) G1, n. (%) | 4 (1.1%) |
(b) G2, n. (%) | 94 (26.8%)) |
(c) G3, n. (%) | 227 (64.7%) |
(d) G4, n. (%) | 16 (4.6%) |
(e) Gx, n. (%) | 10 (2.8%) |
R1 resection, n. (%) | 201 (57.3%) |
Lymphovascular invasion, n. (%) | 225 (64.1%) |
Perineural invasion, n. (%) | 313 (89.2%) |
Cut-Off | ER | LR | |||
---|---|---|---|---|---|
N. (%) | Median PPS (IC) | N. (%) | Median PPS (IC) | p Value | |
0–6 months | 102 (29.0%) | 7.5 (1–81) | 168 (47.9%) | 10.5 (1–60) | 0.06 |
0–8 months | 132 (37.6%) | 8.5 (1–81) | 138 (39.3%) | 10 (1–60) | 0.01 |
0–12 months | 167 (47.6%) | 8 (1–81) | 103 (29.3%) | 12 (1–60) | 0.005 |
ER (N. 167) | LR ((N. 103) | p Value | |
---|---|---|---|
Preoperative data | |||
Sex: | 0.305 | ||
(a) male, n. (%) | 95 (56.9%) | 52 (50.5%) | |
(b) female, n. (%) | 72 (43.1%) | 51 (49.5%) | |
Age, mean (± SD) | 64.7 (±14.5) | 63.5 (±13.0) | 0.512 |
BMI, mean (± SD) | 24.1 (±4.1) | 23.9 (±3.9) | 0.568 |
Diabetes mellitus, n. (%) | 51 (30.5%) | 38 (36.9%) | 0.281 |
Biliary stent, n. (%) | 77 (46.1%) | 48 (46.6%) | 0.937 |
C-reactive protein (CRP) (mg/dL) mean (± SD) | 1.97 (±4.2) | 1.64 (±3.4) | 0.56 |
Albumin (g/dL), mean (± SD) | 4.01 (±0.7) | 4.05 (±0.3) | 0.60 |
Neutrophil/lymphocyte ratio (NLR), mean (± SD) | 3.41 (±2.8) | 3.13 (±1.6) | 0.36 |
Platelet/lymphocyte ratio (PLR), mean (± SD) | 158.6 (±72.5) | 173.4 (±80.9) | 0.12 |
CA 19-9 value (IU/), median (range) | 1667.8 (±3848.9) | 937.3 (±2977.3) | 0.11 |
Tumor size (mm), mean (± SD) | 2.92 (±1.4) | 2.60 (±1.0) | 0.08 |
Time from diagnosis to surgery, months (mean) | 1.18 (±0.75) | 1.91 (±1.14) | 0.96 |
Operative data | |||
Operation procedure: | 0.449 | ||
(a) PD, n. (%) | 118 (70.7%) | 76 (73.8%) | |
(b) DP, n. (%) | 37 (22.2%) | 17 (16.5%) | |
(c) TP, n. (%) | 12 (7.2%) | 10 (9.7%) | |
Length of operation (min), mean (± SD) | 451.6 (±110.4) | 452.3 (±105.3) | 0.96 |
Vascular resection, n. (%) | 18 (10.8%) | 11 (10.7%) | 0.980 |
Blood loss, mean (± SD) | 488.0 (±409.0) | 406.8 (±271.3) | 0.08 |
Postoperative data | |||
Overall morbidity, n. (%) | 84 (50.3%) | 47 (45.6%) | 0.456 |
Severe morbidity, n. (%) | 26 (15.6%) | 10 (9.7%) | 0.169 |
POPF, n. (%): | 20 (12.9%) | 12 (12.9%) | 1.00 |
(a) grade B, n. (%) | 17 (85.0%) | 10 (83.3%) | |
(b) grade C, n. (%) | 3 (15.0%) | 2 (16.7%) | |
CA-19.9 value (UI/L), median (range) | 526.3 (±1695.2) | 265.9 (±1631.3) | 0.25 |
Adjuvant treatment, n. (%) | 108 (64.7%) | 89 (86.4%) | <0.001 |
Pathological data | |||
T status: | 0.148 | ||
(a) T1, n. (%) | 0 | 4 (3.9%) | |
(b) T2, n. (%) | 17 (10.2%) | 11 (10.7%) | |
