Virtual Resection: A New Tool for Preparing for Nephron-Sparing Surgery in Wilms Tumor Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Inclusion
2.2. Imaging and 3D-Visualization
2.3. Virtual Resection
2.4. Volumetric Assessment
2.5. User Experience
2.6. Statistics
3. Results
3.1. Patient Characteristics
3.2. Volumetric Assessment
3.3. User Experience
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Kraker, J.; Graf, N.; Van Tinteren, H.; Pein, F.; Sandstedt, B.; Godzinski, J.; Tournade, M.F. International Society of Paediatric Oncology Nephroblastoma Trial Committee. Reduction of postoperative chemotherapy in children with stage I intermediaterisk and anaplastic Wilms’ tumour (SIOP 93-01 trial): A randomised controlled trial. Lancet 2004, 364, 1229–1235. [Google Scholar] [CrossRef]
- Breslow, N.; Olshan, A.; Beckwith, J.B.; Green, D.M. Epidemiology of Wilms tumor. Med. Pediatr. Oncol. 1993, 21, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Brok, J.; Treger, T.D.; Gooskens, S.L.; van den Heuvel-Eibrink, M.M.; Pritchard-Jones, K. Biology and treatment of renal tumours in childhood. Eur. J. Cancer 2016, 68, 179–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metzger, M.L.; Dome, J.S. Current Therapy for Wilms’ Tumor. Oncologist 2005, 10, 815–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Den Heuvel-eibrink, M.M.; Hol, J.A.; Pritchard-Jones, K.; Van Tinteren, H.; Furtwängler, R.; Verschuur, A.C.; Vujanic, G.M.; Leuschner, I.; Brok, J.; Rübe, C.; et al. Position Paper: Rationale for the treatment of Wilms tumour in the UMBRELLA SIOP-RTSG 2016 protocol. Nat. Rev. Urol. 2017, 14, 743–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godzinski, J.; Graf, N.; Audry, G. Current concepts in surgery for Wilms tumor-the risk and function-adapted strategy. Eur. J. Pediatr. Surg. 2014, 24, 457–460. [Google Scholar] [PubMed]
- Breslow, N.E.; Collins, A.J.; Ritchey, M.L.; Grigoriev, Y.A.; Peterson, S.M.; Green, D.M. End stage renal disease in patients with Wilms tumor: Results from the National Wilms Tumor Study Group and the United States Renal Data System. J. Urol. 2005, 174, 1972–1975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wake, N.; Wysock, J.S.; Bjurlin, M.A.; Chandarana, H.; Huang, W.C. “Pin the Tumor on the Kidney”: An Evaluation of How Surgeons Translate CT and MRI Data to 3D Models. Urology 2019, 131, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Günther, P.; Ley, S.; Tröger, J.; Witt, O.; Autschbach, F.; Holland-Cunz, S.; Schenk, J.P. 3D Perfusion Mapping and Virtual Surgical Planning in the Treatment of Pediatric Embryonal Abdominal Tumors. Eur. J. Pediatr. Surg. 2008, 18, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Schenk, J.P.; Waag, K.L.; Graf, N.; Wunsch, R.; Jourdan, C.; Behnisch, W.; Tröger, J.; Günther, P. 3-D-Visualisierung in der MRT zur Operationsplanung von Wilms-Tumoren. In RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren; Georg Thieme Verlag KG Stuttgart: New York, NY, USA, 2004; pp. 1447–1452. [Google Scholar]
- Cunningham, M.E.; Klug, T.D.; Nuchtern, J.G.; Chintagumpala, M.M.; Venkatramani, R.; Lubega, J.; Naik-Mathuria, B.J. Global Disparities in Wilms Tumor. J. Surg. Res. 2019, 247, 34–51. [Google Scholar] [CrossRef] [PubMed]
- Isotani, S.; Shimoyama, H.; Yokota, I.; China, T.; Hisasue, S.I.; Ide, H.; Muto, S.; Yamaguchi, R.; Ukimura, O.; Horie, S. Feasibility and accuracy of computational robot-assisted partial nephrectomy planning by virtual partial nephrectomy analysis. Int. J. Urol. 2015, 22, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Fitski, M.; Meulstee, J.W.; Littooij, A.S.; van de Ven, C.P.; van der Steeg, A.F.; Wijnen, M.H. MRI-Based 3-Dimensional Visualization Workflow for the Preoperative Planning of Nephron-Sparing Surgery in Wilms’ Tumor Surgery: A Pilot Study. J. Healthc. Eng. 2020, 2020, 8899049. [Google Scholar] [CrossRef]
- Kikinis, R.; Pieper, S.D.; Vosburgh, K.G. 3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support. In Intraoperative Imaging and Image-Guided Therapy; Springer: New York, NY, USA, 2014; pp. 277–289. [Google Scholar]
