Methods of Sentinel Lymph Node Detection and Management in Urinary Bladder Cancer—A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Lymphoscintigraphy
3.2. Computed Tomography (CT)/Single-Photon Emission Computer Tomography (SPECT)
3.3. Positron Emission Tomography (PET)
3.4. Magnetic Resonance Imaging (MRI)
3.5. Indocyanine Green (ICG) Near Infrared (NIR) Fluorescence
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Tomlinson, B.; Lin, T.Y.; Dall’Era, M.; Pan, C.X. Nanotechnology in bladder cancer: Current state of development and clinical practice. Nanomedicine 2015, 10, 1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avis, N.E.; Smith, K.W.; McGraw, S.; Smith, R.G.; Petronis, V.M.; Carver, C.S. Assessing quality of life in adult cancer survivors (QLACS). Qual. Life Res. 2005, 14, 1007–1023. [Google Scholar] [CrossRef] [PubMed]
- Avis, N.E.; Deimling, G.T. Cancer survivorship and aging. Cancer 2008, 113, 3519–3529. [Google Scholar] [CrossRef] [PubMed]
- Sherif, A.; Garske, U.; de La Torre, M.; Thörn, M. Hybrid SPECT-CT: An Additional Technique for Sentinel Node Detection of Patients with Invasive Bladder Cancer. Eur. Urol. 2006, 50, 83–91. [Google Scholar] [CrossRef]
- Bassi, P.; Ferrante, G.D.; Piazza, N.; Spinadin, R.; Carando, R.; Pappagallo, G.; Pagano, F. Prognostic factors of outcome after radical cystectomy for bladder cancer: A retrospective study of a homogeneous patient cohort. J. Urol. 1999, 161, 1494–1497. [Google Scholar] [CrossRef]
- Aljabery, F.; Shabo, I.; Olsson, H.; Gimm, O.; Jahnson, S. Radio-guided sentinel lymph node detection and lymph node mapping in invasive urinary bladder cancer: A prospective clinical study. BJU Int. 2017, 120, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Dorin, R.P.; Daneshmand, S.; Eisenberg, M.S.; Chandrasoma, S.; Cai, J.; Miranda, G.; Nichols, P.W.; Skinner, D.G.; Skinner, E.C. Lymph node dissection technique is more important than lymph node count in identifying nodal metastases in radical cystectomy patients: A comparative mapping study. Eur. Urol. 2011, 60, 946–952. [Google Scholar] [CrossRef]
- Liss, M.A.; Noguchi, J.; Lee, H.J.; Vera, D.R.; Kader, A.K. Sentinel lymph node biopsy in bladder cancer: Systematic review and technology update. Indian J. Urol. 2015, 31, 170–175. [Google Scholar] [CrossRef]
- Cabanas, R. An approach for the treatment of penile carcinoma. Cancer 1977, 39, 456–466. [Google Scholar] [CrossRef]
- Tanis, P.J.; Nieweg, O.E.; Valdés Olmos, R.A.; Rutgers, E.J.T.; Kroon, B.B.R. History of sentinel node and validation of the technique. Breast Cancer Res. 2001, 3, 109–112. [Google Scholar] [CrossRef] [Green Version]
- Wong, G.; Greenhalgh, T.; Westhorp, G.; Buckingham, J.; Pawson, R. RAMESES publication standards: Meta-narrative reviews. J. Adv. Nurs. 2013, 69, 987–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarifmahmoudi, L.; Ghorbani, H.; Sadri, K.; Tavakkoli, M.; Keshvari, M.; Salehi, M.; Sadeghi, R. Sentinel Node Biopsy in Urothelial Carcinoma of the Bladder: Systematic Review and Meta-Analysis. Urol. Int. 2019, 103, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Polom, W.; Markuszewski, M.; Cytawa, W.; Czapiewski, P.; Lass, P.; Matuszewski, M. Fluorescent Versus Radioguided Lymph Node Mapping in Bladder Cancer. Clin. Genitourin. Cancer 2017, 15, e405–e409. [Google Scholar] [CrossRef]
