Safety and Efficacy of Concurrent Atezolizumab/Bevacizumab or Nivolumab Combination Therapy with Yttrium-90 Radioembolization of Advanced Unresectable Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Clinical Information and Outcomes
2.3. Imaging Information
2.4. Radioembolization Procedure
2.5. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. Treatment Outcome and Toxicity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Samant, H.; Amiri, H.S.; Zibari, G.B. Addressing the worldwide hepatocellular carcinoma: Epidemiology, prevention and management. J. Gastrointest. Oncol. 2021, 12, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, A.; Waked, I. Management of advanced hepatocellular carcinoma: Review of current and potential therapies. Hepatoma Res. 2017, 3, 112–122. [Google Scholar] [CrossRef]
- Giannini, E.G.; Farinati, F.; Ciccarese, F.; Pecorelli, A.; Rapaccini, G.L.; Di Marco, M.; Benvegnù, L.; Caturelli, E.; Zoli, M.; Borzio, F.; et al. Prognosis of untreated hepatocellular carcinoma. Hepatology 2015, 61, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, W.; Jiang, L.; Chen, Y. Recent advances in systemic therapy for hepatocellular carcinoma. Biomark. Res. 2022, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.-F.; De Oliveira, A.C.; Santoro, A.; Raoul, J.-L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.-K.; Van Dao, T.; De Toni, E.N.; et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evid. 2022, 1, 8. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.-H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.-W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.-H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.-L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.-Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J.-W.; et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N. Engl. J. Med. 2018, 379, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Okusaka, T.; Motomura, K.; Ohno, I.; Morimoto, M.; Seo, S.; Wada, Y.; Sato, S.; Yamashita, T.; Furukawa, M.; et al. Ramucirumab after prior sorafenib in patients with advanced hepatocellular carcinoma and elevated alpha-fetoprotein: Japanese subgroup analysis of the REACH-2 trial. J. Gastroenterol. 2020, 55, 627. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.; Kang, Y.-K.; Kim, T.-Y.; El-Khoueiry, A.B.; Santoro, A.; Sangro, B.; Melero, I.; Kudo, M.; Hou, M.-M.; Matilla, A.; et al. Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients With Advanced Hepatocellular Carcinoma Previously Treated With Sorafenib: The CheckMate 040 Randomized Clinical Trial. JAMA Oncol. 2020, 6, e204564. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.-L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Chow, P.K.; Gandhi, M.; Tan, S.-B.; Khin, M.W.; Khasbazar, A.; Ong, J.; Choo, S.P.; Cheow, P.C.; Chotipanich, C.; Lim, K.; et al. SIRveNIB: Selective Internal Radiation Therapy Versus Sorafenib in Asia-Pacific Patients With Hepatocellular Carcinoma. J. Clin. Oncol. 2018, 36, 1913–1921. [Google Scholar] [CrossRef]
- Vilgrain, V.; Pereira, H.; Assenat, E.; Guiu, B.; Ilonca, A.D.; Pageaux, G.-P.; Sibert, A.; Bouattour, M.; Lebtahi, R.; Allaham, W.; et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): An open-label randomised controlled phase 3 trial. Lancet Oncol. 2017, 18, 1624–1636. [Google Scholar] [CrossRef]
- Ricke, J.; Klümpen, H.J.; Amthauer, H.; Bargellini, I.; Bartenstein, P.; de Toni, E.N.; Gasbarrini, A.; Pech, M.; Peck-Radosavljevic, M.; Popovič, P.; et al. Impact of combined selective internal radiation therapy and sorafenib on survival in advanced hepatocellular carcinoma. J. Hepatol. 2019, 71, 1164–1174. [Google Scholar] [CrossRef]
- van Doorn, D.J.; Takkenberg, R.B.; Klümpen, H.-J. Immune Checkpoint Inhibitors in Hepatocellular Carcinoma: An Overview. Pharmaceuticals 2021, 14, 3. [Google Scholar] [CrossRef]
- Hickey, R.M.; Kulik, L.M.; Nimeiri, H.; Kalyan, A.; Kircher, S.; Desai, K.; Riaz, A.; Lewandowski, R.J.; Salem, R. Immuno-oncology and Its Opportunities for Interventional Radiologists: Immune Checkpoint Inhibition and Potential Synergies with Interventional Oncology Procedures. J. Vasc. Interv. Radiol. 2017, 28, 1487–1494. [Google Scholar] [CrossRef]
- Common Terminology Criteria for Adverse Events (CTCAE) Common Terminology Criteria for Adverse Events (CTCAE) v5.0. 2017. Available online: https://www.meddra.org/ (accessed on 5 December 2019).
