Pneumonectomy for Primary Lung Tumors and Pulmonary Metastases: A Comprehensive Study of Postoperative Morbidity, Early Mortality, and Preoperative Clinical Prognostic Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Form-Data Collection-Ethic Committee Approval
2.2. Exclusion and Inclusion Criteria
- <18 years old
- patients undergoing a lung resection different than pneumonectomy
- undergoing pneumonectomy for benign or infectious disease without malignancy
- undergoing pneumonectomy because of a previous surgical complication
- undergoing extrapleural pneumonectomy for pleural mesothelioma
- undergoing pneumonectomy in the context of a lung transplant or organ retrieval for donation
2.3. Formation of the Study Population
- destroyed lung from pneumonia: n = 7
- pulmonary tuberculosis: n = 2
- post-stenotic pneumonia after sleeve resection: n = 1
- destroyed lung from aspergillosis: n = 1
- hemoptysis by aplasia of the pulmonary artery: n = 1
- anastomosis insufficiency after lung transplantation: n = 1
- anastomosis insufficiency after sleeve resection: n = 2
- pleural mesothelioma: n = 2
- other reasons: n = 7
- 145 patients were included in the study.
2.4. Definition of Postoperative Complications and Mortality
2.5. Preoperative Staging Methods-Surgical Approach-Preoperative/Neoadjuvant Therapy
2.6. Definition of Preoperative Comorbidities
2.7. Statistical Analysis
3. Results
3.1. Clinical and Surgical Characteristics of the Study Population
3.2. Oncological Characteristics of Patients Undergoing Pneumonectomy
3.3. Postoperative Complications and Early Mortality after Pneumonectomy
3.4. Risk Factors for Postoperative Complications
3.5. Independent Risk Factor for Postoperative Morbidity
3.6. Risk Factors for 30-Day-Mortality
3.7. Independent Risk Factors for Postoperative Mortality after Pneumonectomy for Thoracic Malignancies
3.8. Risk Factors for Bronchus Stump Insufficiency after Pneumonectomy
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rea, F.; Marulli, G.; Schiavon, M.; Zuin, A.; Hamad, A.-M.; Rizzardi, G.; Perissinotto, E.; Sartori, F. A quarter of a century experience with sleeve lobectomy for non-small cell lung cancer. Eur. J. Cardio-Thorac. Surg. 2008, 34, 488–492; discussion 492. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, M.; Swanson, S.J.; Wright, C.D.; Chin, C.; Sheng, S.; Wisnivesky, J.; Weiser, T.S. Predictors of major morbidity and mortality after pneumonectomy utilizing the Society for Thoracic Surgeons General Thoracic Surgery Database. Ann. Thorac. Surg. 2010, 90, 927–934; discussion 934–935. [Google Scholar] [CrossRef] [PubMed]
- Harpole, D.H.; Liptay, M.J.; DeCamp, M., Jr.; Mentzer, S.J.; Swanson, S.J.; Sugarbaker, D.J. Prospective analysis of pneumonectomy: Risk factors for major morbidity and cardiac dysrhythmias. Ann. Thorac. Surg. 1996, 61, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Marret, E.; Miled, F.; Bazelly, B.; El Metaoua, S.; de Montblanc, J.; Quesnel, C.; Fulgencio, J.-P.; Bonnet, F. Risk and protective factors for major complications after pneumonectomy for lung cancer. Interact. Cardiovasc. Thorac. Surg. 2010, 10, 936–939. [Google Scholar] [CrossRef] [PubMed]