- Lusuardi, L.; Janetschek, G. Update on use of enhanced imaging to optimize lymphadenectomy in patients undergoing minimally invasive surgery for urothelial cancer of the bladder. Curr. Urol. Rep. 2013, 14, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Salminen, A.P.; Jambor, I.; SyvÄnen, K.T.; BostrÖm, P.J. Update on Novel Imaging Techniques for the detection of lymph node metastases in bladder cancer. Minerva Urol. Nefrol. 2016, 68, 138–149. [Google Scholar]
- Nissenkorn, I.; Winkler, H.; Servadio, C.; Melloul, M.; Lubin, E.; Idelsohn, A.R.; Hadar, H. A comparative evaluation of lymphoscintigraphy versus lymphangiography and computerized tomography scanning in diagnosis of lymph node metastases in advanced bladder cancer. J. Urol. 1986, 136, 825–827. [Google Scholar] [CrossRef]
- Aljabery, F.; Lindblom, G.; Skoog, S.; Shabo, I.; Olsson, H.; Rosell, J.; Jahnson, S. PET/CT versus conventional CT for detection of lymph node metastases in patients with locally advanced bladder cancer. BMC Urol. 2015, 15, 87. [Google Scholar] [CrossRef] [Green Version]
- Liedberg, F.; Chebil, G.; Davidsson, T.; Gudjonsson, S.; Månsson, W. Intraoperative sentinel node detection improves nodal staging in invasive bladder cancer. J. Urol. 2006, 175, 84–88. [Google Scholar] [CrossRef]
- Marits, P.; Karlsson, M.; Sherif, A.; Garske, U.; Thörn, M.; Winqvist, O. Detection of immune responses against urinary bladder cancer in sentinel lymph nodes. Eur. Urol. 2006, 49, 59–70. [Google Scholar] [CrossRef]
- Zarifmahmoudi, L.; Ghorbani, H.; Sadeghi, R.; Sadri, K.; Tavakkoli, M.; Keshvari, M.; Salehi, M. Sentinel lymph node biopsy in muscle-invasive bladder cancer: Single-center experience. Ann. Nucl. Med. 2020, 34, 718–724. [Google Scholar] [CrossRef]
- Sherif, A.; De La Torre, M.; Malmström, P.U.; Thörn, M. Lymphatic mapping and detection of sentinel nodes in patients with bladder cancer. J. Urol. 2001, 166, 812–815. [Google Scholar] [CrossRef]
- Połom, W.; Markuszewski, M.; Cytawa, W.; Lass, P.; Matuszewski, M. Radio-guided lymph node mapping in bladder cancer using SPECT/CT and intraoperative γ-probe methods. Clin. Nucl. Med. 2016, 41, e362–e367. [Google Scholar] [CrossRef] [PubMed]
- Salo, J.O.; Kivisaari, L.; Rannikko, S.; Lehtonen, T. The value of CT in detecting pelvic lymph node metastases in cases of bladder and prostate carcinoma. Scand. J. Urol. Nephrol. 1986, 20, 261–265. [Google Scholar] [CrossRef]
- Lerman, H.; Metser, U.; Lievshitz, G.; Sperber, F.; Shneebaum, S.; Even-Sapir, E. Lymphoscintigraphic sentinel node identification in patients with breast cancer: The role of SPECT-CT. Eur. J. Nucl. Med. Mol. Imaging 2006, 33, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Paik, M.L.; Scolieri, M.J.; Brown, S.L.; Spirnak, J.P.; Resnick, M.I. Limitations of computerized tomography in staging invasive bladder cancer before radical cystectomy. J. Urol. 2000, 163, 1693–1696. [Google Scholar] [CrossRef]
- Patel, M.N.; Hemal, A.K. Molecular Targeted Fluorescence-Guided Intraoperative Imaging of Bladder Cancer Nodal Drainage Using Indocyanine Green During Radical and Partial Cystectomy. Curr. Urol. Rep. 2016, 17, 74. [Google Scholar] [CrossRef]
- Aoun, F.; Albisinni, S.; Zanaty, M.; Hassan, T.; Janetschek, G.; Velthoven, R. van Indocyanine greenfluorescence-guidedsentinel lymph node identification in urologic cancers: A systematic review and meta-analysis. Minerva Urol. Nefrol. 2018, 70, 361–369. [Google Scholar] [CrossRef]