- Llovet, J.M.; Lencioni, R. mRECIST for HCC: Performance and novel refinements. J. Hepatol. 2020, 72, 288–306. [Google Scholar] [CrossRef]
- Kokabi, N.; Camacho, J.C.; Xing, M.; El-Rayes, B.F.; Spivey, J.R.; Knechtle, S.J.; Kim, H.S. Open-label prospective study of the safety and efficacy of glass-based yttrium 90 radioembolization for infiltrative hepatocellular carcinoma with portal vein thrombosis. Cancer 2015, 121, 2164–2174. [Google Scholar] [CrossRef]
- Villalobos, A.; Soliman, M.M.; Majdalany, B.S.; Schuster, D.M.; Galt, J.; Bercu, Z.L.; Kokabi, N. Yttrium-90 Radioembolization Dosimetry:What Trainees Need to Know. Semin. Interv. Radiol. 2020, 37, 543–554. [Google Scholar] [CrossRef]
- Hermann, A.-L.; Dieudonné, A.; Ronot, M.; Sanchez, M.; Pereira, H.; Chatellier, G.; Garin, E.; Castera, L.; Lebtahi, R.; Vilgrain, V. Relationship of tumor radiation–absorbed dose to survival and response in hepatocellular carcinoma treated with transarterial radioembolization with 90Y in the SARAH study. Radiology 2020, 296, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, R.J.; Gabr, A.; Abouchaleh, N.; Ali, R.; Al Asadi, A.; Mora, R.A.; Kulik, L.; Ganger, D.; Desai, K.; Thornburg, B.; et al. Radiation segmentectomy: Potential curative therapy for early hepatocellular carcinoma. Radiology 2018, 287, 1050–1058. [Google Scholar] [CrossRef]
- Levillain, H.; Bagni, O.; Deroose, C.M.; Dieudonné, A.; Gnesin, S.; Grosser, O.S.; Kappadath, S.C.; Kennedy, A.; Kokabi, N.; Liu, D.M.; et al. International recommendations for personalised selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres. Eur. J. Nucl. Med. 2021, 48, 1570–1584. [Google Scholar] [CrossRef] [PubMed]
- Torkian, P.; Haghshomar, M.; Farsad, K.; Wallace, S.; Golzarian, J.; Young, S.J. Cancer Immunology: Impact of Radioembolization of Heptocellular Carcinoma on Immune Response Modulation. Am. J. Roentgenol. 2023, 220, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Wang, Y.; Ungchusri, E.; Patel, M.; Pillai, A.; Van Ha, T.; Liao, C.-Y.; Ahmed, O. Introducing yttrium-90 radioembolization to atezolizumab and bevacizumab regimen for intermediate and advanced stage hepatocellular carcinoma: A preliminary report of safety and effectiveness. J. Clin. Oncol. 2023, 41, e16231. [Google Scholar] [CrossRef]
- Marinelli, B.; Cedillo, M.; Pasik, S.D.; Charles, D.; Murthy, S.; Patel, R.S.; Fischman, A.; Ranade, M.; Bishay, V.; Nowakowski, S.; et al. Safety and Efficacy of Locoregional Treatment during Immunotherapy with Nivolumab for Hepatocellular Carcinoma: A Retrospective Study of 41 Interventions in 29 Patients. J. Vasc. Interv. Radiol. 2020, 31, 1729–1738. [Google Scholar] [CrossRef]
