The Use of Artificial Intelligence in Clinical Care: A Values-Based Guide for Shared Decision Making
Abstract
:1. Introduction
2. Shared Decision Making
3. Values Associated with the Use of AI in Clinical Care
4. Recommendations
- Ensure that they have considered the information that the patient may identify as important or relevant to them in the use of a particular technology in their clinical care.
- Have an opportunity to explore patient-specific values associated with the implementation of AI in their care.
- Work with the patient to apply their values to their clinical decision making.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Part 1: Questions Based on Patient Values to Consider Prior to the Conversation | |||
| |||
Part 2: Understanding & Information | |||
| |||
Part 3: Values, Beliefs, Life Goals & Quality of Life | |||
| Examples of values: | ||
□ Trust □ Privacy □ Confidentiality □ Safety □ Non-maleficence | □ Accountability □ Beneficence □ Informed decision making □ Transparency | □ Respect for Autonomy □ Compassion □ Equity, Access, Justice □ Other: | |
Part 4: Explore the Options | |||
| |||
Part 5: Identify the Option(s) that Respects Patient Values | |||
|
References
- Chua, I.S.; Gaziel-Yablowitz, M.; Korach, Z.T.; Kehl, K.L.; Levitan, N.A.; Arriaga, Y.E.; Jackson, G.P.; Bates, D.W.; Hassett, M. Artificial intelligence in oncology: Path to implementation. Cancer Med. 2021, 10, 4138–4149. [Google Scholar] [CrossRef]
- Yin, J.; Ngiam, K.Y.; Teo, H.H. Role of artificial intelligence applications in real-life clinical practice: Systematic review. J. Med. Internet Res. 2021, 23, e25759. [Google Scholar] [CrossRef]
- Kelly, C.J.; Karthikesalingam, A.; Suleyman, M.; Corrado, G.; King, D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019, 17, 195. [Google Scholar]
- Ramkumar, P.N.; Haeberle, H.S.; Bloomfield, M.R.; Schaffer, J.L.; Kamath, A.F.; Patterson, B.M.; Krebs, V.E. Artificial intelligence and arthroplasty at a single institution: Real-world applications of machine learning to big data, value-based care, mobile health, and remote patient monitoring. J. Arthroplast. 2019, 34, 2204–2209. [Google Scholar] [CrossRef]
- Walsh, S.; de Jong, E.E.C.; van Timmeren, J.E.; Ibrahim, A.; Compter, I.; Peerlings, J.; Sanduleanu, S.; Refaee, T.; Keek, S.; Larue, R.T.H.M.; et al. Decision support systems in oncology. JCO Clin. Cancer Inform. 2019, 3, 1–9. [Google Scholar]
- Amann, J.; Vayena, E.; Ormond, K.E.; Frey, D.; Madai, V.I.; Blasimme, A. Expectations and attitudes towards medical artificial intelligence: A qualitative study in the field of stroke. PLoS One 2023, 18, e0279088. [Google Scholar]
- Lim, K.; Neal-Smith, G.; Mitchell, C.; Xerri, J.; Chuanromanee, P. Perceptions of the use of artificial intelligence in the diagnosis of skin cancer: An outpatient survey. Clin. Exp. Dermatol. 2022, 47, 542–546. [Google Scholar]
- Richardson, J.P.; Curtis, S.; Smith, C.; Pacyna, J.; Zhu, X.; Barry, B.; Sharp, R.R. A framework for examining patient attitudes regarding applications of artificial intelligence in healthcare. Digit. Health 2022, 8, 1–10. [Google Scholar]
- Yap, A.; Wilkinson, B.; Chen, E.; Han, L.; Vaghefi, E.; Galloway, C.; Squirrell, D. Patients perceptions of artificial intelligence in diabetic eye screening. Asia Pac. J. Ophthalmol. 2022, 11, 287–293. [Google Scholar] [CrossRef]
- Aggarwal, R.; Farag, S.; Martin, G.; Ashrafian, H.; Darzi, A. Patient perceptions on data sharing and applying artificial intelligence to health care data: Cross-sectional survey. J. Med. Internet Res. 2021, 23, e26162. [Google Scholar]
- Barazzetti, G.; Bosisio, F. A value-oriented framework for precision medicine. Am. J. Bioeth. 2021, 21, 88–90. [Google Scholar]
- Bhandari, A.; Purchuri, S.N.; Sharma, C.; Ibrahim, M.; Prior, M. Knowledge and attitudes towards artificial intelligence in imaging: A look at the quantitative survey literature. Clin. Imaging 2021, 80, 413–419. [Google Scholar]
