Preoperative Radio(Chemo)Therapy in Breast Cancer: Time to Switch the Perspective?
Abstract
:1. Introduction
2. Neoadjuvant Systemic Treatment
2.1. Neoadjuvant Radiotherapy
2.2. Neoadjuvant Radiochemotherapy
3. Clinical Outcomes
4. Neoadjuvant Accelerated Partial Breast Irradiation (APBI)
5. New Perspectives of Neoadjuvant Radiotherapy: Ongoing Trials
6. Conclusions
- First, a preoperative approach allows for the definition of more precise targets than in the postoperative setting, especially regarding the boost volume that could be blurred by the potential existence of fibrosis and/or seroma and the presence or not of surgical clips that may be changeable. It would decrease the risk of geographic loss associated with the postoperative delimitation of the volumes of interest for radiotherapy, especially regarding the increasing interest in the use of oncoplastic surgical techniques and the challenge in localizing the tumor bed due to tissue rearrangement, hindering the safe administration of this boost.
- Second, preoperative irradiation facilitates immediate reconstruction in those patients undergoing a mastectomy, reducing delay intervals, and probably contributing to a better cosmetic result by avoiding flap irradiation and the associated risk of shrinkage and fibrosis.
- Third, radiotherapy before surgery could favor the use of skin-sparing mastectomy techniques for reconstruction by minimizing the risk of postmastectomy residual disease as this tissue would have already been irradiated.
- Fourth, evidence supports the hypothesis that tumors develop multiple immune evasion mechanisms as they progress, and some cancers are inherently better at “hiding” than others. It has been suggested, moreover, that radiotherapy applied to a large tumor bulk activates robust antitumor immunity, a fact that would be absent when radiotherapy is administered after surgery, and that this radio-induced immunity could contribute to eliminating not only the primary tumor but also microscopic foci present in the ipsilateral and contralateral breast as well as diminishing the risk of distant micrometastasis, leading to an abscopal effect of preoperative radiotherapy.
- Finally, simultaneous administration of radiotherapy and chemotherapy may also impact overall treatment time, by reducing the number of hospital visits, and contribute to improving patient satisfaction and therapeutic adherence while facilitating a reduction in the total cost of treatment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Dyba, T.; Randi, G.; Bray, F.; Martos, C.; Giusti, F.; Nicholson, N.; Gavin, A.; Flego, M.; Neamtiu, L.; Dimitrova, N.; et al. The European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers. Eur. J. Cancer 2021, 157, 308–347. [Google Scholar] [CrossRef]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Wang-Lopez, Q.; Chalabi, N.; Abrial, C.; Radosevic-Robin, N.; Durando, X.; Mouret-Reynier, M.A.; Benmammar, K.E.; Kullab, S.; Bahadoor, M.; Chollet, P.; et al. Can pathologic complete response (pCR) be used as a surrogate marker of survival after neoadjuvant therapy for breast cancer? Crit. Rev. Oncol. Hematol. 2015, 95, 88–104. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, S.; Chen, C.; Di, G.; Liu, G.; Wu, J.; Shao, Z. Pathological complete response as a surrogate for relapse-free survival in patients with triple negative breast cancer after neoadjuvant chemotherapy. Oncotarget 2016, 8, 18399–18408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broglio, K.R.; Quintana, M.; Foster, M.; Olinger, M.; McGlothlin, A.; Berry, S.M.; Boileau, J.-F.; Brezden-Masley, C.; Chia, S.; Dent, S.; et al. Association of Pathologic Complete Response to Neoadjuvant Therapy in HER2-Positive Breast Cancer with Long-Term Outcomes. JAMA Oncol. 2016, 2, 751–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buzdar, A.U.; Valero, V.; Ibrahim, N.K.; Francis, D.; Broglio, K.R.; Theriault, R.L.; Pusztai, L.; Green, M.C.; Singletary, S.E.; Hunt, K.K.; et al. Neoadjuvant therapy with paclitaxel followed by 5-fluorouracil, epirubicin, and cyclophosphamide chemotherapy and concurrent trastuzumab in human epidermal growth factor receptor 2-positive operable breast cancer: An update of the initial randomized study. Clin. Cancer Res. 2007, 13, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Gianni, L.; Eiermann, W.; Semiglazov, V.; Manikhas, A.; Lluch, A.; Tjulandin, S.; Zambetti, M.; Vazquez, F.; Byakhow, M.; Lichinitser, M.; et al. Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): A randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet 2010, 375, 377–384. [Google Scholar] [CrossRef]
- Untch, M.; Rezai, M.; Loibl, S.; Fasching, P.A.; Huober, J.; Tesch, H.; Bauerfeind, I.; Hilfrich, J.; Eidtmann, H.; Gerber, B.; et al. Neo-adjuvant treatment with trastuzumab in HER2-positive breast cancer: Results from the GeparQuattro study. J. Clin. Oncol. 2010, 28, 2024–2031. [Google Scholar] [CrossRef]