- Schaafsma, B.E.; Verbeek, F.P.R.; Elzevier, H.W.; Tummers, Q.R.J.G.; Van Der Vorst, J.R.; Frangioni, J.V.; Van De Velde, C.J.H.; Pelger, R.C.M.; Vahrmeijer, A.L. Optimization of Sentinel Lymph Node Mapping in Bladder Cancer using Near-Infrared Fluorescence Imaging. J. Surg. Oncol. 2014, 110, 845. [Google Scholar] [CrossRef] [Green Version]
- Manny, T.B.; Hemal, A.K. Fluorescence-enhanced robotic radical cystectomy using unconjugated indocyanine green for pelvic lymphangiography, tumor marking, and mesenteric angiography: The initial clinical experience. Urology 2014, 83, 824–830. [Google Scholar] [CrossRef]
- Knapp, D.W.; Adams, L.G.; DeGrand, A.M.; Niles, J.D.; Ramos-Vara, J.A.; Weil, A.B.; O’Donnell, M.A.; Lucroy, M.D.; Frangioni, J.V. Sentinel Lymph Node Mapping of Invasive Urinary Bladder Cancer in Animal Models Using Invisible Light. Eur. Urol. 2007, 52, 1700–1709. [Google Scholar] [CrossRef] [Green Version]
- Papalia, R.; Simone, G.; Grasso, R.; Augelli, R.; Faiella, E.; Guaglianone, S.; Cazzato, R.; Del Vescovo, R.; Ferriero, M.; Zobel, B.; et al. Diffusion-weighted magnetic resonance imaging in patients selected for radical cystectomy: Detection rate of pelvic lymph node metastases. BJU Int. 2012, 109, 1031–1036. [Google Scholar] [CrossRef]
- Thoeny, H.C.; Triantafyllou, M.; Birkhaeuser, F.D.; Froehlich, J.M.; Tshering, D.W.; Binser, T.; Fleischmann, A.; Vermathen, P.; Studer, U.E. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur. Urol. 2009, 55, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllou, M.; Studer, U.E.; Birkhäuser, F.D.; Fleischmann, A.; Bains, L.J.; Petralia, G.; Christe, A.; Froehlich, J.M.; Thoeny, H.C. Ultrasmall superparamagnetic particles of iron oxide allow for the detection of metastases in normal sized pelvic lymph nodes of patients with bladder and/or prostate cancer. Eur. J. Cancer 2013, 49, 616–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birkhäuser, F.D.; Studer, U.E.; Froehlich, J.M.; Triantafyllou, M.; Bains, L.J.; Petralia, G.; Vermathen, P.; Fleischmann, A.; Thoeny, H.C. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging facilitates detection of metastases in normal-sized pelvic lymph nodes of patients with bladder and prostate cancer. Eur. Urol. 2013, 64, 953–960. [Google Scholar] [CrossRef]
- Dason, S.; Wong, N.C.; Donahue, T.F.; Meier, A.; Zheng, J.; Mannelli, L.; Di Paolo, P.L.; Dean, L.W.; McPherson, V.A.; Rosenberg, J.E.; et al. Utility of routine preoperative 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET/CT) in identifying pathologic lymph node metastases at radical cystectomy. J. Urol. 2020, 204, 254. [Google Scholar] [CrossRef]
- Abrahamsson, J.; Aaltonen, K.; Engilbertsson, H.; Liedberg, F.; Patschan, O.; Rydén, L.; Sjödahl, G.; Gudjonsson, S. Circulating tumor cells in patients with advanced urothelial carcinoma of the bladder: Association with tumor stage, lymph node metastases, FDG-PET findings, and survival. Urol. Oncol. Semin. Orig. Investig. 2017, 35, 606.e9–606.e16. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Murray, I.; Brock, C.; Oliver, T.; Avril, N. Molecular positron emission tomography and PET/CT imaging in urological malignancies. Eur. Urol. 2007, 51, 1511–1521. [Google Scholar] [CrossRef]
- Schöder, H.; Larson, S.M. Positron emission tomography for prostate, bladder, and renal cancer. Semin. Nucl. Med. 2004, 34, 274–292. [Google Scholar] [CrossRef] [Green Version]
