Predictive Factors Associated with Declining Psycho-Oncological Support in Patients with Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measures
2.2. Data Collection
2.3. Statistical Evaluation
2.3.1. Inner Loop: Data Processing and Initial Model Building
2.3.2. Outer Loop: Model Selection
2.3.3. Final Model Performance
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Description |
---|---|
WISH_PO | Wish for psychological referral (yes/no) |
SEX | Gender (woman/men) |
Versich = A | Insurance basic (yes/no) |
Versich = HP | Insurance medium (yes/no) |
Versich = P | Insurance premium (yes/no) |
Alter bei Screening | Age at time of screening |
Alter 18–64 | Age between 18 and 64 (yes/no) |
Alter 65–79 | Age between 65 and 79 (yes/no) |
Alter > 80 | Age 80 or higher (yes/no) |
Wert DT | Distress Score (on the DT (1–10)) |
DT ≥ 5 | score of 5 or higher (yes/no) |
Probl/Prakt | Any item of the category “practical” on the problem list (yes/no) |
Probl/Prakt/Wohnen | Item “living” on the problem list (yes/no) |
Probl/Prakt/Versich | Item “insurance” on the problem list (yes/no) |
Probl/Prakt/ArbeitSchule | Item “work/school” on the problem list (yes/no) |
Probl/Prakt/Transp | Item “transport” on the problem list (yes/no) |
Probl/Prakt/KindBetr | Item “child care” on the problem list (yes/no) |
Probl/Fam | Any item of the category “family” on the problem list (yes/no) |
Probl/Fam/Partner | Item “partner” on the problem list (yes/no) |
Probl/Fam/Kind | Item “child” on the problem list (yes/no) |
Probl/Emotion | Any item of the category “emotion” on the problem list (yes/no) |
Probl/Emotion/Sorgen | Item “worries” on the problem list (yes/no) |
Probl/Emotion/Angst | Item “fear” on the problem list (yes/no) |
Probl/Emotion/Traurig | Item “sadness” on the problem list (yes/no) |
Probl/Emotion/Depress | Item “depression” on the problem list (yes/no) |
Probl/Emotion/Nervos | Item “nervous” on the problem list (yes/no) |
SUMMEEMO | Total amount of items of the category “emotion” |
Probl/Spirituel | Any item of the category “spiritual” on the problem list (yes/no) |
Probl/Spirituel/Gott | Item “god” on the problem list (yes/no) |
Probl/Spirituel/VerlGlaub | Item “loss of faith” on the problem list (yes/no) |
Probl/Physis | Any item of the category “physical” on the problem list (yes/no) |
Probl/Physis/Nausea | Item “nausea” on the problem list (yes/no) |
Probl/Physis/Schmerz | Item “pain” on the problem list (yes/no) |
Probl/Physis/Erschoepfung | Item “exhaustion” on the problem list (yes/no) |
Probl/Physis/Schlaf | Item “sleep” on the problem list (yes/no) |
Probl/Physis/Mobilit | Item “mobility” on the problem list (yes/no) |
Probl/Physis/WaschAnkl | Item “washing/getting dressed” on the problem list (/no) |
Probl/Physis/Atmung | Item “breathing” on the problem list (yes/no) |
Probl/Physis/AErsBild | Item “appearance” on the problem list (yes/no) |
Probl/Physis/EntzuMundb | Item “mouth sores” on the problem list (yes/no) |
Probl/Physis/Essen | Item “eating” on the problem list (yes/no) |
Probl/Physis/Verdaustor | Item “Indigestion” on the problem list (yes/no) |
Probl/Physis/Diarhoe | Item “diarrhea” on the problem list (yes/no) |
Probl/Physis/Obstipation | Item “Constipation” on the problem list |
Probl/Physis/AendUrini | Item “changes in urination” on the problem list (yes/no) |
Probl/Physis/Fieber | Item “fever” on the problem list (yes/no) |
Probl/Physis/TrkJukHaut | Item “itchy and dry skin” on the problem list (yes/no) |
Probl/Physis/KribbelnHF | Item “tiringly in hands/feet” on the problem list (yes/no) |