- Piccart-Gebhart, M.; Holmes, E.; Baselga, J.; de Azambuja, E.; Dueck, A.A.; Viale, G.; Zujewski, J.A.; Goldhirsch, A.; Armour, A.A.; Pritchard, K.I.; et al. Adjuvant Lapatinib and Trastuzumab for Early Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer: Results From the Randomized Phase III Adjuvant Lapatinib and/or Trastuzumab Treatment Optimization Trial. J. Clin. Oncol. 2016, 34, 1034–1042. [Google Scholar] [CrossRef] [Green Version]
- Gianni, L.; Pienkowski, T.; Im, Y.-H.; Tseng, L.-M.; Liu, M.-C.; Lluch, A.; Starosławska, E.; De La Haba-Rodríguez, J.R.; Im, S.-A.; Pedrini, J.L.; et al. 5-year analysis of neoadjuvant pertuzumab and trastuzumab in patients with locally advanced, inflammatory, or early-stage HER2-positive breast cancer (NeoSphere): A multicentre, open-label, phase 2 randomised trial. Lancet Oncol. 2016, 17, 791–800. [Google Scholar] [CrossRef]
- Swain, S.M.; Ewer, M.S.; Viale, G.; Delaloge, S.; Ferrero, J.-M.; Verrill, M.; Colomer, R.; Vieira, C.; Werner, T.L.; Douthwaite, H.; et al. Pertuzumab, trastuzumab, and standard anthracycline- and taxane-based chemotherapy for the neoadjuvant treatment of patients with HER2-positive localized breast cancer (BERENICE): A phase II, open-label, multicenter, multinational cardiac safety study. Ann. Oncol. 2018, 29, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Yost, S.E.; Yuan, Y. Neoadjuvant Treatment for Triple Negative Breast Cancer: Recent Progresses and Challenges. Cancers 2020, 12, 1404. [Google Scholar] [CrossRef]
- Schneeweiss, A.; Chia, S.; Hickish, T.; Harvey, V.; Eniu, A.; Hegg, R.; Tausch, C.; Seo, J.H.; Tsai, Y.F.; Ratnayake, J.; et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and an-thracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: A randomized phase II cardiac safety study (TRYPHAENA). Ann. Oncol. 2013, 24, 2278–2284. [Google Scholar] [CrossRef]
- Poggio, F.; Bruzzone, M.; Ceppi, M.; Pondé, N.; La Valle, G.; Del Mastro, L.; de Azambuja, E.; Lambertini, M. Platinum-based neoadjuvant chemotherapy in triple-negative breast cancer: A systematic review and meta-analysis. Ann. Oncol. 2018, 29, 1497–1508. [Google Scholar] [CrossRef]
- Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Pembroli-zumab for Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2020, 382, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Mittendorf, E.A.; Zhang, H.; Barrios, C.H.; Saji, S.; Jung, K.H.; Hegg, R.; Koehler, A.; Sohn, J.; Iwata, H.; Telli, M.L.; et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): A randomised, double-blind, phase 3 trial. Lancet 2020, 396, 1090–1100. [Google Scholar] [CrossRef] [PubMed]
- Loibl, S.; Untch, M.; Burchardi, N.; Huober, J.; Sinn, B.V.; Blohmer, J.-U.; Grischke, E.-M.; Furlanetto, J.; Tesch, H.; Hanusch, C.; et al. A randomised phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: Clinical results and biomarker analysis of GeparNuevo study. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 1279–1288. [Google Scholar] [CrossRef] [Green Version]
- Gianni, L.; Huang, C.; Egle, D.; Bermejo, B.; Zamagni, C.; Thill, M.; Anton, A.; Zambelli, S.; Bianchini, G.; Russo, S.; et al. Pathologic complete response (pCR) to neoadjuvant treatment with or without atezolizumab in triple-negative, early high-risk and locally advanced breast cancer: NeoTRIP Michelangelo randomized study. Ann. Oncol. 2022, 33, 534–543. [Google Scholar] [CrossRef]
- Wang, H.; Yee, D. I-SPY 2: A Neoadjuvant Adaptive Clinical Trial Designed to Improve Outcomes in High-Risk Breast Cancer. Curr. Breast Cancer Rep. 2019, 11, 303–310. [Google Scholar] [CrossRef]
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG); Darby, S.; McGale, P.; Correa, C.; Taylor, C.; Arriagada, R.; Clarke, M.; Cutter, D.; Davies, C.; Ewertz, M.; et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: Meta-analysis of individual patient data for 10 801 women in 17 randomised trials. Lancet 2011, 378, 1707–1716. [Google Scholar] [CrossRef]
- McGale, P.; Correa, C.; Cutter, D.; Duane, F.; Ewertz, M.; Gray, R.; Mannu, G.; Peto, R.; Whelan, T.; Darby, S. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: Me-ta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet 2014, 383, 2127–2135. [Google Scholar] [PubMed]
- McGuire, S.E.; Gonzalez-Angulo, A.M.; Huang, E.H.; Tucker, S.L.; Kau, S.-W.C.; Yu, T.-K.; Strom, E.A.; Oh, J.L.; Woodward, W.; Tereffe, W.; et al. Postmastectomy Radiation Improves the Outcome of Patients with Locally Advanced Breast Cancer Who Achieve a Pathologic Complete Response to Neoadjuvant Chemotherapy. Int. J. Radiat. Oncol. 2007, 68, 1004–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semiglazov, V.E.; Topuzov, E.E.; Bavli, J.L.; Moiseyenko, V.M.; Ivanova, O.A.; Seleznev, I.K.; Orlov, A.A.; Barash, N.Y.; Golubeva, O.M.; Chepic, O.F. Primary (neoadjuvant) chemotherapy and radiotherapy compared with primary radiotherapy alone in stage IIb-IIIa breast cancer. Ann. Oncol. 1994, 5, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Calitchi, E.; Kirova, Y.M.; Otmezguine, Y.; Feuilhade, F.; Piedbois, Y.; Le Bourgeois, J.-P. Long-term results of neoadjuvant radiation therapy for breast cancer. Int. J. Cancer 2001, 96, 253–259. [Google Scholar] [CrossRef]