- Zhan, C.; Ruohoniemi, D.; Shanbhogue, K.P.; Wei, J.; Welling, T.H.; Gu, P.; Park, J.S.; Dagher, N.N.; Taslakian, B.; Hickey, R.M. Safety of Combined Yttrium-90 Radioembolization and Immune Checkpoint Inhibitor Immunotherapy for Hepatocellular Carcinoma. J. Vasc. Interv. Radiol. 2020, 31, 25–34. [Google Scholar] [CrossRef]
- de la Torre-Aláez, M.; Matilla, A.; Varela, M.; Iñarrairaegui, M.; Reig, M.; Lledó, J.L.; Arenas, J.I.; Lorente, S.; Testillano, M.; Márquez, L.; et al. Original research: Nivolumab after selective internal radiation therapy for the treatment of hepatocellular carcinoma: A phase 2, single-arm study. J. Immunother. Cancer 2022, 10, 5457. [Google Scholar] [CrossRef] [PubMed]
- Tai, D.; Loke, K.; Gogna, A.; Kaya, N.A.; Tan, S.H.; Hennedige, T.; Ng, D.; Irani, F.; Lee, J.; Lim, J.Q.; et al. Radioembolisation with Y90-resin microspheres followed by nivolumab for advanced hepatocellular carcinoma (CA 209-678): A single arm, single centre, phase 2 trial. Lancet Gastroenterol. Hepatol. 2021, 6, 1025–1035. [Google Scholar] [CrossRef] [PubMed]
- McRee, A.J.; Helft, P.R.; Harris, W.P.; Sanoff, H.K.; Johnson, M.; Yu, M.; O’Neil, B. A study of pembrolizumab (pembro) in combination with Y90 radioembolization in patients (pts) with poor prognosis hepatocellular carcinoma (HCC) with preserved liver function. J. Clin. Oncol. 2022, 40, 422. [Google Scholar] [CrossRef]
Characteristic | Total (N = 19) | Atezolizumab + Bevacizumab (N = 10) | Nivolumab (N = 9) | p-Value |
---|---|---|---|---|
Median age (IQR), year | 69 (64–73) | 66 (62–70) | 72 (67–76) | 0.2 |
Male gender, no. (%) | 16 (84) | 10 (100) | 6 (67) | 0.02 * |
Ethnicity, no. (%) | ||||
Caucasian | 11 (58) | 8 (80) | 3 (34) | 0.06 |
African American | 6 (32) | 2 (20) | 4 (44) | |
Asian | 2 (10) | 0 (0) | 2 (22) | |
Present etiologies of liver disease, no. (%) | ||||
Hepatitis B virus | 1 (5) | 0 (0) | 1 (11) | 0.2 |
Hepatitis C virus | 9 (53) | 7 (70) | 2 (22) | 0.09 |
EtOH abuse | 4 (21) | 2 (20) | 2 (22) | 0.9 |
Non-alcoholic steatohepatitis | 2 (11) | 0 (0) | 2 (22) | 0.07 |
Idiopathic | 5 (26) | 1 (10) | 4 (44) | 0.1 |
ECOG performance status, no. (%) | ||||
0 | 7 (37) | 6 (60) | 1 (11) | 0.02 * |
1 | 9 (47) | 4 (40) | 5 (56) | |
2 | 3 (16) | 0 (0) | 3 (33) | |
ALBI grade, no. (%) | ||||
1 | 9 (47) | 5 (50) | 4 (44) | 0.8 |
2 | 10 (53) | 5 (50) | 5 (56) | |
Child–Pugh class, no. (%) | ||||
A | 17 (89) | 9 (90) | 8 (89) | 0.9 |
B | 2 (11) | 1 (10) | 1 (11) | |
BCLC stage, no. (%) | ||||
A | 1 (5) | 1 (10) | 0 (0) | 0.5 |
B | 2 (11) | 1 (10) | 1 (11) | |
C | 16 (84) | 8 (80) | 8 (89) | |
Median MELD (IQR) | 10 (7–13) | 10 (8–14) | 12 (7–15) | 0.6 |
Median AAPR (IQR) | 0.37 (0.29–0.50) | 0.35 (0.28–0.51) | 0.38 (0.26–0.53) | 0.7 |
Alpha-fetoprotein ≥ 400 ng/mL, no. (%) | 7 (37) | 5 (50) | 2 (22) | 0.2 |