Probl/Physis/Aufgedun | Item “feeling swollen” on the problem list (yes/no) |
Probl/Physis/Sex | Item “sexuality” on the problem list (yes/no) |
Probl/Physis/TrkVersNase | Item “Nose dry/congested” on the problem list (yes/no) |
SUMMEPHYS | Physical Score: Total amount of items of the category “physical” |
Zvilstand Paartnerschaft | relationship status “in a relationship” (yes/no) |
Zvilistand getrennt/verwitwet/geschieden | relationship status “separated”, “widowed” or “divorced” (yes/no) |
Zivilstand Ledig | relationship status “unwed” (yes/no) |
Sprache DE | Language German (yes/no) |
Sprach nicht DE | Language not German (yes/no) |
KON_EV | protestant confession (yes/no) |
KON_KATH | catholic confession (yes/no) |
KON_OHNE | no confession (yes/no) |
KON_AND | other confession (yes/no) |
Schweizer/in? | Nationality Swiss (yes/no) |
Europa | Nationality European country (yes/no) |
Low/middle | From a low or middle income country (yes/no) |
PFJ 2011 | Year of diagnosis 2011 (yes/no) |
PFJ 2012 | Year of diagnosis 2012 (yes/no) |
PFJ 2013 | Year of diagnosis 2013 (yes/no) |
PFJ 2014 | Year of diagnosis 2014 (yes/no) |
PFJ 2015 | Year of diagnosis 2015 (yes/no) |
PFJ 2016 | Year of diagnosis 2016 (yes/no) |
PFJ 2017 | Year of diagnosis 2017 (yes/no) |
PFJ 2018 | Year of diagnosis 2018 (yes/no) |
PFJ 2019 | Year of diagnosis 2019 (yes/no) |
Brust | breast cancer (yes/no) |
Darm | gastrointestinal cancer (yes/no) |
Endo | endocrinological cancer (yes/no) |
GenitalFrau | gynecological cancer (yes/no) |
Hämato/Leukämie/Lymphom | hematological cancer incl. Leukemia and lymphoma (yes/no) |
Harnblase | bladder cancer (yes/no) |
Haut | skin cancer (yes/no) |
Hoden/Penis | Penis or testicle cancer (yes/no) |
Kopf/Hals | head and neck cancer (yes/no) |
Lunge | lung cancer (yes/no) |
Neuro | neurological cancers (yes/no) |
Pankreas | pancreatic cancer (yes/no) |
Prostata | prostatic cancer (yes/no) |
Leber | Liver cancer (yes/no) |
Akademisch | profession requiring academic degree (yes/no) |
Unbekannt | Unknown employment status (yes/no) |
Rentner | retired (yes/no) |
Sonst | other profession (yes/no) |
IV | disability pension (yes/no) |
Arbeitslos | unemployed (yes/no) |
Antidepressiva | antidepressant prescribed (yes/no) |
Antiepileptika | mood stabilizer/antiepileptic medication prescribed (yes/no) |
Antipsychotika | antipsychotic medication prescribed (yes/no) |
Benzodiazepine | benzodiazepine prescribed (yes/no) |
Glukokortikoide systemisch | steroids prescribed (yes/no) |
Nichtopioidanalgetika | non-opioid analgesics prescribed (yes/no) |
Opioidanalgetika | opioids prescribed (yes/no) |
Psychopharmaka | any psychopharmacology prescribed (yes/no) |
Schmerzmittel | Any painkiller prescribed (yes/no) |
CCI | Charlson comorbidity index (1–5) |
F0 | Mental disorders due to known physiological conditions diagnosed (yes/no) |
F1 | Mental and behavioral disorders due to psychoactive substance use diagnosed (yes/no) |
F2 | Schizophrenia, schizotypal, delusional, and other non-mood psychotic disorders diagnosed (yes/no) |
F3 | Mood [affective] disorders diagnosed (yes/no) |
F4 | Anxiety, dissociative, stress-related, somatoform and other nonpsychotic mental disorders diagnosed (yes/no) |
F5 | Behavioral syndromes associated with physiological disturbances and physical factors diagnosed (yes/no) |
F6 | Disorders of adult personality and behavior diagnosed (yes/no) |
F7 | Intellectual disabilities diagnosed (yes/no) |
F8 | Pervasive and specific developmental disorders diagnosed (yes/no) |