- Riet, F.; Fayard, F.; Arriagada, R.; Santos, M.; Bourgier, C.; Ferchiou, M.; Heymann, S.; Delaloge, S.; Mazouni, C.; Dunant, A.; et al. Preoperative radiotherapy in breast cancer patients: 32 years of follow-up. Eur. J. Cancer 2017, 76, 45–51. [Google Scholar] [CrossRef]
- Deng, Y.; Li, H.; Zheng, Y.; Zhai, Z.; Wang, M.; Lin, S.; Li, Y.; Wei, B.; Xu, P.; Wu, Y.; et al. Impact of Preoperative vs. Postoperative Radiotherapy on Overall Survival of Locally Advanced Breast Cancer Patients. Front. Oncol. 2021, 11, 5012. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Z.; Chen, H.; Sun, X.; Zhang, Z. Survival comparison between postoperative and preoperative radiotherapy for stage I–III non-inflammatory breast cancer. Sci. Rep. 2022, 12, 1–12. [Google Scholar] [CrossRef]
- Poleszczuk, J.; Luddy, K.; Chen, L.; Lee, J.K.; Harrison, L.B.; Czerniecki, B.J.; Soliman, H.; Enderling, H. Neoadjuvant radiotherapy of early-stage breast cancer and long-term disease-free survival. Breast Cancer Res. 2017, 19, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Su, M.; Hong, S.; Gao, H.; Zheng, X.; Wang, S. Nomogram predicts survival benefit from preoperative radiotherapy for non-metastatic breast cancer: A SEER-based study. Oncotarget 2017, 8, 49861–49868. [Google Scholar] [CrossRef] [Green Version]
- Meattini, I.; Becherini, C.; Boersma, L.; Kaidar-Person, O.; Marta, G.N.; Montero, A.; Offersen, B.V.; Aznar, M.C.; Belka, C.; Brunt, A.M.; et al. European Society for Radiotherapy and Oncolo Gy Advisory Committee in Radiation Oncolo Gy Practice consensus recommendations on patient selection and dose and fractionation for external beam radiotherapy in early breast cancer. Lancet Oncol. 2022, 23, e21–e31. [Google Scholar] [CrossRef]
- Shah, C.; Al-Hilli, Z.; Vicini, F. Advances in Breast Cancer Radiotherapy: Implications for Current and Future Practice. JCO Oncol. Pract. 2021, 17, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Ciérvide, R.; Montero, Á.; García-Rico, E.; García-Aranda, M.; Herrero, M.; Skaarup, J.; Benassi, L.; Barrera, M.J.; Vega, E.; Rojas, B.; et al. Primary Chemoradiotherapy Treatment (PCRT) for HER2+ and Triple Negative Breast Cancer Patients: A Feasible Combination. Cancers 2022, 14, 4531. [Google Scholar] [CrossRef] [PubMed]
- Ho, A.L.; Tyldesley, S.; Macadam, S.A.; Lennox, P.A. Skin-sparing mastectomy and immediate autologous breast recon-struction in locally advanced breast cancer patients: A UBC perspective. Ann. Surg. Oncol. 2012, 19, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Skinner, K.A.; Dunnington, G.; Silberman, H.; Florentine, B.; Spicer, D.; Formenti, S.C. Preoperative 5-fluorouracil and radiation therapy for locally advanced breast cancer. Am. J. Surg. 1997, 174, 705–708. [Google Scholar] [CrossRef]
- Touboul, E.; Lefranc, J.-P.; Blondon, J.; Buffat, L.; Deniaud, E.; Belkacémi, Y.; Benmiloud, M.; Huart, J.; Laugier, A.; Schlienger, M. Primary chemotherapy and preoperative irradiation for patients with stage II larger than 3 cm or locally advanced non-inflammatory breast cancer. Radiother. Oncol. 1997, 42, 219–229. [Google Scholar] [CrossRef]
- Colleoni, M.; Nole’, F.; Minchella, I.; Noberasco, C.; Luini, A.; Orecchia, A.; Veronesi, P.; Zurrida, S.; Viale, G.; Goldhirsch, A. Pre-operative chemotherapy and radiotherapy in breast cancer. Eur. J. Cancer 1998, 34, 641–645. [Google Scholar] [CrossRef]
- Skinner, K.A.; Silberman, H.; Florentine, B.; Lomis, T.J.; Corso, F.; Spicer, D.; Formenti, S.C. Preoperative paclitaxel and radiotherapy for locally advanced breast cancer: Surgical aspects. Ann. Surg. Oncol. 2000, 7, 145–149. [Google Scholar] [CrossRef]
- Aryus, B.; Audretsch, W.; Gogolin, F.; Gripp, S.; Königshausen, T.; Lammering, G.; Rohn, R.; Hartmann, K.A. Remission rates fol-lowing preoperative chemotherapy and radiation therapy in patients with breast cancer. Strahlenther. Und Onkol. 2000, 176, 411–415. [Google Scholar] [CrossRef]
- Formenti, S.C.; Volm, M.; Skinner, K.A.; Spicer, D.; Cohen, D.; Perez, E.; Bettini, A.C.; Groshen, S.; Gee, C.; Florentine, B.; et al. Preoperative twice-weekly paclitaxel with concurrent radiation therapy followed by surgery and postoperative doxo-rubicin-based chemotherapy in locally advanced breast cancer: A phase I/II trial. J. Clin. Oncol. 2003, 21, 864–870. [Google Scholar] [CrossRef]