- Nayak, B.; Dogra, P.N.; Naswa, N.; Kumar, R. Diuretic 18F-FDG PET/CT imaging for detection and locoregional staging of urinary bladder cancer: Prospective evaluation of a novel technique. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 386–393. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Radiopharmaceuticals for Sentinel Lymph Node Detection: Status and Trends; International Atomic Energy Agency: Vienna, Austria, 2015. [Google Scholar]
- Brouwer, O.R.; Van Den Berg, N.S.; Mathéron, H.M.; Van Der Poel, H.G.; Van Rhijn, B.W.; Bex, A.; Van Tinteren, H.; Valdés Olmos, R.A.; Van Leeuwen, W.B.; Horenblas, S. A Hybrid Radioactive and Fluorescent Tracer for Sentinel Node Biopsy in Penile Carcinoma as a Potential Replacement for Blue Dye. Eur. Urol. 2014, 65, 600–609. [Google Scholar] [CrossRef]
- Thill, M.; Kurylcio, A.; Welter, R.; van Haasteren, V.; Grosse, B.; Berclaz, G.; Polkowski, W.; Hauser, N. The Central-European SentiMag study: Sentinel lymph node biopsy with superparamagnetic iron oxide (SPIO) vs. radioisotope. Breast 2014, 23, 175–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crozier, J.; Papa, N.; Perera, M.; Ngo, B.; Bolton, D.; Sengupta, S.; Lawrentschuk, N. Comparative sensitivity and specificity of imaging modalities in staging bladder cancer prior to radical cystectomy: A systematic review and meta-analysis. World J. Urol. 2019, 37, 667–690. [Google Scholar] [CrossRef] [PubMed]
- Nuclear Medicine. Available online: https://www.nibib.nih.gov/science-education/science-topics/nuclear-medicine (accessed on 8 December 2021).
- Veenstra, H.J.; Klop, W.M.C.; Speijers, M.J.; Lohuis, P.J.F.M.; Nieweg, O.E.; Hoekstra, H.J.; Balm, A.J.M. Lymphatic drainage patterns from melanomas on the shoulder or upper trunk to cervical lymph nodes and implications for the extent of neck dissection. Ann. Surg. Oncol. 2012, 19, 3906–3912. [Google Scholar] [CrossRef] [Green Version]
- Vermeeren, L.; Valdés Olmos, R.A.; Meinhardt, W.; Bex, A.; Van Der Poel, H.G.; Vogel, W.V.; Sivro, F.; Hoefnagel, C.A.; Horenblas, S. Value of SPECT/CT for detection and anatomic localization of sentinel lymph nodes before laparoscopic sentinel node lymphadenectomy in prostate carcinoma. J. Nucl. Med. 2009, 50, 865–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawicki, S.; Kobierski, J.; Łapińska-Szumczyk, S.; Lass, P.; Cytawa, W.; Bianek-Bodzak, A.; Wydra, D. Comparison of SPECT-CT results and intraoperative detection of sentinel lymph nodes in endometrial cancer. Nucl. Med. Commun. 2013, 34, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Wydra, D.; Sawicki, S.; Wojtylak, S.; Bandurski, T.; Emerich, J. Sentinel node identification in cervical cancer patients undergoing transperitoneal radical hysterectomy: A study of 100 cases. Int. J. Gynecol. Cancer 2006, 16, 649–654. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Goyal, A. Fludeoxyglucose (18F); StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Daneshmand, S.; Ahmadi, H.; Huynh, L.N.; Dobos, N. Preoperative staging of invasive bladder cancer with dynamic gadolinium-enhanced magnetic resonance imaging: Results from a prospective study. Urology 2012, 80, 1313–1318. [Google Scholar] [CrossRef]
- Magnetic Resonance Imaging (MRI). Available online: https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri (accessed on 8 December 2021).
