PIK3CA Mutation as Potential Poor Prognostic Marker in Asian Female Breast Cancer Patients Who Received Adjuvant Chemotherapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Histopathological Analysis
2.3. DNA Extraction and PIK3CA Mutation Analysis
2.4. Immunohistochemistry and MSI/MMR Analysis
2.5. TCGA Dataset Analysis for PD-L1/c-Met/MMR Related to PIK3CA Mutation
2.6. Statistical Analysis
3. Results
3.1. Validation of the Assay for PIK3CA Mutation
3.2. PIK3CA Mutation and TCGA Dataset Analysis
3.3. c-Met, PD-L1, and MMR/MSI
3.4. Prognostic Implications
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leong, S.P.; Shen, Z.Z.; Liu, T.J.; Agarwal, G.; Tajima, T.; Paik, N.S.; Sandelin, K.; Derossis, A.; Cody, H.; Foulkes, W.D. Is breast cancer the same disease in Asian and Western countries? World J. Surg. 2010, 34, 2308–2324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, L.; Gathani, T. Understanding breast cancer as a global health concern. Br. J. Radiol. 2022, 95, 20211033. [Google Scholar] [CrossRef] [PubMed]
- Yip, C.H. Breast cancer in Asia. Methods Mol. Biol. 2009, 471, 51–64. [Google Scholar] [CrossRef]
- Teles, R.H.G.; Yano, R.S.; Villarinho, N.J.; Yamagata, A.S.; Jaeger, R.G.; Meybohm, P.; Burek, M.; Freitas, V.M. Advances in Breast Cancer Management and Extracellular Vesicle Research, a Bibliometric Analysis. Curr. Oncol. 2021, 28, 382. [Google Scholar] [CrossRef] [PubMed]
- Waks, A.G.; Winer, E.P. Breast Cancer Treatment: A Review. JAMA 2019, 321, 288–300. [Google Scholar] [CrossRef]
- Chew, H.K. Adjuvant therapy for breast cancer: Who should get what? West. J. Med. 2001, 174, 284–287. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.H.D.; Quan, M.L.; Kong, S.; Xu, Y.; Cao, J.Q.; Lupichuk, S.; Barbera, L. Acute Care Use by Breast Cancer Patients on Adjuvant Chemotherapy in Alberta: Demonstrating the Importance of Measurement to Improving Quality. Curr. Oncol. 2021, 28, 375. [Google Scholar] [CrossRef]
- Najjar, S.; Allison, K.H. Updates on breast biomarkers. Virchows Arch. 2022, 480, 163–176. [Google Scholar] [CrossRef]
- Burstein, H.J.; Somerfield, M.R.; Barton, D.L.; Dorris, A.; Fallowfield, L.J.; Jain, D.; Johnston, S.R.D.; Korde, L.A.; Litton, J.K.; Macrae, E.R.; et al. Endocrine Treatment and Targeted Therapy for Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer: ASCO Guideline Update. J. Clin. Oncol. 2021, 39, 3959–3977. [Google Scholar] [CrossRef]
- Andre, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. N. Engl. J. Med. 2019, 380, 1929–1940. [Google Scholar] [CrossRef]
- Mosele, F.; Stefanovska, B.; Lusque, A.; Tran Dien, A.; Garberis, I.; Droin, N.; Le Tourneau, C.; Sablin, M.P.; Lacroix, L.; Enrico, D.; et al. Outcome and molecular landscape of patients with PIK3CA-mutated metastatic breast cancer. Ann. Oncol. 2020, 31, 377–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Li, S.; Wang, B.; Liu, W.; Gagea, M.; Chen, H.; Sohn, J.; Parinyanitikul, N.; Primeau, T.; Do, K.A.; et al. Cooperative Effect of Oncogenic MET and PIK3CA in an HGF-Dominant Environment in Breast Cancer. Mol. Cancer. Ther. 2019, 18, 399–412. [Google Scholar] [CrossRef] [Green Version]