F9 | behavioral and emotional disorders with onset usually occurring in childhood and adolescence and unspecific disorders diagnosed (yes/no) |
Fdiagnose | Any mental disorder diagnosed (yes/no) |
Algorithm | Hyperparameters |
---|---|
Logistic Regression | - |
Tree | minisplit = 20; cp = 0.01; maxcomplete = 4; maxsurrogate = 5; usesurrogate = 2; surrogatestyle = 0; maxdepth = 30;xval = 10 |
Random Forest | Ntree = 500; replace = true; nodesize = 1; importance = false; localImp = false; |
Gradient Boosting | distribution = Bernoulli; n.tress = 100; cvfolds = 0; interaction.depth = 1; n.minobsinnode = 10; shrinkage = 0.1; bag.fraction = 0.5; train.fraction = 1 |
KNN | integer = 7; numeric = 2; logical = true |
SVM | cost = 1; nu = 0.5; kernel = radial; degree = 3; cachesize = 40; tolerance = 0.001; shrinking = true |
Naive Bayes | laplace = 0 |
ML Algorithm | Balanced Accuracy (95% CI) | AUC (95% CI) | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) |
---|---|---|---|---|---|---|
Logistic Regression | 69.1 (62.7–74.4) | 0.75 (0.68–0.82) | 73.5 (73.3–73.6) | 64.9 (64.5–65.2) | 93.7 (93.6–93.8) | 25.6 (25.4–25.8) |
Tree | 65.3 (62.4–73.9) | 0.66 (0.59–0.73) | 69.9 (69.8–70.1) | 66.6 (66.2–66.9) | 93.7 (93.6–93.8) | 23.8 (23.6–23.9) |
Random Forest | 65.3 (59.7–71.5) | 0.75 (0.68–0.82) | 84.4 (85.3–85.5) | 45.1 (44.8–45.5) | 91.7 (91.6–91.8) | 30.2 (29.9–30.5) |
Gradient Boosting | 69.3 (63–74.7) | 0.76 (0.69–0.83) | 83.5 (83.4–83.6) | 64.3 (63.9–64.6) | 93.7 (93.6–93.7) | 38.1 (37.9–38.4) |
KNN | 58.8 (53–64.8) | 0.65 (0.58–0.72) | 79.5 (79.4–79.6) | 37.6 (37.3–38) | 90.1 (90–90.2) | 20.4 (20.2–20.6) |
SVM | 69.5 (63.2–74.8) | 0.75 (0.68–0.82) | 74.4 (74.1–74.6) | 64.9 (64.5–65.2) | 93.8 (93.7–93.9) | 26.3 (26.1–26.5) |
Naive Bayes | 69.2 (62.7–74.2) | 0.79 (0.72–85.5) | 70.7 (70.6–70.8) | 67.1 (66.8–67.5) | 93.9 (93.8–93.9) | 24.4 (24.2–24.5) |
References
- Fallowfield, L.; Ratcliffe, D.; Jenkins, V.; Saul, J. Psychiatric morbidity and its recognition by doctors in patients with cancer. Br. J. Cancer 2001, 84, 1011–1015. [Google Scholar] [CrossRef] [PubMed]
- Zabora, J.; BrintzenhofeSzoc, K.; Curbow, B.; Hooker, C.; Piantadosi, S. The prevalence of psychological distress by cancer site. Psychooncology 2001, 10, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.L.; Cheng, C.T.; Feng, A.C.; Hsu, S.H.; Hou, Y.C.; Chiu, C.Y. Prevalence, risk factors, and the desire for help of distressed newly diagnosed cancer patients: A large-sample study. Palliat. Support. Care 2017, 15, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, M.; Strong, V.; Allen, K.; Rush, R.; Postma, K.; Tulloh, A.; Maguire, P.; House, A.; Ramirez, A.; Cull, A. Major depression in outpatients attending a regional cancer centre: Screening and unmet treatment needs. Br. J. Cancer 2004, 90, 314–320. [Google Scholar] [CrossRef]
- Ownby, K.K. Use of the Distress Thermometer in Clinical Practice. J. Adv. Pract. Oncol. 2019, 10, 175–179. [Google Scholar]
- Hollingworth, W.; Metcalfe, C.; Mancero, S.; Harris, S.; Campbell, R.; Biddle, L.; McKell-Redwood, D.; Brennan, J. Are needs assessments cost effective in reducing distress among patients with cancer? A randomized controlled trial using the Distress Thermometer and Problem List. J. Clin. Oncol. 2013, 31, 3631–3638. [Google Scholar] [CrossRef]
- Thombs, B.D.; Coyne, J.C.; Cuijpers, P.; de Jonge, P.; Gilbody, S.; Ioannidis, J.P.; Johnson, B.T.; Patten, S.B.; Turner, E.H.; Ziegelstein, R.C. Rethinking recommendations for screening for depression in primary care. CMAJ 2012, 184, 413–418. [Google Scholar] [CrossRef]