(c) T3, n. (%) | 149 (89.2%) | 87 (84.5%) | |
(d) T4, n. (%) | 1 (0.6%) | 1 (1.0%) | |
Nodal involvement (N+), n. (%) | 146 (87.4%) | 88 (85.4%) | 0.64 |
Grading: | 0.17 | ||
(a) G1, n. (%) | 0 (0%) | 0 (0%) | |
(b) G2, n. (%) | 31 (18.6%) | 28 (27.2%) | |
(c) G3, n. (%) | 123 (73.6%) | 72 (70.0%) | |
(d) G4, n. (%) | 12 (7.2%) | 3 (2.9%) | |
(e) Gx, n. (%) | 1 (0.6%) | 0 (0%) | |
R1 resection, n. (%) | 111 (66.5%) | 60 (58.2%) | 0.200 |
Lymphovascular invasion, n. (%) | 123 (73.6%) | 68 (66.0%) | 0.181 |
Perineural invasion, n. (%) | 159 (95.2%) | 99 (96.1%) | 0.725 |
Follow-up data | |||
First site of recurrence *: | 0.726 | ||
(a) loco-regional | 39 (24.1%) | 26 (26.0%) | |
(b) distant | 123 (75.9) | 74 (74.0%) |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
OR (95 IC) | p Value | OR (95 IC) | p Value | |
Sex, female | 0.89 (0.54–1.46) | 0.639 | ||
Age (continuous) | 0.99 (0.97–1.01) | 0.292 | ||
BMI (continuous) | 1.01 (0.95–1.08) | 0.695 | ||
Diabetes mellitus | 0.91 (0.52–1.61) | 0.734 | ||
Biliary stent | 2.31 (1.34–3.99) | 0.003 | 1.03 (0.45–2.38) | 0.941 |
CRP > 14.5 mg/dL | 2.26 (1.31–3.93) | 0.004 | Not evaluable | |
Albumin > 4.1 g/dL | 0.58 (0.35–0.98) | 0.04 | 0.76 (0.33–1.71) | 0.502 |
NLR > 2.3 | 1.65 (1.00–2.72) | 0.052 | ||
PLR > 155.8 | 2.09 (1.23–3.57) | 0.007 | 1.84 (0.82–4.12) | 0.138 |
Pre-op CA 19-9 > 70.5 UI/L | 4.77 (2.80–8.12) | <0.001 | 3.62 (1.42–9.26) | 0.007 |
Tumor size > 2 cm | 1.64 (0.88–3.07) | 0.120 | ||
Time from diagnosis to surgery | 0.91 (0.64–1.29) | 0.595 | ||
Blood loss (continuous) | 1.00 (0.99–1.00) | 0.458 | ||
Overall morbidity | 1.01 (0.60–1.72) | 0.953 | ||
Severe morbidity (Clavien-Dindo > III) | 0.98 (0.46–2.25) | 0.954 | ||
POPF ** | 0.64 (0.31–1.39) | 0.204 | ||
Post-op CA-19.9 > 15 UI/L | 2.63 (1.58–4.39) | <0.001 | 2.05 (0.78–5.42) | 0.146 |
Adjuvant treatment | 1.26 (0.71–2.18) | 0.391 | ||
T3-T4 | 3.72 (1.96–6.98) | <0.001 | 1.61 (0.55–4.68) | 0.381 |
Nodal metastases (N+) | 7.0 (3.85–12.71) | <0.001 | 6.02 (2.02–17.95) | 0.001 |
G3-G4 | 5.09 (2.90–8.94) | <0.001 | 4.22 (1.71–10.38) | 0.002 |
R1 resection | 2.94 (1.70–5.09) | <0.001 | 2.12 (0.94–4.74) | 0.069 |
Lymphovascular invasion | 3.34 (1.94–5.78) | <0.001 | 1.23 (0.49–3.09) | 0.663 |
Perineural invasion | 10.2 (4.58–23.3) | <0.001 | 1.99 (0.34–11.56) | 0.445 |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
OR (95 IC) | p Value | OR (95 IC) | p Value | |
Sex, female | 0.77 (0.47–1.26) | 0.305 | ||
Age (continuous) | 1.01 (0.99–1.02) | 0.512 | ||