- Erdmann, A.; Rehmann-Sutter, C.; Bozzaro, C. Patients’ and professionals’ views related to ethical issues in precision medicine: A mixed research synthesis. BMC Med. Ethics 2021, 22, 116. [Google Scholar]
- Hirsch, B. Artificial intelligence in diagnostic imaging and radiation therapy. Radiol. Technol. 2021, 92, 577–592. [Google Scholar]
- Richardson, J.P.; Smith, C.; Curtis, S.; Watson, S.; Zhu, X.; Barry, B.; Sharp, R.R. Patient apprehensions about the use of artificial intelligence in healthcare. NPJ Digit. Med. 2021, 4, 140. [Google Scholar] [CrossRef]
- Scott, I.A.; Carter, S.M.; Coiera, E. Exploring stakeholder attitudes towards AI in clinical practice. BMJ Health Care Inform. 2021, 28, e100450. [Google Scholar] [CrossRef]
- Tseng, R.M.W.W.; Gunasekeran, D.V.; Tan, S.S.H.; Rim, T.H.; Lum, E.; Tan, G.S.W.; Wong, T.Y.; Tham, Y.-C. Considerations for artificial intelligence real-world implementation in ophthalmology: Providers’ and patients’ perspectives. Asia Pac. J. Ophthalmol. 2021, 10, 299–306. [Google Scholar]
- Young, A.T.; Amara, D.; Bhattacharya, A.; Wei, M.L. Patient and general public attitudes towards clinical artificial intelligence: A mixed methods systematic review. Lancet Digit. Health 2021, 3, e599–e611. [Google Scholar]
- Adams, S.J.; Tang, R.; Babyn, P. Patient perspectives and priorities regarding artificial intelligence in radiology: Opportunities for patient-centered radiology. J. Am. Coll. Radiol. 2020, 17, 1034–1036. [Google Scholar] [CrossRef]
- Jutzi, T.B.; Krieghoff-Henning, E.I.; Holland-Letz, T.; Utikal, J.S.; Hauschild, A.; Schadendorf, D.; Sondermann, W.; Fröhling, S.; Hekler, A.; Schmitt, M.; et al. Artificial intelligence in skin cancer diagnostics: The patients’ perspective. Front. Med. 2020, 7, 233. [Google Scholar] [CrossRef]
- Kendell, C.; Kotecha, J.; Martin, M.; Han, H.; Jorgensen, M.; Urquhart, R. Patient and caregiver perspectives on early identification for advance care planning in primary healthcare settings. BMC Fam. Pract. 2020, 21, 136. [Google Scholar] [CrossRef]
- McCradden, M.D.; Baba, A.; Saha, A.; Ahmad, S.; Boparai, K.; Fadaiefard, P.; Cusimano, M.D. Ethical concerns around use of artificial intelligence in health care research from the perspective of patients with meningioma, caregivers and health care providers: A qualitative study. CMAJ Open 2020, 8, E90–E95. [Google Scholar]
- Nelson, C.A.; Pérez-Chada, L.M.; Creadore, A.; Li, S.J.; Lo, K.; Manjaly, P.; Pournamdari, A.B.; Tkachenko, E.; Barbieri, J.S.; Ko, J.M.; et al. Patient perspectives on the use of artificial intelligence for skin cancer screening: A qualitative study. JAMA Dermatol. 2020, 156, 501–512. [Google Scholar]
- Ongena, Y.P.; Haan, M.; Yakar, D.; Kwee, T.C. Patients’ views on the implementation of artificial intelligence in radiology: Development and validation of a standardized questionnaire. Eur. Radiol. 2020, 30, 1033–1040. [Google Scholar] [CrossRef] [Green Version]
- Palmisciano, P.; Jamjoom, A.A.B.; Taylor, D.; Stoyanov, D.; Marcus, H.J. Attitudes of patients and their relatives toward artificial intelligence in neurosurgery. World Neurosurg. 2020, 138, e627–e633. [Google Scholar] [CrossRef]
- Haan, M.; Ongena, Y.P.; Hommes, S.; Kwee, T.C.; Yakar, D. A qualitative study to understand patient perspective on the use of artificial intelligence in radiology. J. Am. Coll. Radiol. 2019, 16, 1416–1419. [Google Scholar] [CrossRef]
- Tran, V.-T.; Riveros, C.; Ravaud, P. Patients’ views of wearable devices and AI in healthcare: Findings from the ComPaRe e-cohort. NPJ Digit. Med. 2019, 2, 53. [Google Scholar]
- Yang, K.; Zeng, Z.; Peng, H.; Jiang, Y. Attitudes of Chinese cancer patients toward the clinical use of artificial intelligence. Patient Prefer. Adherence 2019, 13, 1867–1875. [Google Scholar] [CrossRef]