- Gerlach, B.; Audretsch, W.; Gogolin, F.; Königshausen, T.; Rohn, R.; Schmitt, G.; Dimmerling, P.; Gripp, S.; Hartmann, K.A. Remission Rates in Breast Cancer Treated with Preoperative Chemotherapy and Radiotherapy. Strahlenther. Und Onkol. 2003, 179, 306–311. [Google Scholar] [CrossRef]
- Lerouge, D.; Touboul, E.; Lefranc, J.-P.; Genestie, C.; Moureau-Zabotto, L.; Blondon, J. Combined chemotherapy and preoperative irradiation for locally advanced noninflammatory breast cancer: Updated results in a series of 120 patients. Int. J. Radiat. Oncol. 2004, 59, 1062–1073. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, A.B.; Kelley, M.C.; McLaren, B.; Truica, C.I.; Billheimer, D.; Mayer, I.A.; Grau, A.M.; Johnson, D.H.; Simpson, J.F.; Beau-champ, R.D.; et al. Cancer Therapy: Clinical Neoadjuvant Concurrent Paclitaxel and Radiation in Stage II/III Breast Cancer. Cancer Ther. 2006, 12, 1570–1577. [Google Scholar]
- Bollet, M.A.; Sigal-Zafrani, B.; Gambotti, L.; Extra, J.-M.; Meunier, M.; Nos, C.; Dendale, R.; Campana, F.; Kirova, Y.M.; Diéras, V.; et al. Pathological response to preoperative concurrent chemo-radiotherapy for breast cancer: Results of a phase II study. Eur. J. Cancer 2006, 42, 2286–2295. [Google Scholar] [CrossRef] [PubMed]
- Bollet, M.A.; Belin, L.; Reyal, F.; Campana, F.; Dendale, R.; Kirova, Y.M.; Thibault, F.; Diéras, V.; Sigal-Zafrani, B.; Fourquet, A. Pre-operative radio-chemotherapy in early breast cancer patients: Long-term results of a phase II trial. Radiother. Oncol. 2012, 102, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Gaui, M.D.F.D.; Amorim, G.; Arcuri, R.A.; Pereira, G.; Moreira, D.; Djahjah, C.; Biasoli, I.; Spector, N. A Phase II Study of Second-Line Neoadjuvant Chemotherapy With Capecitabine and Radiation Therapy for Anthracycline-Resistant Locally Advanced Breast Cancer. Am. J. Clin. Oncol. 2007, 30, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Shanta, V.; Swaminathan, R.; Rama, R.; Radhika, R. Retrospective Analysis of Locally Advanced Noninflammatory Breast Cancer from Chennai, South India, 1990–1999. Int. J. Radiat. Oncol. 2008, 70, 51–58. [Google Scholar] [CrossRef]
- Alvarado-Miranda, A.; Arrieta, O.; Gamboa-Vignolle, C.; Saavedra-Perez, D.; Morales-Barrera, R.; Bargallo-Rocha, E.; Zinser-Sierra, J.; Perez-Sanchez, V.; Ramirez-Ugalde, T.; Lara-Medina, F. Concurrent chemo-radiotherapy following neoad-juvant chemotherapy in locally advanced breast cancer. Radiat. Oncol. 2009, 8, 1–8. [Google Scholar]
- Adams, S.; Chakravarthy, A.B.; Donach, M.; Spicer, D.; Lymberis, S.; Singh, B.; Bauer, J.A.; Hochman, T.; Goldberg, J.D.; Muggia, F.; et al. Preoperative concurrent paclitaxel-radiation in locally advanced breast cancer: Pathologic response correlates with five-year overall survival. Breast Cancer Res. Treat. 2010, 124, 723–732. [Google Scholar] [CrossRef] [Green Version]
- Monrigal, E.; Dauplat, J.; Gimbergues, P.; Le Bouedec, G.; Peyronie, M.; Achard, J.; Chollet, P.; Mouret-Reynier, M.; Nabholtz, J.; Pomel, C. Mastectomy with immediate breast reconstruction after neoadjuvant chemotherapy and radiation therapy. A new option for patients with operable invasive breast cancer. Results of a 20 years single institution study. Eur. J. Surg. Oncol. (EJSO) 2011, 37, 864–870. [Google Scholar] [CrossRef] [Green Version]
- Daveau, C.; Savignoni, A.; Abrous-Anane, S.; Pierga, J.Y.; Reyal, F.; Gautier, C.; Kirova, Y.M.; Dendale, R.; Campana, F.; Fourquet, A.; et al. Is radiotherapy an option for early breast cancers with complete clinical response after neoadjuvant chemotherapy? Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 1452–1459. [Google Scholar] [CrossRef]
- Zinzindohoué, C.; Bertrand, P.; Michel, A.; Monrigal, E.; Miramand, B.; Sterckers, N.; Faure, C.; Charitansky, H.; Gutowski, M.; Cohen, M.; et al. A Prospective Study on Skin-Sparing Mastectomy for Immediate Breast Reconstruction with Latissimus Dorsi Flap After Neoadjuvant Chemotherapy and Radiotherapy in Invasive Breast Carcinoma. Ann. Surg. Oncol. 2016, 23, 2350–2356. [Google Scholar] [CrossRef] [PubMed]
- Brackstone, M.; Palma, D.; Tuck, A.B.; Scott, L.; Potvin, K.; Vandenberg, T.; Perera, F.; D’Souza, D.; Taves, D.; Kornecki, A.; et al. Concurrent Neoadjuvant Chemotherapy and Radiation Therapy in Locally Advanced Breast Cancer. Int. J. Radiat. Oncol. 2017, 99, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Pazos, M.; Corradini, S.; Dian, D.; von Bodungen, V.; Ditsch, N.; Wuerstlein, R.; Schönecker, S.; Harbeck, N.; Scheithauer, H.; Belka, C. Neoadjuvant radiotherapy followed by mastectomy and immediate breast reconstruction: An alternative treatment option for locally advanced breast cancer. Strahlenther. Und Onkol. 2017, 193, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Haussmann, J.; Budach, W.; Nestle-Krämling, C.; Wollandt, S.; Tamaskovics, B.; Corradini, S.; Bölke, E.; Krug, D.; Fehm, T.; Ruckhäberle, E.; et al. Predictive Factors of Long-Term Survival after Neoadjuvant Radiotherapy and Chemotherapy in High-Risk Breast Cancer. Cancers 2022, 14, 4031. [Google Scholar] [CrossRef] [PubMed]