- Mansour, Z.; Kochetkova, E.; Santelmo, N.; Meyer, P.; Wihlm, J.-M.; Quoix, E.; Massard, G. Risk factors for early mortality and morbidity after pneumonectomy: A reappraisal. Ann. Thorac. Surg. 2009, 88, 1737–1743. [Google Scholar] [CrossRef]
- Grapatsas, K.; Papaporfyriou, A.; Leivaditis, V.; Ehle, B.; Galanis, M. Lung Metastatectomy: Can Laser-Assisted Surgery Make a Difference? Curr. Oncol. 2022, 29, 548. [Google Scholar] [CrossRef]
- Hassan, M.; Ehle, B.; Passlick, B.; Grapatsas, K. Lung Resections for Elderly Patients with Lung Metastases: A Comparative Study of the Postoperative Complications and Overall Survival. Curr. Oncol. 2022, 29, 4511–4521. [Google Scholar] [CrossRef]
- Grapatsas, K.; Hassan, M.; Semmelmann, A.; Ehle, B.; Passlick, B.; Schmid, S.; Le, U.T. Should cardiovascular comorbidities be a contraindication for pulmonary metastasectomy? J. Thorac. Dis. 2022, 14, 4266–4275. [Google Scholar] [CrossRef]
- Osei-Agyemang, T.; Palade, E.; Haderthauer, J.; Ploenes, T.; Yaneva, V.; Passlick, B. Pulmonary metastasectomy: An analysis of technical and oncological outcomes in 301 patients with a focus on laser resection. Zentralbl. Chir. 2013, 138 (Suppl. S1), S45–S51. [Google Scholar]
- Ambrogi, V.; Pompeo, E.; Elia, S.; Pistolese, G.R.; Mineo, T.C. The impact of cardiovascular comorbidity on the outcome of surgery for stage I and II non-small-cell lung cancer. Eur. J. Cardio-Thorac. Surg. 2003, 23, 811–817. [Google Scholar] [CrossRef]
- Seely, A.J.; Ivanovic, J.; Threader, J.; Al-Hussaini, A.; Al-Shehab, D.; Ramsay, T.; Gilbert, S.; Maziak, D.E.; Shamji, F.M.; Sundaresan, R.S. Systematic classification of morbidity and mortality after thoracic surgery. Ann. Thorac. Surg. 2010, 90, 936–942; discussion 942. [Google Scholar] [CrossRef]
- Mirza, S.; Clay, R.D.; Koslow, M.A.; Scanlon, P.D. COPD Guidelines: A Review of the 2018 GOLD Report. Mayo Clin. Proc. 2018, 93, 1488–1502. [Google Scholar] [CrossRef] [PubMed]
- Brunswicker, A.; Taylor, M.; Grant, S.; Abah, U.; Smith, M.; Shackcloth, M.; Granato, F.; Shah, R.; Rammohan, K.; North West Thoracic Surgery Collaborative (NWTSC). Pneumonectomy for primary lung cancer: Contemporary outcomes, risk factors and model validation. Interact. Cardiovasc. Thorac. Surg. 2022, 34, 1054–1061. [Google Scholar] [CrossRef] [PubMed]
- Kozub, M.; Gachewicz, B.; Kasprzyk, M.; Roszak, M.; Gasiorowski, L.; Dyszkiewicz, W. Impact of smoking history on postoperative complications after lung cancer surgery—A study based on 286 cases. Kardiochir. Torakochirurgia Pol. 2019, 16, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Licker, M.; Spiliopoulos, A.; Frey, J.-G.; Robert, J.; Hoïhn, L.; de Perrot, M.; Tschopp, J.-M. Risk factors for early mortality and major complications following pneumonectomy for non-small cell carcinoma of the lung. Chest J. 2002, 121, 1890–1897. [Google Scholar] [CrossRef] [PubMed]