- Baptista, M.Z.; Sarian, L.O.; Derchain, S.F.; Pinto, G.A.; Vassallo, J. Prognostic significance of PD-L1 and PD-L2 in breast cancer. Hum. Pathol. 2016, 47, 78–84. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, C.C.; Jin, L.; Zhang, X.D. Regulation of PD-L1: A novel role of pro-survival signalling in cancer. Ann. Oncol. 2016, 27, 409–416. [Google Scholar] [CrossRef]
- Ho-Yen, C.M.; Jones, J.L.; Kermorgant, S. The clinical and functional significance of c-Met in breast cancer: A review. Breast Cancer Res. 2015, 17, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammond, M.E.; Hayes, D.F.; Dowsett, M.; Allred, D.C.; Hagerty, K.L.; Badve, S.; Fitzgibbons, P.L.; Francis, G.; Goldstein, N.S.; Hayes, M.; et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch. Pathol. Lab. Med. 2010, 134, e48–e72. [Google Scholar] [CrossRef]
- Goldhirsch, A.; Wood, W.C.; Coates, A.S.; Gelber, R.D.; Thurlimann, B.; Senn, H.J.; Panel, M. Strategies for subtypes—Dealing with the diversity of breast cancer: Highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann. Oncol. 2011, 22, 1736–1747. [Google Scholar] [CrossRef]
- Kwon, M.J.; Lee, S.E.; Kang, S.Y.; Choi, Y.L. Frequency of KRAS, BRAF, and PIK3CA mutations in advanced colorectal cancers: Comparison of peptide nucleic acid-mediated PCR clamping and direct sequencing in formalin-fixed, paraffin-embedded tissue. Pathol. Res. Pract. 2011, 207, 762–768. [Google Scholar] [CrossRef]
- Suh, Y.J.; Kwon, M.J.; Noh, H.M.; Lee, H.K.; Ra, Y.J.; Kim, N.Y. Limited Clinical and Diagnostic Utility of Circulating Tumor DNA Detection in Patients with Early-Stage Well-Differentiated Thyroid Cancer: Comparison with Benign Thyroid Nodules and Healthy Individuals. Healthcare 2021, 9, 386. [Google Scholar] [CrossRef]
- Guo, H.; Ding, Q.; Gong, Y.; Gilcrease, M.Z.; Zhao, M.; Zhao, J.; Sui, D.; Wu, Y.; Chen, H.; Liu, H.; et al. Comparison of three scoring methods using the FDA-approved 22C3 immunohistochemistry assay to evaluate PD-L1 expression in breast cancer and their association with clinicopathologic factors. Breast Cancer Res. 2020, 22, 69. [Google Scholar] [CrossRef]
- Spigel, D.R.; Ervin, T.J.; Ramlau, R.A.; Daniel, D.B.; Goldschmidt, J.H., Jr.; Blumenschein, G.R., Jr.; Krzakowski, M.J.; Robinet, G.; Godbert, B.; Barlesi, F.; et al. Randomized phase II trial of Onartuzumab in combination with erlotinib in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 2013, 31, 4105–4114. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.K.; Kwon, M.J.; Ra, Y.J.; Lee, H.S.; Kim, H.S.; Nam, E.S.; Cho, S.J.; Park, H.R.; Min, S.K.; Seo, J.; et al. Significance of druggable targets (PD-L1, KRAS, BRAF, PIK3CA, MSI, and HPV) on curatively resected esophageal squamous cell carcinoma. Diagn. Pathol. 2020, 15, 126. [Google Scholar] [CrossRef] [PubMed]