- Vincent, V.; Hans, V.H.; Koen, V.V.; Ingeborg, H.; Eline, N.; Wilfried, N.; Jo, V.; An, H.; Menekse, G.; Herman, D.; et al. Safety of pre- or postoperative accelerated radiotherapy in 5 fractions: A randomized pilot trial. Breast 2022, 62, 10–15. [Google Scholar]
- Rogers, N.E.; Allen, R.J. Radiation Effects on Breast Reconstruction with the Deep Inferior Epigastric Perforator Flap. Plast. Reconstr. Surg. 2002, 109, 1919–1924. [Google Scholar] [CrossRef]
- Baltodano, P.A.; Reinhardt, M.E.; Flores, J.M.; Abreu, F.M.; Chattha, A.; Kone, L.; Cooney, C.M.; Manahan, M.A.; Zellars, R.C.; Rosson, G.D. Preoperative Radiotherapy Is Not Associated with Increased Post-mastectomy Short-term Morbidity: Analysis of 77,902 Patients. Plast. Reconstr. Surg. Glob. Open 2017, 5, e1108. [Google Scholar] [CrossRef]
- Singh, P.; Hoffman, K.; Schaverien, M.V.; Krause, K.; Butler, C.; Smith, B.D.; Kuerer, H.M. Neoadjuvant Radiotherapy to Facilitate Immediate Breast Reconstruction: A Systematic Review and Current Clinical Trials. Ann. Surg. Oncol. 2019, 26, 3312–3320. [Google Scholar] [CrossRef]
- Thiruchelvam, P.T.R.; Leff, D.R.; Godden, A.R.; Cleator, S.; Wood, S.H.; Kirby, A.M.; Jallali, N.; Somaiah, N.; Hunter, J.E.; Henry, F.P.; et al. Primary radiotherapy and deep inferior epigastric perforator flap reconstruction for patients with breast cancer (PRADA): A multicentre, prospective, non-randomised, feasibility study. Lancet Oncol. 2022, 23, 682–690. [Google Scholar] [CrossRef]
- Ben Dhia, S.; Loap, P.; Loirat, D.; Vincent-Salomon, A.; Cao, K.; Escalup, L.; Fourquet, A.; Kirova, Y. Concurrent radiation therapy and dual HER2 blockade in breast cancer: Assessment of toxicity. Cancer Radiother. J. De La Soc. Fr. De Radiother. Oncol. 2021, 25, 424–431. [Google Scholar] [CrossRef]
- Cao, L.; Hu, W.; Kirova, Y.; Yang, Z.; Cai, G.; Yu, X.; Ma, J.; Guo, X.; Shao, Z.; Chen, J. Potential impact of cardiac dose–volume on acute cardiac toxicity following concurrent trastuzumab and radiotherapy. Cancer/Radiothérapie 2014, 18, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Halyard, M.Y.; Pisansky, T.M.; Dueck, A.C.; Suman, V.; Pierce, L.; Solin, L.; Marks, L.; Davidson, N.; Martino, S.; Kaufman, P.; et al. Radiotherapy and Adjuvant Trastuzumab in Operable Breast Cancer: Tolerability and Adverse Event Data From the NCCTG Phase III Trial N9831. J. Clin. Oncol. 2009, 27, 2638–2644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mignot, F.; Ajgal, Z.; Xu, H.; Geraud, A.; Chen, J.Y.; Mégnin-Chanet, F.; Kirova, Y. Concurrent administration of anti-HER2 therapy and radiotherapy: Systematic review. Radiother. Oncol. 2017, 124, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, R.; Tyldesley, S.; Rolles, M.; Chia, S.; Mohamed, I. Acute cardiotoxicity with concurrent trastuzumab and radio-therapy including internal mammary chain nodes: A retrospective single-institution study. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2009, 90, 122–126. [Google Scholar] [CrossRef]
- De Santis, M.C.; Bonfantini, F.; Di Salvo, F.; Fiorentino, A.; Riboldi, V.M.; Di Cosimo, S.; Bianchi, G.V.; Gennaro, M.; Cosentino, V.; Sant, M.; et al. Trastuzumab and Hypofractionated Whole Breast Radiotherapy: A Victorious Combination? Clin. Breast Cancer 2018, 18, e363–e371. [Google Scholar] [CrossRef]
- Bondiau, P.-Y.; Courdi, A.; Bahadoran, P.; Chamorey, E.; Queille-Roussel, C.; Lallement, M.; Birtwisle-Peyrottes, I.; Chapellier, C.; Pacquelet-Cheli, S.; Ferrero, J.-M. Phase 1 Clinical Trial of Stereotactic Body Radiation Therapy Concomitant with Neoadjuvant Chemotherapy for Breast Cancer. Int. J. Radiat. Oncol. 2013, 85, 1193–1199. [Google Scholar] [CrossRef]
- Horton, J.K.; Blitzblau, R.C.; Yoo, S.; Geradts, J.; Chang, Z.; Baker, J.A.; Georgiade, G.S.; Chen, W.; Siamakpour-Reihani, S.; Wang, C.; et al. Preoperative Single-Fraction Partial Breast Radiation Therapy: A Novel Phase 1, Dose-Escalation Protocol With Radiation Response Biomarkers. Int. J. Radiat. Oncol. 2015, 92, 846–855. [Google Scholar] [CrossRef] [Green Version]
- van der Leij, F.; Bosma, S.C.; van de Vijver, M.J.; Wesseling, J.; Vreeswijk, S.; Rivera, S.; Bourgier, C.; Garbay, J.R.; Foukakis, T.; Lekberg, T.; et al. First results of the preoperative accelerated partial breast irradiation (PAPBI) trial. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2015, 114, 322–327. [Google Scholar] [CrossRef] [Green Version]
- Nichols, E.; Kesmodel, S.B.; Bellavance, E.; Drogula, C.; Tkaczuk, K.; Cohen, R.J.; Citron, W.; Morgan, M.; Staats, P.; Feigenberg, S.; et al. Preoperative Accelerated Partial Breast Irradiation for Early-Stage Breast Cancer: Preliminary Results of a Prospective, Phase 2 Trial. Int. J. Radiat. Oncol. 2016, 97, 747–753. [Google Scholar] [CrossRef]