- Deschamps, C.; Bernard, A.; Nichols, F.C., 3rd; Allen, M.S.; Miller, D.L.; Trastek, V.F.; Jenkins, G.D.; Pairolero, P.C. Empyema and bronchopleural fistula after pneumonectomy: Factors affecting incidence. Ann. Thorac. Surg. 2001, 72, 243–247; discussion 248. [Google Scholar] [CrossRef]
- Sirbu, H.; Busch, T.; Aleksic, I.; Schreiner, W.; Oster, O.; Dalichau, H. Bronchopleural fistula in the surgery of non-small cell lung cancer: Incidence, risk factors, and management. Ann. Thorac. Cardiovasc. Surg. 2001, 7, 330–336. [Google Scholar]
- Wright, C.D.; Wain, J.C.; Mathisen, D.J.; Grillo, H.C. Postpneumonectomy bronchopleural fistula after sutured bronchial closure: Incidence, risk factors, and management. J. Thorac. Cardiovasc. Surg. 1996, 112, 1367–1371. [Google Scholar] [CrossRef]
- Takenaka, T.; Shoji, F.; Tagawa, T.; Kinoshita, F.; Haratake, N.; Edagawa, M.; Yamazaki, K.; Takenoyama, M.; Takeo, S.; Mori, M. Does short-term cessation of smoking before lung resections reduce the risk of complications? J. Thorac. Dis. 2020, 12, 7127–7134. [Google Scholar] [CrossRef]
- Shigeeda, W.; Deguchi, H.; Tomoyasu, M.; Kaneko, Y.; Yoshimura, R.; Iwai, H.; Kanno, H.; Kudo, S.; Takahashi, F.; Saito, H. Optimal period of smoking cessation to reduce the incidence of postoperative pulmonary complications in lung cancer. Interdiscip. Cardiovasc. Thorac. Surg. 2023, 36, ivad094. [Google Scholar] [CrossRef]
- Kudelin, N.; Bölükbas, S.; Eberlein, M.; Schirren, J. Metastasectomy with standardized lymph node dissection for metastatic renal cell carcinoma: An 11-year single-center experience. Ann. Thorac. Surg. 2013, 96, 265–270; discussion 270–271. [Google Scholar] [CrossRef] [PubMed]
- Bölükbas, S.; Sponholz, S.; Kudelin, N.; Eberlein, M.; Schirren, J. Risk factors for lymph node metastases and prognosticators of survival in patients undergoing pulmonary metastasectomy for colorectal cancer. Ann. Thorac. Surg. 2014, 97, 1926–1932. [Google Scholar] [CrossRef] [PubMed]
- Pfannschmidt, J.; Egerer, G.; Bischof, M.; Thomas, M.; Dienemann, H. Surgical intervention for pulmonary metastases. Dtsch. Arztebl. Int. 2012, 109, 645–651. [Google Scholar] [CrossRef]
- Bazwinsky-Wutschke, I.; Paulsen, F.; Stövesandt, D.; Holzhausen, H.-J.; Heine, H.-J.; Peschke, E. Anatomical changes after pneumonectomy. Ann. Anat.-Anat. Anz. 2011, 193, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Margaryan, R.; Moscarelli, M.; Gasbarri, T.; Bianchi, G.; Kallushi, E.; Cerillo, A.G.; Farneti, P.; Solinas, M. EuroSCORE Per-for-mance in Minimally Invasive Cardiac Surgery: Discrimination Ability and External Calibration. Innovations 2017, 12, 282–286. [Google Scholar] [CrossRef]
- Amar, D.; Munoz, D.; Shi, W.; Zhang, H.; Thaler, H.T. A clinical prediction rule for pulmonary complications after thoracic surgery for primary lung cancer. Anesth. Analg. 2010, 110, 1343–1348. [Google Scholar] [CrossRef]
- Yepes-Temiño, M.J.; Monedero, P.; Pérez-Valdivieso, J.R.; Grupo Español de Anestesia Toracica. Risk prediction model for res-piratory complications after lung resection: An observational multicentre study. Eur. J. Anaesthesiol. 2016, 33, 326–333. [Google Scholar] [CrossRef]