- Mollon, L.E.; Anderson, E.J.; Dean, J.L.; Warholak, T.L.; Aizer, A.; Platt, E.A.; Tang, D.H.; Davis, L.E. A Systematic Literature Review of the Prognostic and Predictive Value of PIK3CA Mutations in HR(+)/HER2(−) Metastatic Breast Cancer. Clin. Breast Cancer 2020, 20, e232–e243. [Google Scholar] [CrossRef]
- Hortobagyi, G.N.; Chen, D.; Piccart, M.; Rugo, H.S.; Burris, H.A., III; Pritchard, K.I.; Campone, M.; Noguchi, S.; Perez, A.T.; Deleu, I.; et al. Correlative Analysis of Genetic Alterations and Everolimus Benefit in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: Results from BOLERO-2. J. Clin. Oncol. 2016, 34, 419–426. [Google Scholar] [CrossRef]
- Mayer, I.A.; Abramson, V.G.; Isakoff, S.J.; Forero, A.; Balko, J.M.; Kuba, M.G.; Sanders, M.E.; Yap, J.T.; Van den Abbeele, A.D.; Li, Y.; et al. Stand up to cancer phase Ib study of pan-phosphoinositide-3-kinase inhibitor buparlisib with letrozole in estrogen receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol. 2014, 32, 1202–1209. [Google Scholar] [CrossRef]
- Deng, L.; Zhu, X.; Sun, Y.; Wang, J.; Zhong, X.; Li, J.; Hu, M.; Zheng, H. Prevalence and Prognostic Role of PIK3CA/AKT1 Mutations in Chinese Breast Cancer Patients. Cancer Res. Treat. 2019, 51, 128–140. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Guo, X.; Chen, M.; Tang, L.; Jiang, H.; Day, J.X.; Xie, Y.; Peng, L.; Xu, X.; Li, J.; et al. Prevalence and spectrum of AKT1, PIK3CA, PTEN and TP53 somatic mutations in Chinese breast cancer patients. PLoS ONE 2018, 13, e0203495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lian, J.; Xu, E.W.; Xi, Y.F.; Wang, H.W.; Bu, P.; Wang, J.F.; Wang, L.X. Clinical-Pathologic Analysis of Breast Cancer with PIK3CA Mutations in Chinese Women. Technol. Cancer Res. Treat. 2020, 19, 1–7. [Google Scholar] [CrossRef]
- Huang, W.C.; Hung, M.C. Induction of Akt activity by chemotherapy confers acquired resistance. J. Formos. Med. Assoc. 2009, 108, 180–194. [Google Scholar] [CrossRef] [Green Version]
- Chandarlapaty, S.; Sakr, R.A.; Giri, D.; Patil, S.; Heguy, A.; Morrow, M.; Modi, S.; Norton, L.; Rosen, N.; Hudis, C.; et al. Frequent mutational activation of the PI3K-AKT pathway in trastuzumab-resistant breast cancer. Clin. Cancer Res. 2012, 18, 6784–6791. [Google Scholar] [CrossRef] [Green Version]
- Isakoff, S.J.; Engelman, J.A.; Irie, H.Y.; Luo, J.; Brachmann, S.M.; Pearline, R.V.; Cantley, L.C.; Brugge, J.S. Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res. 2005, 65, 10992–11000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loibl, S.; Majewski, I.; Guarneri, V.; Nekljudova, V.; Holmes, E.; Bria, E.; Denkert, C.; Schem, C.; Sotiriou, C.; Loi, S.; et al. PIK3CA mutations are associated with reduced pathological complete response rates in primary HER2-positive breast cancer: Pooled analysis of 967 patients from five prospective trials investigating lapatinib and trastuzumab. Ann. Oncol. 2019, 30, 1180. [Google Scholar] [CrossRef]