- Guidolin, K.; Yaremko, B.; Lynn, K.; Gaede, S.; Kornecki, A.; Muscedere, G.; BenNachum, I.; Shmuilovich, O.; Mouawad, M.; Yu, E.; et al. Stereotactic Image-Guided Neoadjuvant Ablative Single-Dose Radiation, then Lumpectomy, for Early Breast Cancer: The Signal Prospective Single-Arm Trial of Single-Dose Radiation Therapy. Curr. Oncol. 2019, 26, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Weinfurtner, R.J.; Raghunand, N.; Stringfield, O.; Abdalah, M.; Niell, B.L.; Ataya, D.; Williams, A.; Mooney, B.; Rosa, M.; Lee, M.C.; et al. MRI Response to Pre-operative Stereotactic Ablative Body Radiotherapy (SABR) in Early Stage ER/PR+ HER2- Breast Cancer correlates with Surgical Patholo Gy Tumor Bed Cellularity. Clin. Breast Cancer 2021, 22, e214–e223. [Google Scholar] [CrossRef] [PubMed]
- Bosma, S.C.; Leij, F.; Vreeswijk, S.; de Maaker, M.; Wesseling, J.; van de Vijver, M.; Scholten, A.; Rivera, S.; Bourgier, C.; Auzac, G.; et al. Five-Year Results of the Preoperative Accelerated Partial Breast Irradiation (PAPBI) Trial. Int. J. Radiat. Oncol. 2020, 106, 958–967. [Google Scholar] [CrossRef] [PubMed]
Author | n | Inclusion Criteria | RT | % pCR | Number of Local Recurrences | DFS (%) | OS (%) | Skin Complications | MFU (Months) |
---|---|---|---|---|---|---|---|---|---|
Semiglazov et al., 1994 [23] | 134 | IIB–IIIA | 60 Gy/2 Gy/30 fractions; SCF 40 Gy/2 Gy/20 fractions | 19.4% | NS | 5y DFS: 71.6 | 5y OS: 78.3 | G2: 8.9% | 53 |
Calitchi et al., 2001 [24] | 75 | T2–T3 | 45 Gy/1.8 Gy/25 fractions whole breast, lower axillary nodes | 11% | 9 | 10y DFS: 47 | 10y OS: 55 | 6% poor cosmetic results | 120 (10 years) |
Riet et al., 2017 [25] | 187 | T2–T4 | 45 Gy/2.5 Gy/18 fractions | 10% (26% in TN tumors) | 15 | 25y DFS: 30 | 25y OS: 30 | Post-operative G ≥ 2: 19% | 384 (32 years) |
Author | n | Type of Study | Preoperative Radiotherapy | Preoperative Systemic Treatment | pCR (%) | Acute Toxicity | Postoperative Complications | DFS (%) | OS (%) | MFU (Months) |
---|---|---|---|---|---|---|---|---|---|---|
Semiglazov 1994 [23] | 137 | Prospective | 60 Gy (2 Gy) WBI, 40 Gy (2 Gy) RNI | TMF | pCR: 29% | G1-2: 6.5% | 20% | 5y: 81 | 5y: 86 | 53 |
Skinner, 1997 [34] | 35 | Prospective | 50 Gy (2 Gy) WBI + RNI | Pre-RT: F → Concurrent: F | pCR: 17% | NR | NR | 2y: 83 | 2y: 90 | 22 |
Touboul 1997 [35] | 97 | Prospective | 46 Gy (2 Gy) WBI + RNI | Sequential: CAF-V × 4 | pCR: 40% | NR | NR | 10y: 60 | 10y: 66 | 94 |
Colleoni 1998 [36] | 29 | Prospective | 50 Gy (2 Gy) WBI + boost to tumor nodule (10 Gy) | Sequential: AC × 3 | pCR: 6% | NR | NR | NS | NS | NS |
Skinner2000 [37] | 28 | Prospective | 45 Gy (1.8 Gy) WBI + RNI | Concurrent: TAX × 8 | pCR:26% | NR | 41% | NS | NS | NS |
Aryus 2000 [38] | 56 | Prospective | 50 Gy (2 Gy) WBI/RNI + boost tumor | Sequential: CMF or EC | pCR: 43% | NR | NR | NS | NS | NS |
Formenti 2003 [39] | 44 | Prospective | 45–46 Gy (1.8–2 Gy) WBI + RNI | Pre-RT: dTAX → Concurrent: dTAX | pCR 34% | G2: 45% G3: 7% | NR | 3y: 75.6 | 3y: 94 | 32 |
Gerlach 2003 [40] | 134 | Retrospective | 50 Gy (2 Gy) WBI/RNI | Sequential: EC + CMF (n = 50) or EC | pCR: 42% | NENR | NR | NS | NS | 19 |
Lerouge 2004 [41] | 120 | Prospective | 46 Gy (2 Gy) WBI + RNI | Sequential CAF-V × 4 or C-THP-F-Vd | pCR: 35% | NR | NR | 10y: 61 | 10y: 66.5 | 140 |
Chakravarthy 2006 [42] | 38 | Prospective | 45 Gy (1.8 Gy) WBI + RNI | Pre-RT: TAX → Concurrent: TAX | pCR: 34% | G3: 2.6% G4: 2.6% | 10% | NS | NS | 23 |
Bollet 2006 [43] 2012 [44] | 60 | Prospective | 50 Gy (2 Gy) WBI ± boost 10 Gy;46 Gy (2 Gy) RNI | Concurrent: FVb × 6 | pCR: 27% | G2: 19% G3: 14% | 12% | 83 | 88 | 84 |
Gaui 2007 [45] | 28 | Retrospective | 50 Gy (2 Gy) WBI + RNI | Concurrent: Capecitabine | pCR: 4.3% | G1: 35% G2: 11% | 4% | NS | NS | NS |
Shanta 2008 [46] | 1117 | Retrospective | 40 Gy (2 Gy) WBI + RNI | Concurrent: CMF/ECF/FAC | pCR: 45.1% | NR | 5.8% | 52.6 | 63.9 | NS |
Alvarado- Miranda 2009 [47] | 112 | Retrospective | 50 Gy (2 Gy) WBI + RNI + boost 10 Gy | Concurrent: McF or cDDP-GMZ | pCR: 29.5% | G3: 22.4% | 17% | 76.9 | 84.2 | 43 |
Adams 2010 [48] | 105 | Pooled analysis from three prospective trials, including Bollet 2006 and Formenti2003 | 45 Gy (1.8 Gy) WBI + RNI ± boost 14 Gy | Concurrent: TAX +/− Trastuzumab | pCR: 23% | NR | NR | 61.4 | 71.6 | 60 |
Monrigal 2011 [49] | 210 | Retrospective | 50 Gy (2 Gy) WBI + RNI + boost 10 Gy | Concurrent: Anthracyclin-based CT ± TAX ± Trastuzumab | pCR: 35.2% | NR | 26% | 5y:75.6 | 5y: 86.7 | 120 |
Daveau 2011 [50] | 165 | Retrospective | 45 Gy (1.8 Gy) WBI + RNI + boost to tumor nodule (10–15 Gy) | Sequential: CAF or AdTAX × 6 cycles | pCR: 41% | NR | NR | 65 | 91 | NS |
Ho 2012 [33] | 120 | Retrospective | 50 Gy (2 Gy) (60%) or 42.5 Gy (2.67 Gy) (40%)WBI/RNI; Boost (median dose 6.25 Gy) | Sequential: AC (n = 1); CMF (n s = 6); FEC (n = 4); A-TAX (n = 15); | pCR: NE | NR | 37% | 5y: 65 | 5y: 68 | 42 |