- Hackett, N.J.; De Oliveira, G.S.; Jain, U.K.; Kim, J.Y. ASA class is a reliable independent predictor of medical complications and mortality following surgery. Int. J. Surg. 2015, 18, 184–190. [Google Scholar] [CrossRef]
- Mazzella, A.; Mohamed, S.; Maisonneuve, P.; Borri, A.; Casiraghi, M.; Bertolaccini, L.; Petrella, F.; Lo Iacono, G.; Spaggiari, L. ARDS after Pneumonectomy: How to Prevent It? Development of a Nomogram to Predict the Risk of ARDS after Pneumonectomy for Lung Cancer. Cancers 2022, 14, 6048. [Google Scholar] [CrossRef]
- Beshay, M.; Carboni, G.; Hoksch, B.; Reymond, M.; Schmid, R. The role of muscle flap in preventing bronchus stump insufficiency after pneumonectomy for malignant pleural mesothelioma in high-risk patients. Interact. Cardiovasc. Thorac. Surg. 2008, 7, 621–624; discussion 624–625. [Google Scholar] [CrossRef]
- Terzi, A.; Luzzi, L.; Campione, A.; Gorla, A.; Calabrò, F. The split latissimus dorsi muscle flap to protect a bronchial stump at risk of bronchial insufficiency. Ann. Thorac. Surg. 2009, 87, 329–330. [Google Scholar] [CrossRef] [PubMed]
- Koryllos, A.; Ludwig, C.; Beckers, F.; Stoelben, E. [Bronchus insufficiency: Prevention and therapy]. Zentralbl. Chir. 2012, 137, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Taghavi, S.; Marta, G.; Lang, G.; Seebacher, G.; Winkler, G.; Schmid, K.; Klepetko, W. Bronchial stump coverage with a pedicled pericardial flap: An effective method for prevention of postpneumonectomy bronchopleural fistula. Ann. Thorac. Surg. 2005, 79, 284–288. [Google Scholar] [CrossRef]
- Dai, F.; Wu, X.; Wang, X.; Li, K.; Wang, Y.; Shen, C.; Zhou, J.; Niu, H.; Deng, B.; Tan, Q.; et al. Neoadjuvant immunotherapy combined with chemotherapy significantly improved patients’ overall survival when compared with neoadjuvant chemotherapy in non-small cell lung cancer: A cohort study. Front. Oncol. 2022, 12, 1022123. [Google Scholar] [CrossRef] [PubMed]
- Misumi, K.; Harada, H.; Tsubokawa, N.; Tsutani, Y.; Matsumoto, K.; Miyata, Y.; Yamashita, Y.; Okada, M. Clinical benefit of neoadjuvant chemoradiotherapy for the avoidance of pneumonectomy; assessment in 12 consecutive cen-trally located non-small cell lung cancers. Gen. Thorac. Cardiovasc. Surg. 2017, 65, 392–399. [Google Scholar] [CrossRef]
- Weder, W.; Collaud, S.; Eberhardt, W.; Hillinger, S.; Welter, S.; Stahel, R.; Stamatis, G. Pneumonectomy is a valuable treatment option after neoadjuvant therapy for stage III non-small-cell lung cancer. J. Thorac. Cardiovasc. Surg. 2010, 139, 1424–1430. [Google Scholar] [CrossRef]
Clinical Factors | n Patients (%) |
---|---|
Gender | |
male | 92 (63.4%) |
female | 53 (36.6%) |
Age (years) | |
Mean | 60.6276 |
Median | 62.00 |
Range | 23.00–86.00 |
Elderly patients (age > 70 years) | 29 (20%) |
Preoperative comorbidities | |
At least one comorbidity per patient | 115 (79.9%) |
Hypertension | 62 (42.8%) |
Obesity (BMI > 30) | 18 (12.4%) |
Cardiovascular comorbidity | 24 (16.6%) |
Chronic kidney disease | 2 (1.4%) |