- Klatte, T.; Ficarra, V.; Gratzke, C.; Kaouk, J.; Kutikov, A.; Macchi, V.; Mottrie, A.; Porpiglia, F.; Porter, J.; Rogers, C.G.; et al. A Literature Review of Renal Surgical Anatomy and Surgical Strategies for Partial Nepherectomy. Eur. Urol. 2015, 68, 980–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueno, D.; Makiyama, K.; Yamanaka, H.; Ijiri, T.; Yokota, H.; Kubota, Y. Prediction of open urinary tract in laparoscopic partial nephrectomy by virtual resection plane visualization. BMC Urol. 2014, 14, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, B.H.; Cho, K.J.; Kim, J.I.; Bae, S.R.; Lee, Y.S.; Kang, S.H.; Kim, J.C.; Han, C.H. A useful method for assessing differences of compensatory hypertrophy in the contralateral kidney before and after radical nephrectomy in patients with renal cell carcinoma: Ellipsoid formula on computed tomography. Br. J. Radiol. 2018, 91, 20170425. [Google Scholar] [CrossRef] [PubMed]
- Ceccanti, S.; Cozzi, F.; Cervellone, A.; Zani, A.; Cozzi, D.A. Volume and function of the operated kidney after nephron-sparing surgery for unilateral renal tumor. J. Pediatr. Surg. 2019, 54, 326–330. [Google Scholar] [CrossRef]
- Klingler, M.J.; Babitz, S.K.; Kutikov, A.; Campi, R.; Hatzichristodoulou, G.; Sanguedolce, F.; Brookman-May, S.; Akdogan, B.; Capitanio, U.; Roscigno, M.; et al. Assessment of volume preservation performed before or after partial nephrectomy accurately predicts postoperative renal function: Results from a prospective multicenter study. Urol. Oncol. Semin. Orig. Investig. 2019, 37, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Spiegl, H.R.; Murphy, A.J.; Yanishevski, D.; Brennan, R.C.; Li, C.; Lu, Z.; Gleason, J.; Davidoff, A.M. Complications Following Nephron-Sparing Surgery for Wilms Tumor. J. Pediatr. Surg. 2020, 55, 126–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Case 1 * | Case 2 | Case 3 | Case 4 | Case 5 * | Case 6 ‡ | Case 7 ‡ | Case 8 ψ | Case 9 ψ |
---|---|---|---|---|---|---|---|---|---|
Gender (M/F) | F | M | F | F | F | M | M | M | M |
Age (months) | 106 | 14 | 41 | 40 | 106 | 30 | 30 | 54 | 54 |
Disease | UF | UF | UF | UF | UF | UF | UF | MF | UF |
Location | Left | Left | Left | Right | Left | Left | Right | Left | Right |
Position | LP | UP | MP | MP | UP | LP | LP | LP and MP | MP |
Syndrome | - | BWS | - | WT-1 | - | - | - | BWS | BWS |
The time between NSS and acquisition of the postoperative scan (days) | 20 | 187 | 65 | 126 | 35 | 48 | 48 | 386 | 48 |
Case Number | Surgeon 1 | Surgeon 2 | Surgeon 3 |
---|---|---|---|
1 | 97.4 | 98.2 | 96.8 |
2 | 94.5 | 91.9 | 94.8 |
3 | 91.7 | 92.1 | 90.8 |
4 | 100.0 | 99.7 | 92.2 |
5 | 98.2 | 96.7 | 95.9 |
6 | 99.9 | 99.7 | 100.0 |
7 | 99.5 | 98.0 | 99.0 |
8 | 34.4 | 50.7 | 46.7 |
9 | 94.6 | 93.5 | 92.7 |
Statement | Median | IQR | |
---|---|---|---|
1. | The virtual resection as performed in 3D Slicer was straightforward. | 4.0 | 1.5 |
2. | The derived line of resection, as created in 3D Slicer is useful in the intraoperative decision-making. | 3.0 | 1 |
3. | This virtual resection gives a better insight into other critical anatomical structures in addition to the standard preoperative 3D planning. | 3.0 | 1 |
4. | I classify this virtual resection, as performed in 3D Slicer, to be difficult. | 1.0 | 1.5 |
5. | Virtual resection, as performed according to this protocol, affects my intraoperative decision. | 2.0 | 1 |
6. | I expect this real-life surgical tumor resection, in this particular case, to be difficult. | 2.0 | 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Zee, J.M.; Fitski, M.; Simonis, F.F.J.; van de Ven, C.P.; Klijn, A.J.; Wijnen, M.H.W.A.; van der Steeg, A.F.W. Virtual Resection: A New Tool for Preparing for Nephron-Sparing Surgery in Wilms Tumor Patients. Curr. Oncol. 2022, 29, 777-784. https://doi.org/10.3390/curroncol29020066
van der Zee JM, Fitski M, Simonis FFJ, van de Ven CP, Klijn AJ, Wijnen MHWA, van der Steeg AFW. Virtual Resection: A New Tool for Preparing for Nephron-Sparing Surgery in Wilms Tumor Patients. Current Oncology. 2022; 29(2):777-784. https://doi.org/10.3390/curroncol29020066
Chicago/Turabian Stylevan der Zee, Jasper M., Matthijs Fitski, Frank F. J. Simonis, Cornelis P. van de Ven, Aart J. Klijn, Marc H. W. A. Wijnen, and Alida F. W. van der Steeg. 2022. "Virtual Resection: A New Tool for Preparing for Nephron-Sparing Surgery in Wilms Tumor Patients" Current Oncology 29, no. 2: 777-784. https://doi.org/10.3390/curroncol29020066
APA Stylevan der Zee, J. M., Fitski, M., Simonis, F. F. J., van de Ven, C. P., Klijn, A. J., Wijnen, M. H. W. A., & van der Steeg, A. F. W. (2022). Virtual Resection: A New Tool for Preparing for Nephron-Sparing Surgery in Wilms Tumor Patients. Current Oncology, 29(2), 777-784. https://doi.org/10.3390/curroncol29020066