Zinzindohoue 2016 [51] | 83 | Prospective | 50 Gy (2 Gy) WBI + RNI | Sequential: A-TAX | pCR: 36% | NR | 6% | 2y: 68 | NS | 24 |
Brackstone 2017 [52] | 32 | Prospective | 45 Gy (1.8 Gy) WBI + RNI ± boost 5.4 Gy | Pre-RT: FEC → Concurrent: dTAX | pCR: 22.6% | G3: 25% | 3% | 3y: 81 | 3y: 89 | 36 |
Pazos 2017 [53] | 22 | Retrospective | 50.4 Gy (1.8 Gy) WBI + RNI | Sequential: EC → TAX | pCR: 5% | NR | 25% | 30 months: 18 | 30 months: 18 | 30 |
Haussmann 2022 [54] | 356 | Retrospective | 50 Gy (2 Gy) WBI + RNI + boost 10 Gy | Sequential: EC/CMF/AC/Mitoxantrone 61% or Concurrent: 36% or No CHT: 3% | pCR: 31.1% | NR | NR | NS | 10y: 69.7; 20y: 53.1 | 240 |
Ciérvide 2022 [32] | 58 | Prospective | 40.5 Gy (2.7 Gy) WBI + RNI + SIB 54 Gy (3.6 Gy) | Concurrent: Pertuzumab-Trastuzumab-TAX → AC in HER2+ Concurrent: CBDCA-TAX → AC in TNBC | TN: 71% HER2+ 53% HR+: 48% HR−: 64% | G1: 78% G2: 14% G3: 5% | 16% | 100 | 96.5 | 24 |
Author/Year of Publication | Inclusion Criteria | n | Radiotherapy | Chemotherapy | Time Interval to Surgery | pCR | Outcomes | Late Toxicity | Follow Up (Months) |
---|---|---|---|---|---|---|---|---|---|
Bondiau et al., 2013 [66] | Unifocal Not suitable for BCSHer-2- | 26 | SBRT (19.5–31.5 Gy/3fx) Dose escalation level (19.5 Gy, 22.5 Gy, 25.5 Gy, 28.5 Gy or 31.5 Gy) | Neoadjuvant chemotherapy: TAX × 3 → FEC × 3 | 4–8 weeks after last chemo cycle | 36% | 92% BCS 96% objective response rate (ORR) | 0 | 30 |
Horton et al., (DUKE study) 2015 [67] | Age > 55y T1 DCIS G1-2 < 2 cm cN0ER, PR+, Her-2+ | 32 | IMRT (15–21 Gy/1fx) | No chemotherapy | Within 10 days after RT | NR | 0% recurrences | 13 G2 2 G3 PRCO were good/excellent | 23 |
Van der Leij et al., 2015 [68] | Age > 60y Invasive, unifocal, non-lobular, T < 3 cm Negative SLNB | 70 | 3DRT or IMRT or VMAT40 Gy/10fx | No chemotherapy | 6 weeks after RT | NR | 2 ipsilateral breast tumor recurrence | 11% G2 induration at 12 months 2% G2 fibrosis at 24 months | 23 |
Nichols et al., 2017 [69] | Invasive, unifocal T < 3 cm cN0 | 27 | 3DRT 38.5 Gy/10fx | No chemotherapy | >21 days after RT | 15% | 88.9% ORR 70.4% of Ki 67 reduction after RT | PRCO fair (17%) and poor (5%) at 1y | 43.2 |
Guidolin et al., (SIGNAL study) 2019 [70] | Ductal, unifocal, postmenopausal, T < 3 cm, ER+, cN0, invasive, tumor at least 2 cm away from skin and chest wall | 27 | 21 Gy/1fx | No chemotherapy | 1 week after RT | NR | 100% alive and free from recurrence | 1y toxicity, PRCO, and HRQoL were not significantly different from baseline | 16.2 |
Bosma (PAPBI) et al., 2021 [72] | >60y, invasive, unifocal, non-lobular pNO (determined by SLNB) | 133 | 40 Gy/10fx in 2 weeks (2010–2013) 30 Gy/5fx in 1 week (after 2013) 18FDG–PET pre- and post-RT | No chemotherapy | 6 weeks | 23% | 3 local recurrences 1 ipsilateral breast recurrence | 5y excellent to good cosmesis 90% | 60 months |
Weinfurtner (SABR study) et al., 2022 [71] | >50y, cT1-2, ER/PR + HER2− | 19 | SBRTbaseline breast MRI, and presurgical MRI 28.5 Gy/3fx | No chemotherapy | 5–6 weeks | 0% | NR | NR | NR |
NCT Number | Locations | Type of Study | Patients | N Estimated | Description | Time to Surgery | Objectives | Status |
---|---|---|---|---|---|---|---|---|
WBI | ||||||||
NCT05512286 (CAPPELLA) | Guangxi, China | Randomized phase III | cT0-3, T4b and cN0-3a | 80 | Radiotherapy followed by mastectomy and DIEP flap reconstruction vs. radiotherapy after mastectomy and DIEP flap reconstruction | 2–6 weeks | Patient satisfaction | Not yet recruiting |
NCT05412225 | New York, NY, USA | Phase II | cT4 cN0-3 | 60 | T4 M0 breast cancer patients with complete or partial response to standard neoadjuvant chemotherapy and immediate autologous reconstruction | 2–6 weeks | Wound complications | Recruiting |
NCT05274594 | Istanbul, Turkey | Phase II | cT1-3 cN + | 37 | WBI + RNI: 42.5 Gy/16fx or 50 Gy/25fx or 50.4 Gy/28fx | 6 weeks | Pathologic complete response | Completed |
NCT04261244 (NEORAD) | Duesseldorf, Germany | Randomized phase III | cT2-T4 (non-inflammatory) cT1, if G3, * triple negative, Her2 positive, or cN+ | 1826 | Preoperative radiotherapy in breast cancer after neoadjuvant chemotherapy vs. postoperative radiotherapy after neoadjuvant chemotherapy | 3–8 weeks | DFS | Not yet recruiting |
NCT03624478 | Scottsdale, Jacksonville, Rochester, NY, USA | Phase II | cT0-T2 cN0 | 25 | Preoperative ultra-hypofractionated WBI | 4–16 weeks | Pathologic complete response | Active, not recruiting |
NCT02858934 | Brussels, Dendermonde, Belgium | Phase II | cT1-2N0M0 | 24 | WBI 25 Gy in 5 daily fractions of 5 Gy, SIB 30 Gy in 5 daily fractions of 6 Gy | 1 week | Duration of surgical procedure, blood loss, wound complications | Completed |
APBI | ||||||||
NCT01014715 (GCC 0919) | Baltimore, MD, USA | Phase II | Tc1-2 cN0 | 32 | Preoperative radiation followed by lumpectomy | 3 weeks | Reproducibility of delivering preoperative APBI in Stage I and Stage IIA breast cancers | Completed |