Prior local therapy to targeted lesion(s), no. (%) | 5 (26) | 3 (30) | 2 (22) | 0.7 |
Prior systemic therapy, no. (%) | 3 (16) | 0 (0) | 3 (33) | 0.2 |
Median months since diagnosis to protocol start date (IQR) | 11.5 (1.7–33.6) | 10.6 (1.7–34.2) | 11.5 (5.3–28.7) | 0.7 |
Characteristic | Total (N = 19) | Atezolizumab + Bevacizumab (N = 10) | Nivolumab (N = 9) | p-Value |
---|---|---|---|---|
Received Y90-RS, no. (%) | 7 (37) | 4 (40) | 3 (33) | 0.8 |
Received resin-based Y90-RE, no. (%) | 8 (42) | 4 (40) | 4 (44) | 0.8 |
Cirrhosis, no. (%) | 16 (79) | 8 (80) | 8 (78) | 0.9 |
Vascular invasion, no. (%) | 6 (32) | 4 (40) | 2 (22) | 0.4 |
Extrahepatic spread, no. (%) | 5 (26) | 4 (40) | 1 (11) | 0.1 |
Presence of bilobar disease, no. (%) | 7 (33) | 4 (40) | 3 (33) | 0.8 |
Presence of non-targeted tumors, no. (%) | 7 (37) | 3 (30) | 4 (44) | 0.5 |
Median targeted tumor size, mm (IQR) | ||||
Largest tumor size | 35 (17–68) | 36 (19–64) | 34 (17–76) | 0.9 |
Cumulative size of tumors | 51 (20–83) | 51 (26–81) | 51 (17–85) | 0.9 |
Median lung shunt fraction (IQR) | 5 (4.0–7.7) | 4.2 (3.8–5.6) | 6.8 (5.4–7.8) | 0.1 |
Variable | Total (N = 19) | Atezolizumab + Bevacizumab (N = 10) | Nivolumab (N = 9) | p-Value |
---|---|---|---|---|
Complete response, no. (%) | 3 (16) | 1 (10) | 2 (22) | 0.7 |
Partial response, no. (%) | 8 (42) | 5 (50) | 3 (33) | |
Stable disease, no. (%) | 1 (5) | 0 (0) | 1 (11) | |
Progressive disease, no. (%) | 2 (11) | 1 (10) | 1 (11) | |
Data missing, no. (%) | 5 (26) | 3 (30) | 2 (22) | |
Objective response, no. (%) | 11 (58) | 6 (60) | 5 (56) | 0.7 |
Disease control, no. (%) | 12 (63) | 6 (60) | 6 (67) | 0.9 |
Characteristic | Total Any Grade (N = 19) | Atezolizumab + Bevacizumab (N = 10) | Nivolumab (N = 9) | Difference in Any Grade Adverse Event (p-Value) | ||||
---|---|---|---|---|---|---|---|---|
Clinical Adverse Events, no. (%) | Any Grade | Grade 1/2 | Grade 3 | Any Grade | Grade 1/2 | Grade 3 | ||
Encephalopathy | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0.5 |
Ascites | 4 (21) | 3 (30) | 3 (30) | 0 (0) | 1 (11) | 1 (11) | 0 (0) | 0.4 |
Fatigue | 9 (47) | 4 (40) | 4 (40) | 0 (0) | 5 (56) | 4 (44) | 1 (11) | 0.6 |
Abdominal pain | 5 (26) | 2 (20) | 2 (20) | 0 (0) | 3 (33) | 3 (33) | 0 (0) | 0.2 |
Nausea | 1 (5) | 0 (0) | 0 (0) | 0 (0) | 1 (11) | 1 (11) | 0 (0) | 0.3 |
Vomiting | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0.5 |
Anorexia | 1 (5) | 1 (10) | 1 (10) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0.4 |
Constipation | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0.5 |
Fever | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0.5 |
Any clinical adverse event | 11 (58) | 6 (60) | --- | --- | 5 (56) | --- | --- | 0.7 |