- Berns, K.; Horlings, H.M.; Hennessy, B.T.; Madiredjo, M.; Hijmans, E.M.; Beelen, K.; Linn, S.C.; Gonzalez-Angulo, A.M.; Stemke-Hale, K.; Hauptmann, M.; et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 2007, 12, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Zardavas, D.; Te Marvelde, L.; Milne, R.; Joensuu, H.; Moynahan, M.E.; Hennessy, B.; Bieche, I.; Saal, L.H.; Stal, O.; Iacopetta, B.; et al. Tumor PIK3CA genotype and prognosis: A pooled analysis of 4241 patients (pts) with early-stage breast cancer (BC). J. Clin. Oncol. 2015, 33, 516. [Google Scholar] [CrossRef]
- Kalinsky, K.; Jacks, L.M.; Heguy, A.; Patil, S.; Drobnjak, M.; Bhanot, U.K.; Hedvat, C.V.; Traina, T.A.; Solit, D.; Gerald, W.; et al. PIK3CA mutation associates with improved outcome in breast cancer. Clin. Cancer Res. 2009, 15, 5049–5059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, I.G.; Russell, S.E.; Choong, D.Y.; Montgomery, K.G.; Ciavarella, M.L.; Hooi, C.S.; Cristiano, B.E.; Pearson, R.B.; Phillips, W.A. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 2004, 64, 7678–7681. [Google Scholar] [CrossRef] [Green Version]
- Buttitta, F.; Felicioni, L.; Barassi, F.; Martella, C.; Paolizzi, D.; Fresu, G.; Salvatore, S.; Cuccurullo, F.; Mezzetti, A.; Campani, D.; et al. PIK3CA mutation and histological type in breast carcinoma: High frequency of mutations in lobular carcinoma. J. Pathol. 2006, 208, 350–355. [Google Scholar] [CrossRef]
- Li, S.Y.; Rong, M.; Grieu, F.; Iacopetta, B. PIK3CA mutations in breast cancer are associated with poor outcome. Breast Cancer Res. Treat. 2006, 96, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, N.; Miyoshi, Y.; Taguchi, T.; Tamaki, Y.; Monden, M.; Noguchi, S. Clinicopathologic analysis of breast cancers with PIK3CA mutations in Japanese women. Clin. Cancer Res. 2007, 13, 408–414. [Google Scholar] [CrossRef] [Green Version]
- Saal, L.H.; Holm, K.; Maurer, M.; Memeo, L.; Su, T.; Wang, X.; Yu, J.S.; Malmström, P.O.; Mansukhani, M.; Enoksson, J.; et al. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res. 2005, 65, 2554–2559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubey, A.K.; Gupta, U.; Jain, S. Breast cancer statistics and prediction methodology: A systematic review and analysis. Asian Pac. J. Cancer Prev. 2015, 16, 4237–4245. [Google Scholar] [CrossRef]