- Deserno, W.M.L.L.G.; Harisinghani, M.G.; Taupitz, M.; Jager, G.J.; Witjes, J.A.; Mulders, P.F.; Hulsbergen Van De Kaa, C.A.; Kaufmann, D.; Barentsz, J.O. Urinary bladder cancer: Preoperative nodal staging with ferumoxtran-10-enhanced MR imaging. Radiology 2004, 233, 449–456. [Google Scholar] [CrossRef]
- Jewell, E.L.; Huang, J.J.; Abu-Rustum, N.R.; Gardner, G.J.; Brown, C.L.; Sonoda, Y.; Barakat, R.R.; Levine, D.A.; Leitao, M.M. Detection of sentinel lymph nodes in minimally invasive surgery using indocyanine green and near-infrared fluorescence imaging for uterine and cervical malignancies. Gynecol. Oncol. 2014, 133, 274–277. [Google Scholar] [CrossRef] [Green Version]
- Lodde, M.; Lacombe, L.; Friede, J.; Morin, F.; Saourine, A.; Fradet, Y. Evaluation of fluorodeoxyglucose positron-emission tomography with computed tomography for staging of urothelial carcinoma. BJU Int. 2010, 106, 658–663. [Google Scholar] [CrossRef]
- Goodfellow, H.; Viney, Z.; Hughes, P.; Rankin, S.; Rottenberg, G.; Hughes, S.; Evison, F.; Dasgupta, P.; O’Brien, T.; Khan, M.S. Role of fluorodeoxyglucose positron emission tomography (FDG PET)-computed tomography (CT) in the staging of bladder cancer. BJU Int. 2014, 114, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; De Jong, E.E.C.; Van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Xu, X.; Tian, Q.; Li, B.; Wu, Y.; Yang, Z.; Liang, Z.; Liu, Y.; Cui, G.; Lu, H. Radiomics assessment of bladder cancer grade using texture features from diffusion-weighted imaging. J. Magn. Reson. Imaging 2017, 46, 1281–1288. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zheng, J.; Li, Y.; Wu, Z.; Shi, S.; Huang, M.; Yu, H.; Dong, W.; Huang, J.; Lin, T. Development and Validation of an MRI-Based Radiomics Signature for the Preoperative Prediction of Lymph Node Metastasis in Bladder Cancer. EBioMedicine 2018, 34, 76–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Zheng, J.; Li, Y.; Yu, H.; Shi, S.; Xie, W.; Liu, H.; Su, Y.; Huang, J.; Lin, T. A Radiomics Nomogram for the Preoperative Prediction of Lymph Node Metastasis in Bladder Cancer. Clin. Cancer Res. 2017, 23, 6904–6911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarin, T.V.; Power, N.E.; Ehdaie, B.; Sfakianos, J.P.; Silberstein, J.L.; Savage, C.J.; Sjoberg, D.; Dalbagni, G.; Bochner, B.H. Lymph node-positive bladder cancer treated with radical cystectomy and lymphadenectomy: Effect of the level of node positivity. Eur. Urol. 2012, 61, 1025–1030. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, R.; Shafiei, S.; Bagheri, R.; Sadri, K.; Hossein Jafarian, A.; Attaran, D.; Mohammadzadeh Lari, S.; Basiri, R.; Mohammad Hashem Asnaashari, A.; Lari, M.S.; et al. Sentinel node mapping for intra-thoracic malignancies: Systematic review of the best available evidence. Rev. Clin. Med. 2015, 2, 52–57. [Google Scholar]
- Kadkhodayan, S.; Hasanzadeh, M.; Treglia, G.; Azad, A.; Yousefi, Z.; Zarifmahmoudi, L.; Sadeghi, R. Sentinel node biopsy for lymph nodal staging of uterine cervix cancer: A systematic review and meta-analysis of the pertinent literature. Eur. J. Surg. Oncol. 2015, 41, 1–20. [Google Scholar] [CrossRef]
- Abdollahi, A.; Jangjoo, A.; Dabbagh Kakhki, V.R.; Rasoul Zakavi, S.; Memar, B.; Naser Forghani, M.; Mehrabibahar, M.; Sadeghi, R. Factors affecting sentinel lymph node detection failure in breast cancer patients using intradermal injection of the tracer. Rev. Esp. Med. Nucl. 2010, 29, 73–77. [Google Scholar] [CrossRef]
- Shariat, S.F.; Ehdaie, B.; Rink, M.; Cha, E.K.; Svatek, R.S.; Chromecki, T.F.; Fajkovic, H.; Novara, G.; David, S.G.; Daneshmand, S.; et al. Platinum Priority-Bladder Cancer Clinical Nodal Staging Scores for Bladder Cancer: A Proposal for Preoperative Risk Assessment; Alexandre, R.Z., Ed.; Eleviser: Amsterdam, The Netherlands, 2012; Volume 61, pp. 237–242. [Google Scholar]