NCT05464667 | Pittsburgh, PA, USA | Phase I/II | cTis-1 cN0 Luminal | 24 | Dose Escalation: 5 Cohorts—30 Gy in 5 fractions (baseline treatment with 0 boost dose to GTV), 35, 40, 45, 50 Gy in 5 fractions (Part 1) Dose Expansion: Maximum Tolerated Dose determined during dose escalation (Part 2) | NR | Maximum tolerated dose | Not yet recruiting |
NCT02316561 (ABLATIVE-1) | Amsterdam, Netherlands | Phase II | cT1 cN0 (<50y) cT1-2 (≤3 cm) cN0 (>70y) | 25 | Single dose of 20 Gy/15 Gy on the gross tumor volume and clinical tumor volume respectively | 24 weeks | Pathologic complete response | Completed |
NCT05350722 (ABLATIVE-2) | Amsterdam, The Netherlands | Phase II | cTis-1 cN0 Luminal | 100 | Single dose of 20 Gy/15 Gy on the gross tumor volume and clinical tumor volume respectively | 24 weeks | Pathologic complete response | Recruiting |
NCT05217966 (SPtedORT-DNS) | Montreal, QC, Canada | Phase II | cTis-1 cN0 Luminal | 80 | Single Pre-Operative Radiation Therapy | 52 weeks | Pathologic complete response | Recruiting |
NCT04679454 (CRYSTAL) | Milan, Italy | Phase I/II | cT1-T2 (up to 2.5 cm) cN0 | 79 | Phase I: 3 dose levels:18 Gy, 21 Gy and 24 Gy in single fraction phase II: clinical evaluation | 4–8 weeks | Phase I: maximum tolerated dose Phase II: pathologic complete response of selected dose | Recruiting |
NCT04360330 (SABER) | Miami, FL, USA | Phase I | cT1 cN0 Luminal | 18 | Preoperative SABR Phase I study testing up to 4 dose levels: 35 Gy (5 fractions of 7 Gy); 40 Gy (5 fractions of 8 Gy); 45 Gy (5 fractions of 9 Gy); 50 Gy (5 fractions of 10 Gy) | 4–6 weeks | Recommended dose for a phase II | Recruiting |
NCT03875573 (NEO-CHECK-RAY) | Brussels, Belgium | Randomized phase II | cT2 zN0 or cT1 cN1-3 Luminal B HER2- | 147 | Preoperative 3 × 8 Gy with chemotherapy ± durvalumab ± oleclumab | 2–6 weeks | Immune related or radiation therapy related toxicity | Recruiting |
NCT02728076 | Milwaukee, WI, USA | Phase II | Clinically stage I-II | 40 | Preoperative MRI-based radiation followed by lumpectomy | 5–8 weeks | Postoperative complications | Active, not recruiting |
NCT02482376 | Durham, CN, USA | Phase II | cTis-1 cN0 Luminal | 68 | Single fraction of 21 Gy of stereotactic radiotherapy before proceeding to surgery. | 2–4 weeks | Physician reported rates of good/excellent cosmesis | Active, not recruiting |
NCT02065960 (ARTEMIS) | Hamilton, ON, Canada | Phase II | cT1 cN0 Luminal | 32 | SABR to a dose of 40 Gy in 5 fractions delivered every other day over a period of 10–12 days, followed by breast conserving surgery | 8–12 weeks | Feasibility | Unknown status |
ANTICIPATED BOOST | ||||||||
NCT05603078 (BIRKIN) | Beijing, China | Phase II | cT1-4 cN0 | 102 | Preoperative MRI-guided tumor-bed boost and post-operative ultra-hypofractionated radiotherapy (26 Gy/5.2 Gy/5) | 4 weeks | Primary endpoint: acute toxicities; secondary endpoints: oncologic outcomes, surgical complications within 30 days, late toxicities, patients’ quality of life and cosmetic outcomes. | Recruiting |
NCT04871516 | New Brunswick, NJ, USA | Phase II | Clinical stage 0-IIIC | 55 | Anticipatedboost in 4 fractions | 1–3 weeks | Wound complications | Recruiting |
NCT03366844 | Los Angeles, CA, USA | Phase I/II | T2-4c cN0-3 any subtype | 60 | Anticipated boost 3 × 8 Gy + pembrolizumab | 6 weeks | Feasibility and changes in tumor-infiltrating lymphocytes (TIL) | Active, not recruiting |
NCT03804944 | New York (NY), Pittsburh (PA), Houston (TX), USA | Randomized Phase III | Clinical stage II-III ER + HER2- | 100 | Anticipated boost 3 × 8 Gy + letrozole ± pembrolizumab or Ftl-3 ligand or pembrolizumab + Ftl-3 ligand | 14 weeks | Feasibility, clinical response, pathologic response | Active, not recruiting |
NCT03359954 (PRECISE) | Houston, TX, USA | Phase II | cT1-4 cN0-3 Luminal | 25 | Anticipated boost | 1 week | Changes in tumor-infiltrating lymphocytes (TIL) | Active, not recruiting |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montero, A.; Ciérvide, R. Preoperative Radio(Chemo)Therapy in Breast Cancer: Time to Switch the Perspective? Curr. Oncol. 2022, 29, 9767-9787. https://doi.org/10.3390/curroncol29120768
Montero A, Ciérvide R. Preoperative Radio(Chemo)Therapy in Breast Cancer: Time to Switch the Perspective? Current Oncology. 2022; 29(12):9767-9787. https://doi.org/10.3390/curroncol29120768
Chicago/Turabian StyleMontero, Angel, and Raquel Ciérvide. 2022. "Preoperative Radio(Chemo)Therapy in Breast Cancer: Time to Switch the Perspective?" Current Oncology 29, no. 12: 9767-9787. https://doi.org/10.3390/curroncol29120768
APA StyleMontero, A., & Ciérvide, R. (2022). Preoperative Radio(Chemo)Therapy in Breast Cancer: Time to Switch the Perspective? Current Oncology, 29(12), 9767-9787. https://doi.org/10.3390/curroncol29120768