- Muenst, S.; Schaerli, A.R.; Gao, F.; Daster, S.; Trella, E.; Droeser, R.A.; Muraro, M.G.; Zajac, P.; Zanetti, R.; Gillanders, W.E.; et al. Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer. Breast Cancer Res. Treat. 2014, 146, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Sabatier, R.; Finetti, P.; Mamessier, E.; Adelaide, J.; Chaffanet, M.; Ali, H.R.; Viens, P.; Caldas, C.; Birnbaum, D.; Bertucci, F. Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget 2015, 6, 5449–5464. [Google Scholar] [CrossRef] [Green Version]
- Paulson, T.G.; Wright, F.A.; Parker, B.A.; Russack, V.; Wahl, G.M. Microsatellite instability correlates with reduced survival and poor disease prognosis in breast cancer. Cancer Res. 1996, 56, 4021–4026. [Google Scholar]
- Ren, X.Y.; Song, Y.; Wang, J.; Chen, L.Y.; Pang, J.Y.; Zhou, L.R.; Shen, S.J.; Cao, X.; Wang, Y.X.; Shao, M.M.; et al. Mismatch Repair Deficiency and Microsatellite Instability in Triple-Negative Breast Cancer: A Retrospective Study of 440 Patients. Front. Oncol. 2021, 11, 570623. [Google Scholar] [CrossRef]
- Bates, J.P.; Derakhshandeh, R.; Jones, L.; Webb, T.J. Mechanisms of immune evasion in breast cancer. BMC Cancer 2018, 18, 556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Li, M.; Wang, X. Cancer type-dependent correlations between TP53 mutations and antitumor immunity. DNA Repair 2020, 88, 102785. [Google Scholar] [CrossRef] [PubMed]
- Croessmann, S.; Wong, H.Y.; Zabransky, D.J.; Chu, D.; Rosen, D.M.; Cidado, J.; Cochran, R.L.; Dalton, W.B.; Erlanger, B.; Cravero, K.; et al. PIK3CA mutations and TP53 alterations cooperate to increase cancerous phenotypes and tumor heterogeneity. Breast Cancer Res. Treat. 2017, 162, 451–464. [Google Scholar] [CrossRef]
- Adams, J.R.; Xu, K.; Liu, J.C.; Agamez, N.M.; Loch, A.J.; Wong, R.G.; Wang, W.; Wright, K.L.; Lane, T.F.; Zacksenhaus, E.; et al. Cooperation between Pik3ca and p53 mutations in mouse mammary tumor formation. Cancer Res. 2011, 71, 2706–2717. [Google Scholar] [CrossRef] [Green Version]
Characteristic | PIK3CA | p | PD-L1 Expression | p | c-Met Expression | p | |||
---|---|---|---|---|---|---|---|---|---|
MT | WT | Positive | Negative | Positive | Negative | ||||
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | ||||
Age (years) | 1.000 | 0.703 | 0.609 | ||||||
<50 | 39 (50.0) | 40 (50.0) | 18 (48.6) | 60 (45.1) | 26 (49.1) | 52 (44.8) | |||
≥50 | 39 (50.0) | 40 (50.0) | 19 (51.4) | 73 (54.9) | 27 (50.9) | 64 (55.2) | |||
pT category | 0.874 | 0.265 | 0.410 | ||||||
pT1 | 35 (44.9) | 37 (46.3) | 15 (40.5) | 70 (52.6) | 24 (45.3) | 61 (52.6) | |||
pT2–pT3 | 43 (55.1) | 43 (53.7) | 22 (59.5) | 63 (47.4) | 29 (54.7) | 55 (47.4) | |||
pN category | 0.752 | 0.852 | 0.407 | ||||||
pN0 | 43 (55.1) | 42 (52.5) | 22 (59.5) | 76 (57.1) | 33 (62.3) | 64 (55.2) | |||
pN ≥ 1 | 35 (44.9) | 38 (47.5) | 15 (40.5) | 57 (42.9) | 20 (37.7) | 52 (44.8) | |||
Histologic grade | 0.527 | <0.001 * | <0.001 * | ||||||
I–II | 45 (57.7) | 42 (52.5) | 10 (27.0) | 89 (66.9) | 19 (35.8) | 80 (69.0) | |||
III | 33 (42.3) | 38 (47.5) | 27 (73.0) | 44 (33.1) | 34 (64.2) | 36 (31.0) | |||