Gastric ulcer | 3 (2.1%) |
COPD I–III | 43 (29.7%) |
-COPD I | 7 (16.3%) |
-COPD II | 32 (74.4%) |
-COPD III | 4 (9.3%) |
Insulin-dependent diabetes | 7 (4.8%) |
Liver disease | 5 (3.4%) |
Myasthenia gravis | 1 (0.7%) |
Other comorbidities | 79 (54.5%) |
Smoking history | |
-current smoker | 38 (26.2%) |
-never smoker | 14 (9.7%) |
-smoker 1 month before the operation | 67 (46.2%) |
-unknown | 26 (17.9%) |
Preoperative lung function | |
FEV1% | |
Mean | 72.86 |
Median | 72.00 |
Range | 29.00–147.00 |
DLCO% | |
Mean | 60.25 |
Median | 59.10 |
Range: | 33.40–100.70 |
Surgical characteristics | |
Previous lung operations | 17 (11.7%) |
Pneumonectomy with additional resection: | |
-Only pneumonectomy | 56 (38.6%) |
-with atrial resection | 10 (6.9%) |
-completion-pneumonectomy | 2 (1.4%) |
-with diaphragm resection | 3 (2.1%) |
-Intrapericardial | 51 (35.2%) |
-Pleuropneumonectomy | 11 (7.6%) |
-Sleeve pneumonectomy | 10 (6.9%) |
-with SVC resection and reconstruction | 2 (1.4%) |
Side of pneumonectomy: | |
-left | 73 (50.3%) |
-right | 72 (49.7%) |
Preoperative plan for lobar resection with intraoperative extension to pneumonectomy | 23 (15.9%) |
Lymphadenectomy: | |
Not performed | 20 (13.8%) |
performed | 125 (86.2%) |
Variable/ Oncological Characteristics | n Patients, % |
---|---|
Preoperative treatment: | |
-none | 64 (44.1%) |
-chemotherapy | 41 (28.3%) |
-chemotherapy + radiation | 38 (26.2%) |
-unknown | 2 (1.4%) |
Type of thoracic malignancies: | |
-NSCLC | 122 (84.1%) |
-SCLC | 1 (0.7%) |
-pulmonary metastases | 12 (8.3%) |
-thymic tumors | 1 (0.7%) |
-other thoracic malignancies | 9 (6.2%) |
Pulmonary metastases: | |
-CRC | 3 |
-soft-tissue-/osteosarcoma | 7 |
-germ cell tumor | 1 |
-breast cancer | 1 |
NSCLC | |
Preoperative T-stage (cT) | |
cTx | 1 (0.7%) |
cT1 | 8 (5.5%) |
cT2 | 20 (13.8%) |
cT3 | 31 (21.4%) |
cT4 | 56 (38.6%) |
unknown | 29 (20%) |
Preoperative lymph node status (cN) | |
cN0 | 51 (35.2%) |
cN1 | 22 (15.2%) |
cN2 | 36 (24.8%) |
cN3 | 6 (4.1%) |
cNx | 1 (0.7%) |
unknown | 29 (20%) |
M-status | |
cM0 | 99 (68.3%) |
cM1 | 17 (11.7) |
unknown | 29 (20%) |
Postoperative T-stage (pT) | |
pTx | 10 (6.9%) |
pT1 | 11 (7.6%) |
pT2 | 33 (22.8%) |
pT3 | 34 (23.4%) |
pT4 | 27 (18.6%) |
unknown | 30 (20.7%) |
Postoperative lymph node status (pN) | |
pN0 | 38 (26.2%) |
pN1 | 55 (37.9%) |
pN2 | 21 (14.5%) |
pN3 | 1 (0.7%) |
unknown | 30 (20.7%) |
Tumor stadium UICC 8 | |
Recurrence of NSCLC | 1 (0.7%) |
IB | 5 (3.4%) |
IIA | 2 (1.4% |
IIB | 33 (22.8%) |
IIIA | 40 (27.6%) |
IIIB | 15 (10.3%) |
IIIC | 1 (0.7%) |
IVA | 15 (10.3%) |
IVB | 3 (2.1%) |
unknown | 30 (20.7%) |
Histology of NSCLC: | |
-adenocarcinoma | 45 (31.0%) |
-large cell | 4 (2.8%) |
-mixed | 7 (4.8%) |
-neuroendocrine | 7 (4.8%) |
-squamous cell | 57 (39.3%) |
-unknown | 25 (17.2%) |
Variable/ Postoperative Complication | n Patients, % |
---|---|
At least one complication per patient | 60 (41.4%) |
Major complications | 54 (37.2%) |
Minor complications | 6 (4.1%) |
major cardiopulmonary complication per patient | 29 (20.0%) |
-atrial arrhythmia postoperative | 11 (7.6%) |