- Wang, Y.C.; Wu, J.; Dai, B.; Shen, Y.J.; Ma, C.G.; Ye, D.W.; Zhu, Y.P. Extended versus non-extended lymphadenectomy during radical cystectomy for patients with bladder cancer: A meta-analysis of the effect on long-term and short-term outcomes. World J. Surg. Oncol. 2019, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bruins, H.M.; Veskimae, E.; Hernandez, V.; Imamura, M.; Neuberger, M.M.; Dahm, P.; Stewart, F.; Lam, T.B.; N’Dow, J.; Van Der Heijden, A.G.; et al. The impact of the extent of lymphadenectomy on oncologic outcomes in patients undergoing radical cystectomy for bladder cancer: A systematic review. Eur. Urol. 2014, 66, 1065–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, L.; Huang, H.; Fan, X.; Li, K.; Xu, K.; Jiang, C.; Liu, H.; Dong, W.; Zhang, S.; Yang, X.; et al. Extended vs non-extended pelvic lymph node dissection and their influence on recurrence-free survival in patients undergoing radical cystectomy for bladder cancer: A systematic review and meta-analysis of comparative studies. BJU Int. 2014, 113, E39–E48. [Google Scholar] [CrossRef] [Green Version]
- Mandel, P.; Tilki, D.; Eslick, G.D. Extent of lymph node dissection and recurrence-free survival after radical cystectomy: A meta-analysis. Urol. Oncol. Semin. Orig. Investig. 2014, 32, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Małkiewicz, B.; Kiełb, P.; Gurwin, A.; Knecht, K.; Wilk, K.; Dobruch, J.; Zdrojowy, R. The Usefulness of Lymphadenectomy in Bladder Cancer-Current Status. Medicina 2021, 57, 415. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, H.; Masumori, N.; Tsukamoto, T. Role of lymph node dissection in management of bladder cancer. Int. J. Clin. Oncol. 2011, 16, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Gschwend, J.E.; Heck, M.M.; Lehmann, J.; Rübben, H.; Albers, P.; Wolff, J.M.; Frohneberg, D.; de Geeter, P.; Heidenreich, A.; Kälble, T.; et al. Extended Versus Limited Lymph Node Dissection in Bladder Cancer Patients Undergoing Radical Cystectomy: Survival Results from a Prospective, Randomized Trial. Eur. Urol. 2019, 75, 604–611. [Google Scholar] [CrossRef]
- S1011 Standard or Extended Pelvic Lymphadenectomy in Treating Patients Undergoing Surgery for Invasive Bladder Cance. ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT01224665 (accessed on 14 February 2022).
- International Collaboration of Trialists, on behalf of the Medical Research Council Advanced Bladder Cancer Working Party (now the National Cancer Research Institute Bladder Cancer Clinical Studies Group) the European Organisation for Research and Treatment of Cancer Genito-Urinary Tract Cancer Group; the Australian Bladder Cancer Study Group; the National Cancer Institute of Canada Clinical Trials Group; Finnbladder, Norwegian Bladder Cancer Study Group; Club Urologico Espanol de Tratamiento Oncologico Group. International phase III trial assessing neoadjuvant cisplatin, methotrexate, and vinblastine chemotherapy for muscle-invasive bladder cancer: Long-term results of the BA06 30894 trial. J. Clin. Oncol. 2011, 29, 2171–2177. [Google Scholar] [CrossRef] [Green Version]
- Vale, C.L. Neoadjuvant chemotherapy in invasive bladder cancer: Update of a systematic review and meta-analysis of individual patient data advanced bladder cancer (ABC) meta-analysis collaboration. Eur. Urol. 2005, 48, 202–206. [Google Scholar] [CrossRef]
- Witjes, J.A.; Lebret, T.; Compérat, E.M.; Cowan, N.C.; De Santis, M.; Bruins, H.M.; Hernández, V.; Linares Espinós, E.; Dunn, J.; Rouanne, M.; et al. Updated 2016 EAU Guidelines on Muscle-invasive and Metastatic Bladder Cancer. Eur. Urol. 2017, 71, 462–475. [Google Scholar] [CrossRef]