LVI | 0.286 | 1.000 | 0.335 | ||||||
Absent | 60 (76.9) | 55 (68.8) | 28 (75.7) | 100 (75.2) | 43 (81.1) | 85 (73.3) | |||
Present | 18 (23.1) | 25 (31.2) | 9 (24.3) | 33 (24.8) | 10 (18.9) | 31 (26.7) | |||
ER | 1.000 | 0.007 * | <0.001 * | ||||||
Negative | 25 (32.1) | 26 (32.5) | 19 (51.4) | 37 (27.8) | 29 (54.7) | 26 (22.4) | |||
Positive | 53 (67.9) | 54 (67.5) | 18 (48.6) | 96 (72.2) | 24 (45.3) | 90 (77.6) | |||
PR | 1.000 | 0.022 * | 0.001 * | ||||||
Negative | 28 (35.9) | 29 (36.3) | 18 (48.6) | 38 (28.6) | 27 (50.9) | 28 (24.1) | |||
Positive | 50 (64.1) | 51 (63.7) | 19 (51.4) | 95 (71.4) | 26 (49.1) | 88 (75.9) | |||
HER2 | 0.154 | 0.531 | 0.573 | ||||||
Negative | 61 (78.2) | 54 (67.5) | 29 (78.4) | 95 (71.4) | 41 (77.4) | 84 (72.4) | |||
Positive | 17 (21.8) | 26 (32.5) | 8 (21.6) | 38 (28.6) | 12 (22.6) | 32 (27.6) | |||
Subtype | 0.406 | 0.028 * | 0.001 * | ||||||
Luminal A | 16 (20.5) | 12 (15.0) | 3 (8.1) | 24 (18.0) | 7 (13.2) | 21 (18.1) | |||
Luminal B | 37 (47.4) | 44 (55.0) | 18 (48.6) | 75 (56.4) | 20 (37.7) | 72 (62.1) | |||
HER2-enriched | 6 (7.7) | 10 (12.5) | 3 (8.1) | 15 (11.3) | 7 (13.2) | 10 (8.6) | |||
Triple-negative | 19 (24.4) | 14 (17.5) | 13 (35.2) | 19 (14.3) | 19 (35.9) | 13 (11.2) | |||
MSI/MMR | 0.196 | 0.736 | 0.926 | ||||||
MSS/pMMR | 59 (89.4) | 68 (95.8) | 34 (94.4) | 118 (91.5) | 49 (92.5) | 104 (92.9) | |||
MSI/dMMR | 7 (10.6) | 3 (4.2) | 2 (5.6) | 11 (8.5) | 4 (7.5) | 8 (7.1) | |||
PIK3CA status | - | 0.685 | 0.591 | ||||||
WT | - | - | 17 (54.8) | 53 (49.5) | 22 (46.8) | 48 (52.7) | |||
MT | - | - | 14 (45.2) | 54 (50.5) | 25 (53.2) | 43 (47.3) | |||
PD-L1 | 0.685 | - | 0.033 * | ||||||
Negative | 54 (79.4) | 53 (75.7) | - | - | 36 (67.9) | 95 (82.6) | |||
Positive | 14 (20.6) | 17 (24.3) | - | - | 17 (32.1) | 20 (17.4) | |||
c-Met | 0.591 | 0.033 * | - | ||||||
Negative | 43 (63.2) | 48 (68.6) | 20 (54.1) | 95 (72.5) | - | - | |||
Positive | 25 (36.8) | 22 (31.4) | 17 (45.9) | 36 (27.5) | - | - |
Characteristic | Overall Survival | p | Recurrence-Free Survival | p |
---|---|---|---|---|
Hazard Raio (95% CI) | Hazard Raio (95% CI) | |||
Univariate analysis | ||||
Age (y) (<50 vs. ≥50) | 0.892 (0.180–4.420) | 0.889 | 0.958 (0.413–2.222) | 0.921 |
Histologic grade (I vs. II–III) | 1.423 (0.287–7.052) | 0.666 | 0.775 (0.325–1.849) | 0.565 |
LVI (absent vs. present) | 16.00 (1.869–137.04) | 0.011 * | 1.452 (0.592–3.564) | 0.416 |
pT1 vs. pT2–pT3 | 5.082 (0.594–43.498) | 0.138 | 0.863 (0.372–2.000) | 0.731 |
LNM (absent vs. present) | 6.757 (0.789–57.843) | 0.081 | 1.607 (0.693–3.731) | 0.269 |
ER (negative vs. positive) | 0.464 (0.094–2.300) | 0.347 | 1.015 (0.414–2.491) | 0.974 |
PR (negative vs. positive) | 0.523 (0.106–2.593) | 0.428 | 0.545 (0.235–1.264) | 0.157 |
HER2 (negative vs. positive) | 2.782 (0.561–13.784) | 0.210 | 0.597 (0.202–1.764) | 0.350 |