-cardiac failure | 3 (2.1%) |
-initial ventilation > 48 h | 9 (6.2%) |
-pneumonia | 3 (2.1%) |
-ventricular arrhythmia | 6 (4.1%) |
-bronchus stump insufficiency | 5 (3.4%) |
-pleural empyema | 2 (1.4%) |
re-operation for bleeding | 10 (6.9%) |
chylothorax | 1 (0.7%) |
delirium | 1 (0.7%) |
deep vein thrombosis | 1 (0.7%) |
dysphagia/aspiration | 1 (0.7%) |
dysphonia | 1 (0.7%) |
chest wall hematoma | 2 (1.4%) |
multisystem failure | 4 (2.8%) |
recurrent nerve pulse | 9 (6.2%) |
renal failure | 4 (2.8%) |
unexpected admission to the ICU | 4 (2.8%) |
wound infection | 2 (1.4%) |
Mortality | |
30-day mortality | 12 (8.3%) |
90-day-mortality | 25 (17.2%) |
Patient-Specific Risk Factor | No Postoperative Complication (n Patients, %) | Postoperative Complications (n Patients, %) | p-Value |
---|---|---|---|
Preoperative comorbidity | 63 (75%) | 52 (86.7%) | 0.085 |
Cardiovascular comorbidity | 9 (10.6%) | 15 (25.0%) | 0.021 |
Elderly (age > 70 years) | 12 (14.1%) | 17 (28.3%) | 0.035 |
Obesity | 13 (15.3%) | 5 (8.3%) | 0.211 |
ASA score | |||
ASA 3 | 28 (70.0%) | 20 (64.5%) | 0.710 |
ASA 4 | 3 (7.5%) | 5 (16.1%) | |
ECOG | |||
ECOG 2 | 4 (6.6%) | 3 (8.1%) | 0.624 |
ECOG 3 | 1 (1.6%) | 0 (0%) | |
Hypertension | 37 (43.5%) | 25 (41.7%) | 0.823 |
Chronic kidney disease | 2 (2.4%) | 0 (0%) | 0.232 |
Gastric ulcer | 1 (1.2%) | 2 (3.3%) | 0.369 |
COPD I–III | 27 (31.8%) | 16 (26.7%) | 0.233 |
-COPD I | 3 (11.1%) | 4 (25.0%) | 0.233 |
-COPD II | 23 (85.2%) | 9 (56.2%) | 0.036 |
-COPD III | 1 (3.7%) | 3 (18.8%) | 0.101 |
Insulin-dependent diabetes | 4 (4.7%) | 3 (5.0%) | 0.935 |
Liver disease | 2 (2.4%) | 3 (5.0%) | 0.390 |
Myasthenia Gravis | 0 (0%) | 1 (1.7%) | 0.232 |
Other comorbidity | 43 (50.6%) | 36 (60.0%) | 0.262 |
Urgent operation | 5 (5.9%) | 3 (5.0%) | 0.946 |
Previous lung surgery | 11 (12.9%) | 6 (10.2%) | 0.612 |
Systematic lymph node dissection | 19 (22.4%) | 13 (21.7%) | 0.455 |
Preoperative treatment | |||
-chemotherapy | 24 (28.2%) | 17 (28.8%) | 0.391 |
-chemotherapy and radiotherapy | 26 (30.6%) | 12 (20.3%) | |
Smoker one month before the operation | 34 (40.0%) | 33 (55.0%) | 0.363 |
Type of tumor | |||
-NSCLC | 75 (88.2%) | 47 (78.3%) | 0.230 |
-SCLC | 0 (0.0%) | 1 (1.7%) | |
-Pulmonary metastases | 7 (8.2%) | 5 (8.3%) | |
-Thymic malignancies | 0 (0.0%) | 1 (1.7%) | |
-Other thoracic malignancies | 3 (3.5%) | 6 (10.0%) | |
NSCLC | |||
Preoperative tumor size (cT) | |||
cTx | 1 (1.4%) | 0 (0%) | 0.236 |
cT1 | 4 (5.7%) | 4 (8.7%) | |
cT2 | 8 (11.4%) | 12 (26.1%) | |
cT3 | 21 (30.0%) | 10 (21.7%) | |
cT4 | 36 (51.4%) | 10 (21.7%) | |
Preoperative lymph node status (cN) | |||
cNx | 1 (1.4%) | 0 (0%) | 0.220 |
cN0 | 31 (44.3%) | 20 (43.5%) | |
cN1 | 14 (20.0%) | 8 (17.4%) | |
cN2 | 23 (32.9%) | 13 (28.3%) | |
cN3 | 1 (1.4%) | 5 (10.9%) | |
Preoperative M-status | |||
cM0 | 61 (85.9%) | 38 (82.6%) | 0.574 |
cM1 | 9 (12.7%) | 8 (17.4%) | |
Postoperative tumor size (pT) | |||
pTx | 9 (13.0%) | 1 (2.2%) | 0.105 |
pT1 | 8 (13.0%) | 2 (4.3%) | |
pT2 | 19 (27.5%) | 14 (30.4%) | |