BMI (continuous) | 1.02 (0.96–1.08) | 0.567 | ||
Diabetes mellitus | 0.75 (0.45–1.26) | 0.281 | ||
Biliary stent | 0.98 (0.60–1.60) | 0.937 | ||
CRP > 14.5 mg/dL | 1.74 (1.18–17.1) | 0.633 | ||
Albumin > 4.1 g/dL | 0.72 (0.43–1.20) | 0.208 | ||
NLR > 2.3 | 0.72 (0.43–1.22) | 0.222 | ||
PLR > 155.8 | 0.67 (0.41–1.10) | 0.118 | ||
Pre-op CA 19-9 > 70.5 UI/L | 2.40 (1.40–4.09) | 0.001 | 3.10 (1.41–6.81) | 0.005 |
Tumor size > 2 cm | 1.24 (0.97–1.59) | 0.084 | ||
Time from diagnosis to surgery, months (continuous) | 0.99 (0.71–1.39) | 0.963 | ||
Blood loss (continuous) | 1.00 (1.00–1.00) | 0.081 | ||
Overall morbidity | 1.21 (0.74–1.97) | 0.456 | ||
Severe morbidity (Clavien-Dindo > III) | 1.71 (0.79–3.72) | 0.172 | ||
POPF ** | 1.00 (0.46–2.15) | 1.00 | ||
Post-op CA-19.9 > 15 UI/L | 2.38 (1.35–4.20) | 0.003 | 1.18 (0.54–2.55) | 0.681 |
Adjuvant treatment | 0.29 (0.15–0.55) | <0.001 | 0.18 (0.08–0.41) | <0.001 |
T3-T4 | 1.50 (0.72–3.16) | 0.281 | ||
Nodal metastases (N+) | 1.19 (0.58–2.42) | 0.641 | ||
G3-G4 | 1.57 (0.88–2.81) | 0.125 | ||
R1 resection | 1.39 (0.83–2.31) | 0.207 | ||
Lymphovascular invasion | 1.44 (0.84–2.45) | 0.181 | ||
Perineural invasion | 0.80 (0.24–2.74) | 0.726 | ||
Site of recurrence, distant | 1.11 (0.62–1.97) | 0.726 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nappo, G.; Donisi, G.; Capretti, G.; Ridolfi, C.; Pagnanelli, M.; Nebbia, M.; Bozzarelli, S.; Petitti, T.; Gavazzi, F.; Zerbi, A. Early Recurrence after Upfront Surgery for Pancreatic Ductal Adenocarcinoma. Curr. Oncol. 2023, 30, 3708-3720. https://doi.org/10.3390/curroncol30040282
Nappo G, Donisi G, Capretti G, Ridolfi C, Pagnanelli M, Nebbia M, Bozzarelli S, Petitti T, Gavazzi F, Zerbi A. Early Recurrence after Upfront Surgery for Pancreatic Ductal Adenocarcinoma. Current Oncology. 2023; 30(4):3708-3720. https://doi.org/10.3390/curroncol30040282
Chicago/Turabian StyleNappo, Gennaro, Greta Donisi, Giovanni Capretti, Cristina Ridolfi, Michele Pagnanelli, Martina Nebbia, Silvia Bozzarelli, Tommasangelo Petitti, Francesca Gavazzi, and Alessandro Zerbi. 2023. "Early Recurrence after Upfront Surgery for Pancreatic Ductal Adenocarcinoma" Current Oncology 30, no. 4: 3708-3720. https://doi.org/10.3390/curroncol30040282
APA StyleNappo, G., Donisi, G., Capretti, G., Ridolfi, C., Pagnanelli, M., Nebbia, M., Bozzarelli, S., Petitti, T., Gavazzi, F., & Zerbi, A. (2023). Early Recurrence after Upfront Surgery for Pancreatic Ductal Adenocarcinoma. Current Oncology, 30(4), 3708-3720. https://doi.org/10.3390/curroncol30040282