PIK3CA (WT vs. MT) | 5.116 (0.598–43.797) | 0.136 | 2.662 (1.041–6.810) | 0.041 * |
PD-L1 (negative vs. positive) | 1.203 (0.125–11.568) | 0.873 | 0.426 (0.098–1.853) | 0.255 |
c-Met (negative vs. positive) | 0.734 (0.076–7.054) | 0.789 | 1.712 (0.996–2.942) | 0.052 |
MSS/pMMR vs. MSI/dMMR | 3.988 (0.415–38.349) | 0.231 | 0.703 (0.093–5.302) | 0.732 |
Multivariate analysis | ||||
Age (y) (<50 vs. ≥50) | 0.819 (0.084–7.989) | 0.863 | 0.514 (0.177–1.496) | 0.222 |
Histologic grade (I vs. II–III) | 0.704 (0.044–11.291) | 0.805 | 0.865 (0.201–3.716) | 0.846 |
LVI (absent vs. present) | 10.786 (0.418–278.281) | 0.152 | 1.879 (0.534–6.611) | 0.326 |
pT1 vs. pT2–pT3 | 2.577 (0.120–55.164) | 0.545 | 0.596 (0.195–1.823) | 0.365 |
LNM (absent vs. present) | 2.753 (0.131–57.835) | 0.514 | 0.626 (0.190–2.065) | 0.442 |
ER (negative vs. positive) | 0.194 (0.001–33.231) | 0.532 | 14.086 (1.471–134.862) | 0.022 * |
PR (negative vs. positive) | 2.262 (0.014–378.806) | 0.755 | 0.056 (0.008–0.420) | 0.005 * |
HER2 (negative vs. positive) | 2.852 (0.241–33.717) | 0.406 | 0.294 (0.052–1.651) | 0.164 |
PIK3CA (WT vs. MT) | 7.758 (0.400–150.40) | 0.176 | 3.543 (1.047–11.988) | 0.042 * |
PD-L1 (negative vs. positive) | 2.477 (0.126–48.792) | 0.551 | 0.279 (0.047–1.675) | 0.163 |
c-Met (negative vs. positive) | 0.360 (0.011–12.246) | 0.570 | 1.956 (0.611–6.262) | 0.259 |
MSS/pMMR vs. MSI/dMMR | 5.821 (0.229–147.70) | 0.286 | 0.906 (0.105–7.855) | 0.929 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.A.; Ko, S.Y.; Suh, Y.J.; Kim, S.; Park, J.H.; Park, H.-R.; Seo, J.; Choi, H.G.; Kang, H.S.; Lim, H.; et al. PIK3CA Mutation as Potential Poor Prognostic Marker in Asian Female Breast Cancer Patients Who Received Adjuvant Chemotherapy. Curr. Oncol. 2022, 29, 2895-2908. https://doi.org/10.3390/curroncol29050236
Cho YA, Ko SY, Suh YJ, Kim S, Park JH, Park H-R, Seo J, Choi HG, Kang HS, Lim H, et al. PIK3CA Mutation as Potential Poor Prognostic Marker in Asian Female Breast Cancer Patients Who Received Adjuvant Chemotherapy. Current Oncology. 2022; 29(5):2895-2908. https://doi.org/10.3390/curroncol29050236
Chicago/Turabian StyleCho, Yoon Ah, Seung Yeon Ko, Yong Joon Suh, Sanghwa Kim, Jung Ho Park, Hye-Rim Park, Jinwon Seo, Hyo Geun Choi, Ho Suk Kang, Hyun Lim, and et al. 2022. "PIK3CA Mutation as Potential Poor Prognostic Marker in Asian Female Breast Cancer Patients Who Received Adjuvant Chemotherapy" Current Oncology 29, no. 5: 2895-2908. https://doi.org/10.3390/curroncol29050236
APA StyleCho, Y. A., Ko, S. Y., Suh, Y. J., Kim, S., Park, J. H., Park, H. -R., Seo, J., Choi, H. G., Kang, H. S., Lim, H., Park, H. Y., & Kwon, M. J. (2022). PIK3CA Mutation as Potential Poor Prognostic Marker in Asian Female Breast Cancer Patients Who Received Adjuvant Chemotherapy. Current Oncology, 29(5), 2895-2908. https://doi.org/10.3390/curroncol29050236