- Abbasgholizadeh Rahimi, S.; Cwintal, M.; Huang, Y.; Ghadiri, P.; Grad, R.; Poenaru, D.; Gore, G.; Tchala Vignon Zomahoun, H.; Légaré, F.; Pluye, P. Application of artificial intelligence in shared decision making: Scoping review. JMIR Med. Inform. 2022, 10, e36199. [Google Scholar]
- Kovarik, C.L. Patient perspectives on the use of artificial intelligence. JAMA Dermatol. 2020, 156, 493–494. [Google Scholar] [CrossRef]
- Gundersen, T.; Bærøe, K. The future ethics of artificial intelligence in medicine: Making sense of collaborative models. Sci. Eng. Ethics 2022, 28, 17. [Google Scholar]
- Bjerring, J.C.; Busch, J. Artificial intelligence and patient-centered decision-making. Philos. Technol. 2021, 34, 349–371. [Google Scholar]
- Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V.I.; Precise4Q consortium. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 2020, 20, 310. [Google Scholar]
- Kerasidou, A. Artificial intelligence and the ongoing need for empathy, compassion and trust in healthcare. Bull. World Health Organ. 2020, 98, 245–250. [Google Scholar] [CrossRef]
- McDougall, R.J. Computer knows best? The need for value-flexibility in medical AI. J. Med. Ethics 2019, 45, 156–160. [Google Scholar] [CrossRef]
- Birch, J.; Creel, K.A.; Jha, A.K.; Plutynski, A. Clinical decisions using AI must consider patient values. Nat. Med. 2022, 28, 229–232. [Google Scholar] [CrossRef]
- Charles, C.; Gafni, A.; Whelan, T. Shared decision-making in the medical encounter: What does it mean? (or it takes at least two to tango). Sco. Sci. Med. 1997, 44, 681–692. [Google Scholar]
- Barry, M.J.; Edgman-Levitan, S. Shared decision making—Pinnacle of patient-centered care. N. Engl. J. Med. 2012, 366, 780–781. [Google Scholar]
- Elwyn, G.; Frosch, D.; Thomson, R.; Joseph-Williams, N.; Lloyd, A.; Kinnersley, P.; Cording, E.; Tomson, D.; Dodd, C.; Rollnick, S.; et al. Shared decision making: A model for clinical practice. J. Gen. Intern. Med. 2012, 27, 1361–1367. [Google Scholar] [CrossRef]
- Kunneman, M.; Montori, V.M.; Castaneda-Guarderas, A.; Hess, E.P. What is shared decision making? (and what it is not). Acad. Emerg. Med. 2016, 23, 1320–1324. [Google Scholar]
- Noseworthy, P.A.; Brito, J.P.; Kunneman, M.; Hargraves, I.G.; Zeballos-Palacios, C.; Montori, V.M.; Ting, H.H. Shared decision-making in atrial fibrillation: Navigating complex issues in partnership with the patient. J. Interv. Card. Electrophysiol. 2019, 56, 159–163. [Google Scholar]
- Braun, M.; Hummel, P.; Beck, S.; Dabrock, P. Primer on an ethics of AI-based decision support systems in the clinic. J. Med. Ethics 2020, 47, e3. [Google Scholar]
- Rigby, M.J. Ethical dimensions of using artificial intelligence in health care. AMA J. Ethics 2019, 21, 121–124. [Google Scholar]
- Ghassemi, M.; Mohamed, S. Machine learning and health need better values. NPJ Digit. Med. 2022, 5, 51. [Google Scholar]
- Jungmann, F.; Jorg, T.; Hahn, F.; Pinto Dos Santos, D.; Jungmann, S.M.; Düber, C.; Mildenberger, P.; Kloeckner, R. Attitudes toward artificial intelligence among radiologists, IT specialists, and industry. Acad. Radiol. 2021, 28, 834–840. [Google Scholar] [CrossRef]
- Nelson, C.A.; Pachauri, S.; Balk, R.; Miller, J.; Theunis, R.; Ko, J.M.; Kovarik, C.L. Dermatologists’ perspectives on artificial intelligence and augmented intelligence — A cross-sectional survey. JAMA Dermatol. 2021, 157, 871–874. [Google Scholar]
- Laï, M.-C.; Brian, M.; Mamzer, M.-F. Perceptions of artificial intelligence in healthcare: Findings from a qualitative survey study among actors in France. J. Transl. Med. 2020, 18, 14. [Google Scholar]
- Association for Computing Machinery Technology Policy Council. Statement on Principles for Responsible Algorithmic Systems. Washington, DC: Association for Computing Machinery. 2022. Available online: https://www.acm.org/articles/bulletins/2022/november/tpc-statement-responsible-algorithmic-systems (accessed on 26 January 2023).