- Mitchell, A.J. Screening for cancer-related distress: When is implementation successful and when is it unsuccessful? Acta Oncol. 2013, 52, 216–224. [Google Scholar] [CrossRef]
- van Scheppingen, C.; Schroevers, M.J.; Smink, A.; van der Linden, Y.M.; Mul, V.E.; Langendijk, J.A.; Coyne, J.C.; Sanderman, R. Does screening for distress efficiently uncover meetable unmet needs in cancer patients? Psychooncology 2011, 20, 655–663. [Google Scholar] [CrossRef]
- Tuinman, M.A.; Gazendam-Donofrio, S.M.; Hoekstra-Weebers, J.E. Screening and referral for psychosocial distress in oncologic practice: Use of the Distress Thermometer. Cancer 2008, 113, 870–878. [Google Scholar] [CrossRef]
- Clover, K.; Kelly, P.; Rogers, K.; Britton, B.; Carter, G.L. Predictors of desire for help in oncology outpatients reporting pain or distress. Psychooncology 2013, 22, 1611–1617. [Google Scholar] [CrossRef] [PubMed]
- Baker-Glenn, E.A.; Park, B.; Granger, L.; Symonds, P.; Mitchell, A.J. Desire for psychological support in cancer patients with depression or distress: Validation of a simple help question. Psychooncology 2011, 20, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Clover, K.A.; Mitchell, A.J.; Britton, B.; Carter, G. Why do oncology outpatients who report emotional distress decline help? Psychooncology 2015, 24, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Holland, J.C.; Andersen, B.; Breitbart, W.S.; Compas, B.; Dudley, M.M.; Fleishman, S.; Fulcher, C.D.; Greenberg, D.B.; Greiner, C.B.; Handzo, G.F.; et al. Distress management. J. Natl. Compr. Cancer Netw. 2010, 8, 448–485. [Google Scholar] [CrossRef]
- Stanton, A.L.; Wiley, J.F.; Krull, J.L.; Crespi, C.M.; Weihs, K.L. Cancer-related coping processes as predictors of depressive symptoms, trajectories, and episodes. J. Consult. Clin. Psychol. 2018, 86, 820–830. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic. Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- The World Bank. Current Classification by Income; The World Bank: Washington, DC, USA, 2020; Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519 (accessed on 20 November 2020).
- Dwyer, D.B.; Falkai, P.; Koutsouleris, N. Machine Learning Approaches for Clinical Psychology and Psychiatry. Annu. Rev. Clin. Psychol. 2018, 14, 91–118. [Google Scholar] [CrossRef]
- Browne, M.W. Cross-Validation Methods. J. Math. Psychol. 2000, 44, 108–132. [Google Scholar] [CrossRef]
- Bischl, B.; Lang, M.; Kotthoff, L.; Schiffner, J.; Richter, J.; Studerus, E.; Casalicchio, G.; Jones, Z.M. mlr: Machine Learning in R. J. Mach. Learn. Res. 2016, 17, 5938–5942. [Google Scholar]
- Ishwaran, H.; Kogalur, U.B. Package ‘randomForestSRC’: Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC). 2.9.3. 2020. Available online: http://www.est.colpos.mx/R-mirror/web/packages/randomForestSRC/randomForestSRC.pdf (accessed on 20 November 2020).
- Wei, Q.; Dunbrack, R.L. The role of balanced training and testing data sets for binary classifiers in bioinformatics. PLoS ONE 2013, 8, e67863. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Campbell, G. Advances in statistical methodology for the evaluation of diagnostic and laboratory tests. Stat. Med. 1994, 13, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, P.; Lo, C.; Li, M.; Gagliese, L.; Zimmermann, C.; Rodin, G. The Relationship between Depression and Physical Symptom Burden in Advanced Cancer. In BMJ Support Palliat Care; BMJ Publishing Group Limited: London, UK, 2015; Volume 5, pp. 381–388. Available online: http://www.bmj.com/company/products-services/rights-and-licensing/ (accessed on 20 November 2020).