pT3 | 17 (24.6%) | 14 (37.0%) | |
pT4 | 15 (21.7%) | 12 (26.1%) | |
Postoperative lymph node status (pN) | |||
pN0 | 26 (37.7%) | 12 (26.1%) | 0.343 |
pN1 | 30 (43.5%) | 25 (54.3%) | |
pN2 | 13 (18.8%) | 8 (17.4%) | |
pN3 | 0 (0.0%) | 1 (2.2%) | |
Stadium I-IV | |||
Recurrence of NSCLC | 1 (1.4%) | 0 (0.0%) | 0.952 |
IB | 3 (4.3%) | 2 (4.3%) | |
IIA | 1 (1.4%) | 1 (2.2%) | |
IIB | 20 (29.0%) | 13 (28.3%) | |
IIIA | 25 (36.2%) | 15 (32.6%) | |
IIIB | 9 (13.0%) | 6 (13.0%) | |
ΙΙΙC | 0 (0.0%) | 1 (2.2%) | |
IVA | 8 (11.6%) | 7 (15.2%) | |
IVB | 2 (2.9%) | 1 (2.2%) | |
Histological tumor group | |||
-Adenocarcinoma | 30 (41.1%) | 15 (31.9%) | 0.573 |
-Large cell carcinoma | 3 (4.1%) | 1 (2.1%) | |
-Mixed | 3 (4.1%) | 4 (8.5%) | |
-Neuroendocrine | 3 (4.1%) | 4 (8.5%) | |
-Squamous cell | 34 (46.6%) | 23 (48.9%) | |
Extended pneumonectomy | 49 (57.6%) | 40 (66.7%) | 0.272 |
Type of pneumonectomy | |||
-Only pneumonectomy | 36 (42.4%) | 20 (33.3%) | 0.149 |
-With atrial resection | 8 (9.4%) | 2 (3.3%) | |
-Completion-pneumonectomy | 1 (1.2%) | 1 (1.7%) | |
-Diaphragm resection | 1 (1.2%) | 2 (3.3%) | |
-Intrapericardial | 30 (35.3%) | 21 (35%) | |
Pleuropneumonectomy | 3 (3.5%) | 8 (13.3%) | |
-Sleeve resection | 4 (4.7%) | 6 (10.0%) | |
-SVC resection with reconstruction | 2 (2.4%) | 0 (0.0%) | |
Operation side | |||
-Left | 44 (51.8%) | 29 (48.3%) | 0.684 |
-Right | 41 (48.2%) | 31 (51.7%) | |
Preoperative planed lobectomy | 16 (18.8%) | 7 (11.7%) | 0.245 |
Surgeon’s experience | |||
-senior consultant | 29 (34.1%) | 27 (45.0%) | 0.319 |
-junior consultant/trainee | 30 (35.3%) | 15 (25.0%) | |
-unknown | 26 (30.6%) | 18 (30.0%) | |
Preoperative therapy | |||
Preoperative therapy | |||
-no | 34 (40.0%) | 31 (51.7%) | 0.16 |
-yes | 51 (60.0%) | 29 (48.3%) |
Variable | OR | 95% CI | p-Value |
---|---|---|---|
Elderly (age > 70 years) | 1.963 | 0.824–4.674 | 0.128 |
Cardiovascular comorbidities | 2.331 | 0.909–5.976 | 0.07 |
Variable/ Comorbidity | No 30-Day-Mortality (n Patients, %) | 30-Day-Mortality (n Patients, %) | p-Value |
---|---|---|---|
Preoperative clinical risk factors | |||
Age | |||
Age < 70 years | 104 (90.4%) | 11 (9.6%) | 0.287 |
elderly (age > 70) | 28 (96.6%) | 1 (3.4%) | |
Weight | |||
Normal weight | 116 (92.1%) | 10 (7.9%) | 0.649 |
obesity (BMI > 30) | 16 (88.9%) | 2 (11.1%) | |
Comorbidity preoperative | |||
No | 25 (86.2%) | 4 (13.8%) | 0.240 |
Yes | 106 (93.0%) | 8 (7.0%) | |
preoperative cardiovascular comorbidity | |||
no | 109 (90.8%) | 11 (9.2%) | 0.418 |
yes | 23 (95.8%) | 1 (4.2%) | |
Postoperative complication | |||
No | 78 (91.8%) | 7 (8.2%) | 0.959 |
Yes | 54 (91.5%) | 5 (8.5%) | |
ASA score | |||
-unknown | 69 (94.5%) | 4 (5.5%) | 0.008 |
-ASA score 1–3 | 58 (92.1%) | 5 (7.9%) | |
-ASA score 4 | 5 (62.5%) | 3 (37.5%) | |
COPD | |||
No | 94 (71.2%) | 8 (66.7%) | 0.740 |
Yes | 38 (28.8%) | 4 (33.3%) | |
Insulin-dependent diabetes | |||
No | 126 (92.0%) | 11 (8.0%) | 0.559 |
yes | 6 (85.7%) | 1 (14.3%) | |
Myastehnia Gravis | |||
No | 132 (92.3%) | 11 (7.7%) | 0.001 |
Yes | 0 (0.0%) | 1 (100.0%) | |