- Shaw, J.A.; Donia, J. The sociotechnical ethics of digital health: A critique and extension of approaches from bioethics. Front. Digit. Health 2021, 3, 725088. [Google Scholar]
- Donia, J.; Shaw, J.A. Ethics and values in design: A structured review and theoretical critique. Sci. Eng. Ethics 2021, 27, 57. [Google Scholar]
- University of Toronto Joint Centre for Bioethics CORE Network. IDEA Worksheet; University of Toronto Joint Centre for Bioethics CORE Network: Toronto, ON, Canada, 2007; Adapted from Jonsen, A.; Siegler, M.; Winslade, W. Clinical Ethics: A Practical Approach to Ethics Decisions in Clinical Medicine, 5th ed.; McGraw-Hill Medical: New York, NY, USA, 2002. [Google Scholar]
- Toronto Central Community Care Access Centre. Community Ethics Toolkit; Toronto Central Community Care Access Centre: Toronto, ON, Canada, 2008. [Google Scholar]
- Incardona, N.; Myers, J. Advance Care Planning Conversation Documentation Template; Hospice Palliative Care Ontario: Toronto, ON, Canada, 2015; Available online: https://www.pcdm.ca/HPCO/Assets/Documents/PDFs/ACP%20Conversation%20Template.pdf (accessed on 4 August 2022).
- Kaya, E.; Steinberg, L.; Incardona, N.; Myers, J.; Ailon, J.; Chakraborty, A.; Grossman, D.; Perri, G.-A.; Wentlandt, K.; You, J.; et al. Goals of Care Discussion Documentation Template; Hospice Palliative Care Ontario: Toronto, ON, Canada, 2019; Available online: https://www.pcdm.ca/HPCO/Assets/Documents/PDFs/Goals%20of%20Care%20Conversation%20Template-1.pdf (accessed on 4 August 2022).
- Ariadne Labs. Serious Illness Conversation Guide. Boston, MA, USA: Ariadne Labs; 2015. In Sirianni, G.; Torabi, S. Addressing serious illness conversations during COVID-19. Can. Fam. Physician 2020, 66, 533–536.
Value * | Definition |
---|---|
Trust | A belief in the reliability, truth, and ability of someone or something.
|
Privacy and confidentiality | The obligation to keep private health information confidential.
|
Non-maleficence | The obligation of moral agents (developers, tech companies, hospitals, researchers, clinicians, etc.) to avoid harm to patients.
|
Safety | Avoid injury and reduce risks of harm.
|
Accountability | The obligation of moral agents (developers, tech companies, hospitals, researchers, clinicians, etc.) to accept responsibility or account for one’s actions.
|
Beneficence | Promoting the highest quality of safe and effective care.
|
Informed decision making: respect for autonomy and transparency | Respect people’s right to self-determination such that their views, decisions and actions are based on their personal values and beliefs.
|
Compassion | Be sympathetic to the distress of the patient.
|
Equity, access, and justice | Promote equity by ensuring that individuals and populations are treated based upon their unique needs; that relevant differences are considered; and that special attention is paid to actions that might further disadvantage the already-disadvantaged or vulnerable.
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macri, R.; Roberts, S.L. The Use of Artificial Intelligence in Clinical Care: A Values-Based Guide for Shared Decision Making. Curr. Oncol. 2023, 30, 2178-2186. https://doi.org/10.3390/curroncol30020168
Macri R, Roberts SL. The Use of Artificial Intelligence in Clinical Care: A Values-Based Guide for Shared Decision Making. Current Oncology. 2023; 30(2):2178-2186. https://doi.org/10.3390/curroncol30020168
Chicago/Turabian StyleMacri, Rosanna, and Shannon L. Roberts. 2023. "The Use of Artificial Intelligence in Clinical Care: A Values-Based Guide for Shared Decision Making" Current Oncology 30, no. 2: 2178-2186. https://doi.org/10.3390/curroncol30020168
APA StyleMacri, R., & Roberts, S. L. (2023). The Use of Artificial Intelligence in Clinical Care: A Values-Based Guide for Shared Decision Making. Current Oncology, 30(2), 2178-2186. https://doi.org/10.3390/curroncol30020168