Missing data | 3 (16) | 1 (10) | --- | --- | 2 (22) | --- | --- | |
Laboratory Adverse Events, No. (%) | ||||||||
INR | 6 (32) | 3 (30) | 3 (30) | 0 (0) | 3 (33) | 3 (33) | 0 (0) | 0.6 |
Aspartate transferase | 10 (53) | 6 (60) | 6 (60) | 0 (0) | 4 (44) | 4 (44) | 0 (0) | 0.7 |
Alkaline phosphatase | 8 (42) | 6 (60) | 6 (60) | 0 (0) | 2 (22) | 2 (22) | 0 (0) | 0.3 |
Alanine aminotransferase | 2 (11) | 1 (10) | 1 (10) | 0 (0) | 1 (11) | 1 (11) | 0 (0) | 0.8 |
Total bilirubin | 7 (37) | 6 (60) | 6 (60) | 0 (0) | 1 (11) | 1 (11) | 0 (0) | 0.1 |
Creatinine | 4 (21) | 2 (20) | 2 (20) | 0 (0) | 2 (22) | 2 (22) | 0 (0) | 0.9 |
Albumin | 8 (42) | 5 (50) | 5 (50) | 0 (0) | 3 (33) | 3 (33) | 0 (0) | 0.7 |
Sodium | 12 (63) | 6 (60) | 6 (60) | 0 (0) | 6 (67) | 6 (67) | 0 (0) | 0.5 |
Neutrophils | 5 (26) | 3 (30) | 3 (30) | 0 (0) | 2 (22) | 2 (22) | 0 (0) | 0.7 |
Lymphocytes | 16 (84) | 9 (90) | 4 (40) | 5 (50) | 7 (78) | 5 (56) | 2 (22) | 0.4 |
White blood count | 6 (32) | 3 (30) | 3 (30) | 0 (0) | 3 (33) | 3 (33) | 0 (0) | 0.2 |
Any laboratory adverse event | 16 (84) | 9 (90) | --- | --- | 7 (78) | --- | --- | 0.5 |
Missing data | 3 (16) | 1 (10) | --- | --- | 2 (22) | --- | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villalobos, A.; Dabbous, H.H.; Little, O.; Gbolahan, O.B.; Akce, M.; Lilly, M.A.; Bercu, Z.; Kokabi, N. Safety and Efficacy of Concurrent Atezolizumab/Bevacizumab or Nivolumab Combination Therapy with Yttrium-90 Radioembolization of Advanced Unresectable Hepatocellular Carcinoma. Curr. Oncol. 2023, 30, 10100-10110. https://doi.org/10.3390/curroncol30120734
Villalobos A, Dabbous HH, Little O, Gbolahan OB, Akce M, Lilly MA, Bercu Z, Kokabi N. Safety and Efficacy of Concurrent Atezolizumab/Bevacizumab or Nivolumab Combination Therapy with Yttrium-90 Radioembolization of Advanced Unresectable Hepatocellular Carcinoma. Current Oncology. 2023; 30(12):10100-10110. https://doi.org/10.3390/curroncol30120734
Chicago/Turabian StyleVillalobos, Alexander, Howard Hussein Dabbous, Olivia Little, Olumide Babajide Gbolahan, Mehmet Akce, Meghan Allegra Lilly, Zachary Bercu, and Nima Kokabi. 2023. "Safety and Efficacy of Concurrent Atezolizumab/Bevacizumab or Nivolumab Combination Therapy with Yttrium-90 Radioembolization of Advanced Unresectable Hepatocellular Carcinoma" Current Oncology 30, no. 12: 10100-10110. https://doi.org/10.3390/curroncol30120734
APA StyleVillalobos, A., Dabbous, H. H., Little, O., Gbolahan, O. B., Akce, M., Lilly, M. A., Bercu, Z., & Kokabi, N. (2023). Safety and Efficacy of Concurrent Atezolizumab/Bevacizumab or Nivolumab Combination Therapy with Yttrium-90 Radioembolization of Advanced Unresectable Hepatocellular Carcinoma. Current Oncology, 30(12), 10100-10110. https://doi.org/10.3390/curroncol30120734