- Petrova, D.; Redondo-Sánchez, D.; Rodríguez-Barranco, M.; Romero Ruiz, A.; Catena, A.; Garcia-Retamero, R.; Sánchez, M.J. Physical comorbidities as a marker for high risk of psychological distress in cancer patients. Psychooncology 2021, 30, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- VanHoose, L.; Black, L.L.; Doty, K.; Sabata, D.; Twumasi-Ankrah, P.; Taylor, S.; Johnson, R. An analysis of the distress thermometer problem list and distress in patients with cancer. Support. Care Cancer 2015, 23, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Borson, S.; Korpak, A.; Carbajal-Madrid, P.; Likar, D.; Brown, G.A.; Batra, R. Reducing Barriers to Mental Health Care: Bringing Evidence-Based Psychotherapy Home. J. Am. Geriatr. Soc. 2019, 67, 2174–2179. [Google Scholar] [CrossRef] [PubMed]
- Holland, J.C. History of psycho-oncology: Overcoming attitudinal and conceptual barriers. Psychosom. Med. 2002, 64, 206–221. [Google Scholar] [CrossRef]
- Wei, W.; Sambamoorthi, U.; Olfson, M.; Walkup, J.T.; Crystal, S. Use of psychotherapy for depression in older adults. Am. J. Psychiatry 2005, 162, 711–717. [Google Scholar] [CrossRef]
- Stark, A.; Kaduszkiewicz, H.; Stein, J.; Maier, W.; Heser, K.; Weyerer, S.; Werle, J.; Wiese, B.; Mamone, S.; König, H.H.; et al. A qualitative study on older primary care patients’ perspectives on depression and its treatments—Potential barriers to and opportunities for managing depression. BMC Fam. Pract. 2018, 19, 2. [Google Scholar] [CrossRef]
- Gühne, U.; Luppa, M.; Stein, J.; Wiese, B.; Weyerer, S.; Maier, W.; König, H.-H.; Riedel-Heller, S.G. “Die vergessenen Patienten”—Barrieren und Chancen einer optimierten Behandlung depressiver Erkrankungen im Alter. Psychiatr. Prax. 2016, 43, 387–394. [Google Scholar] [CrossRef]
- Kacel, E.L.; Pereira, D.B.; Estores, I.M. Advancing supportive oncology care via collaboration between psycho-oncology and integrative medicine. Support. Care Cancer 2019, 27, 3175–3178. [Google Scholar] [CrossRef]
- Gühne, U.; Luppa, M.; König, H.H.; Riedel-Heller, S.G. Collaborative and home based treatment for older adults with depression: A review of the literature. Nervenarzt 2014, 85, 1363–1371. [Google Scholar] [CrossRef]
- Merckaert, I.; Libert, Y.; Messin, S.; Milani, M.; Slachmuylder, J.L.; Razavi, D. Cancer patients’ desire for psychological support: Prevalence and implications for screening patients’ psychological needs. Psychooncology 2010, 19, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Nekolaichuk, C.L.; Cumming, C.; Turner, J.; Yushchyshyn, A.; Sela, R. Referral patterns and psychosocial distress in cancer patients accessing a psycho-oncology counseling service. Psychooncology 2011, 20, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, A.; Stefanek, M. Controversies in Psycho-Oncology; Springer: Berlin/Heidelberg, Germany, 2022; pp. 247–269. [Google Scholar]
- Donovan, K.A.; Grassi, L.; McGinty, H.L.; Jacobsen, P.B. Validation of the distress thermometer worldwide: State of the science. Psychooncology 2014, 23, 241–250. [Google Scholar] [CrossRef] [PubMed]
Female | Male | Total | |
---|---|---|---|
Age, Mean (SD) | 60 (14.61) | 62 (13.14) | 62 (13.74) |
Age Group 18–64, N, (%) | 844/2150 (39%) | 1306/2150 (61%) | 2150/4064 (53%) |