Inclusion | Exclusion |
---|---|
Articles analysing the effectiveness and outcomes of SLN mapping in bladder cancer | Studies that were not in English language |
Any date published | Duplicated articles Books, theses, conference articles, comments |
Animal and human studies | Irrelevant content |
No. | Author | Year | Study Type | Reference | Imaging Modalities | Number of Patients |
---|---|---|---|---|---|---|
1 | Zarifmahmoudi et al. | 2019 | Systematic Review and Meta-Analysis | [12] | Lymphoscintigraphy, CT, SPECT, Fluoroscopy | 336 |
2 | Polom et al. | 2017 | Prospective | [13] | Lymphoscintigraphy, Fluoroscopy | 50 |
3 | Lusuardi et al. | 2013 | Review | [14] | CT, MRI, PET | 522 |
4 | Salminen et al. | 2016 | Review | [15] | CT, MRI, PET | 370 |
5 | Liss et al. | 2015 | Systematic Review and Meta-Analysis | [8] | Lymphoscintigraphy, CT, SPECT, Fluoroscopy | 156 |
6 | Nissenkorn et al. | 1986 | Prospective | [16] | Lymphoscintigraphy, CT | 26 |
7 | Aljabery et al. | 2015 | Retrospective | [17] | PET, CT | 54 |
8 | Liedberg et al. | 2006 | Prospective | [18] | Lymphoscintigraphy | 75 |
9 | Marits et al. | 2006 | Prospective | [19] | Lymphoscintigraphy | 14 |
10 | Zarifmahmoudi et al. | 2020 | Prospective | [20] | Lymphoscintigraphy | 41 |
11 | Aljabery et al. | 2017 | Prospective | [6] | Lymphoscintigraphy | 103 |
12 | Sherif et al. | 2001 | Prospective | [21] | Lymphoscintigraphy | 13 |
13 | Połom et al. | 2016 | Prospective | [22] | CT | 38 |
14 | Sherif et al. | 2006 | Prospective | [4] | CT, SPECT | 6 |
15 | Salo et al. | 1986 | Prospective | [23] | CT | 51 |
16 | Lerman et al. | 2006 | Prospective | [24] | CT, SPECT | 157 |
17 | Paik et al. | 2000 | Retrospective | [25] | CT | 82 |
18 | Patel et al. | 2016 | Review | [26] | Fluoroscopy | N/A |
19 | Aoun et al. | 2018 | Systematic Review and Meta-Analysis | [27] | Fluoroscopy | 271 |
20 | Schaafsma et al. | 2014 | Prospective | [28] | Fluoroscopy | 21 |
21 | Manny et al. | 2014 | Prospective | [29] | Fluoroscopy | 10 |
22 | Knapp et al. | 2007 | Prospective | [30] | Fluoroscopy | N/A |
23 | Papalia et al. | 2012 | Prospective | [31] | MRI | 36 |
24 | Thoeny et al. | 2009 | Prospective | [32] | MRI | 21 |
25 | Triantafyllou et al. | 2013 | Prospective | [33] | MRI | 75 |
26 | Birkhäuser et al. | 2013 | Prospective | [34] | MRI | 75 |
27 | Dason et al. | 2020 | Retrospective | [35] | CT, PET | 185 |
28 | Abrahamsson et al. | 2017 | Prospective | [36] | PET | 88 |
29 | Powles et al. | 2007 | Review | [37] | CT, PET | N/A |
30 | Schöder et al. | 2004 | Review | [38] | PET | N/A |
31 | Nayak et al. | 2013 | Prospective | [39] | PET | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinha, A.; West, A.; Hayes, J.; Teoh, J.; Decaestecker, K.; Vasdev, N. Methods of Sentinel Lymph Node Detection and Management in Urinary Bladder Cancer—A Narrative Review. Curr. Oncol. 2022, 29, 1335-1348. https://doi.org/10.3390/curroncol29030114
Sinha A, West A, Hayes J, Teoh J, Decaestecker K, Vasdev N. Methods of Sentinel Lymph Node Detection and Management in Urinary Bladder Cancer—A Narrative Review. Current Oncology. 2022; 29(3):1335-1348. https://doi.org/10.3390/curroncol29030114
Chicago/Turabian StyleSinha, Ankit, Alexander West, John Hayes, Jeremy Teoh, Karel Decaestecker, and Nikhil Vasdev. 2022. "Methods of Sentinel Lymph Node Detection and Management in Urinary Bladder Cancer—A Narrative Review" Current Oncology 29, no. 3: 1335-1348. https://doi.org/10.3390/curroncol29030114
APA StyleSinha, A., West, A., Hayes, J., Teoh, J., Decaestecker, K., & Vasdev, N. (2022). Methods of Sentinel Lymph Node Detection and Management in Urinary Bladder Cancer—A Narrative Review. Current Oncology, 29(3), 1335-1348. https://doi.org/10.3390/curroncol29030114