deep vein thrombosis | |||
no | 132 (92.3%) | 11 (7.7%) | 0.001 |
yes | 0 (0.0%) | 1 (100.0%) | |
Surgery depends on risk factors | |||
extended pneumonectomy | |||
no | 52 (92.9%) | 4 (7.1%) | 0.680 |
yes | 80 (90.9%) | 8 (9.1%) | |
bronchus stump insufficiency | |||
no | 130 (93.5%) | 9 (6.5%) | <0.001 |
yes | 2 (40.0%) | 3 (60.0%) | |
reoperation for bleeding | |||
no | 124 (92.5%) | 10 (7.5%) | 0.166 |
yes | 8 (80.0%) | 2 (20.0%) | |
Side of pneumonectomy | |||
Right | 69 (95.8%) | 3 (4.2%) | 0.070 |
Left | 63 (87.5%) | 9 (12.5%) | |
Surgeon’s experience | |||
-senior consultant | 49 (89.1%) | 6 (10.9%) | 0.218 |
-junior consultant/trainee | 40 (88.9%) | 5 (11.1%) | |
-unknown | 43 (97.7%) | 1 (2.3%) | |
Oncological therapy | |||
Preoperative therapy | |||
-No | 60 (45.5%) | 5 (41.7%) | 0.80 |
-yes | 72 (54.5%) | 7 (58.3%) |
Variable | OR | 95% CI | p-Value |
---|---|---|---|
Bronchus stump insufficiency | 11.883 | 1.288–109.591 | 0.029 |
ASA 4 | 3.023 | 1.028–8.892 | 0.044 |
Myasthenia gravis | - | - | 1.000 |
Deep vein thrombosis | - | - | 1.000 |
Risk Factor | No Bronchus Stump Insufficiency (n Patients, %) | Bronchus Stump Insufficiency (n Patients, %) | p-Value |
---|---|---|---|
extended pneumonectomy | 83 (59.7%) | 5 (100.0%) | 0.069 |
initial ventilation > 48 h | 1 (0.7%) | 0 (0.0%) | 0.849 |
preoperative chemotherapy + radiation | 34 (24.6%) | 3 (60.0%) | 0.360 |
Right pneumonectomy | 70 (50.4%) | 2 (40.0%) | 0.649 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grapatsas, K.; Menghesha, H.; Dörr, F.; Baldes, N.; Schuler, M.; Stuschke, M.; Darwiche, K.; Taube, C.; Bölükbas, S. Pneumonectomy for Primary Lung Tumors and Pulmonary Metastases: A Comprehensive Study of Postoperative Morbidity, Early Mortality, and Preoperative Clinical Prognostic Factors. Curr. Oncol. 2023, 30, 9458-9474. https://doi.org/10.3390/curroncol30110685
Grapatsas K, Menghesha H, Dörr F, Baldes N, Schuler M, Stuschke M, Darwiche K, Taube C, Bölükbas S. Pneumonectomy for Primary Lung Tumors and Pulmonary Metastases: A Comprehensive Study of Postoperative Morbidity, Early Mortality, and Preoperative Clinical Prognostic Factors. Current Oncology. 2023; 30(11):9458-9474. https://doi.org/10.3390/curroncol30110685
Chicago/Turabian StyleGrapatsas, Konstantinos, Hruy Menghesha, Fabian Dörr, Natalie Baldes, Martin Schuler, Martin Stuschke, Kaid Darwiche, Christian Taube, and Servet Bölükbas. 2023. "Pneumonectomy for Primary Lung Tumors and Pulmonary Metastases: A Comprehensive Study of Postoperative Morbidity, Early Mortality, and Preoperative Clinical Prognostic Factors" Current Oncology 30, no. 11: 9458-9474. https://doi.org/10.3390/curroncol30110685
APA StyleGrapatsas, K., Menghesha, H., Dörr, F., Baldes, N., Schuler, M., Stuschke, M., Darwiche, K., Taube, C., & Bölükbas, S. (2023). Pneumonectomy for Primary Lung Tumors and Pulmonary Metastases: A Comprehensive Study of Postoperative Morbidity, Early Mortality, and Preoperative Clinical Prognostic Factors. Current Oncology, 30(11), 9458-9474. https://doi.org/10.3390/curroncol30110685