Age Group 65–70, N (%) | 533/1618 (33%) | 1085/1618 (67%) | 1618/4064 (40%) |
Age Group 80+, N (%) | 117/296 (40%) | 179/296 (60%) | 296/4064 (7%) |
Distress Score, Mean (SD) | 4.81 (2.7) | 3.9 (2.66) | 4.29 (2.71) |
Physical Score, Mean (SD) | 4.6 (3.84) | 3.44 (3.3) | 3.86 (3.41) |
Wish, N (%) | 261/528 (49%) | 267/528 (51%) | 528/4064 (13%) |
No Wish, N (%) | 1233/3526 (35%) | 2303/3536 (65%) | 3536/4064 (87%) |
Wish | No Wish | Total | |
Age, Mean (SD) | 58 (2.58) | 62 (13.5) | 62 (13.74) |
Age Group 18–64, N, (%) | 322/2150 (15%) | 1828/2150 (85%) | 2150/4064 (53%) |
Age Group 65–70, N (%) | 186/1618/11%) | 1432/1618 (89%) | 1618/4064 (40%) |
Age Group 80+, N (%) | 20/296 (7%) | 276/296 (93%) | 296/4064 (7%) |
Distress Score, Mean (SD) | 6.01 (2.58) | 4.03 (2.62) | 4.29 (2.71) |
Physical Score, Mean (SD) | 5.92 (3.88) | 3.56 (3.23) | 3.86 (3.41) |
Female, N (%) | 261/1494 (17%) | 1233/1494 (83%) | 1494/4064 (37%) |
Male, N (%) | 267/2570 (10%) | 2303/2570 (90%) | 2570/4064 (63%) |
Statistical Algorithm | Balanced Accuracy (%) | AUC | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) |
---|---|---|---|---|---|---|
Logistic Regression | 69.1 | 0.75 | 73.5 | 64.9 | 93.7 | 25.6 |
Tree | 65.3 | 0.66 | 69.9 | 66.6 | 93.7 | 23.8 |
Random Forest | 65.3 | 0.75 | 84.4 | 45.1 | 91.7 | 30.2 |
Gradient Boosting | 69.3 | 0.76 | 83.5 | 64.3 | 93.7 | 38.1 |
KNN | 58.8 | 0.65 | 79.5 | 37.6 | 90.1 | 20.4 |
SVM | 69.5 | 0.75 | 74.4 | 64.9 | 93.8 | 26.3 |
Naive Bayes | 69.2 | 0.79 | 70.7 | 67.1 | 93.9 | 24.4 |
Performance Measures | % | 95% Confidence Interval |
---|---|---|
Balanced Accuracy | 68.5 | [64.4, 71.9] |
AUC | 0.76 | [0.72, 0.80] |
Sensitivity | 88.9 | [88.8, 89] |
Specificity | 47.2 | [46.9, 47.4] |
PPV | 90.8 | [90.7, 90.8] |
NPV | 42.2 | [42, 42.4] |
Variable Description | No Wish | Wish |
---|---|---|
Age, Mean | 62.2 | 57.9 |
Distress Score, Mean | 4.03 | 6.09 |
Physical Score, Mean | 3.56 | 5.92 |
CCI, Mean | 2.03 | 2.7 |
Fear, N (%) | 1325/3461 (38.3) | 353/518 (68.1) |
Worries, N (%) | 1383/3455 (40) | 359/517 (69.4) |
Sadness, N (%) | 779/3437 (22.7) | 308/516 (59.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hecht, K.; Günther, M.P.; Kirchebner, J.; Götz, A.; von Känel, R.; Schulze, J.B.; Euler, S. Predictive Factors Associated with Declining Psycho-Oncological Support in Patients with Cancer. Curr. Oncol. 2023, 30, 9746-9759. https://doi.org/10.3390/curroncol30110707
Hecht K, Günther MP, Kirchebner J, Götz A, von Känel R, Schulze JB, Euler S. Predictive Factors Associated with Declining Psycho-Oncological Support in Patients with Cancer. Current Oncology. 2023; 30(11):9746-9759. https://doi.org/10.3390/curroncol30110707
Chicago/Turabian StyleHecht, Karoline, Moritz Philipp Günther, Johannes Kirchebner, Anna Götz, Roland von Känel, Jan Ben Schulze, and Sebastian Euler. 2023. "Predictive Factors Associated with Declining Psycho-Oncological Support in Patients with Cancer" Current Oncology 30, no. 11: 9746-9759. https://doi.org/10.3390/curroncol30110707
APA StyleHecht, K., Günther, M. P., Kirchebner, J., Götz, A., von Känel, R., Schulze, J. B., & Euler, S. (2023). Predictive Factors Associated with Declining Psycho-Oncological Support in Patients with Cancer. Current Oncology, 30(11), 9746-9759. https://doi.org/10.3390/curroncol30110707