Cost Analysis of a Digital Multimodal Cancer Prehabilitation
Abstract
:1. Introduction
2. Methods
2.1. Digital Intervention
2.2. Measures
2.3. Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanahan, D.; Weinberg, R. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bode, A.; Dong, Z. Recent advances in precision oncology research. NPJ Precis. Oncol. 2018, 2, 11. [Google Scholar] [CrossRef] [Green Version]
- Giles, C.; Cummins, S. Prehabilitation before cancer treatment. BMJ 2019, 366, l5120. [Google Scholar] [CrossRef] [PubMed]
- Hanna, T.P.; King, W.D.; Thibodeau, S.; Jalink, M.; Paulin, G.A.; Harvey-Jones, E.; O’Sullivan, D.E.; Booth, C.M.; Sullivan, R.; Aggarwal, A. Mortality due to cancer treatment delay: Systematic review and meta-analysis. BMJ 2020, 371, m4087. [Google Scholar] [CrossRef] [PubMed]
- Silver, J.; Baima, J. Cancer Prehabilitation. Am. J. Phys. Med. Rehabil. 2013, 92, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Cavalheri, V.; Granger, C. Preoperative exercise training for patients with non-small cell lung cancer. Cochrane Database Syst. Rev. 2017, 2017, CD012020. [Google Scholar] [CrossRef] [PubMed]
- Palma, S.; Hasenoehrl, T.; Jordakieva, G.; Ramazanova, D.; Crevenna, R. High-intensity interval training in the prehabilitation of cancer patients—A systematic review and meta-analysis. Support. Care Cancer 2020, 29, 1781–1794. [Google Scholar] [CrossRef] [PubMed]
- Shun, S. Cancer Prehabilitation for Patients Starting from Active Treatment to Surveillance. Asia-Pac. J. Oncol. Nurs. 2016, 3, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Treanor, C.; Kyaw, T.; Donnelly, M. An international review and meta-analysis of prehabilitation compared to usual care for cancer patients. J. Cancer Surviv. 2018, 12, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Rabin, R.; de Charro, F. EQ-SD: A Measure of Health Status from the EUROQOL Group. Ann. Med. 2001, 33, 337–343. [Google Scholar] [CrossRef]
- Boden, I.; Robertson, I.K.; Neil, A.; Reeve, J.; Palmer, A.J.; Skinner, E.H.; Browning, L.; Anderson, L.; Hill, C.; Story, D.; et al. Preoperative physiotherapy is cost-effective for preventing pulmonary complications after major abdominal surgery: A health economic analysis of a multicentre randomised trial. J. Physiother. 2020, 66, 180–187. [Google Scholar] [CrossRef]
- Risco, R.; González-Colom, R.; Montané-Muntané, M.; Cano, I.; Vela, E.; Sebio, R.; Dana, F.; Faner, J.; Coca, M.; Laxe, S.; et al. Actionable Factors Fostering Health valUe Generation and Scalability of Prehabilitation: A Prospective Cohort Study. Ann. Surg. 2022. [Google Scholar] [CrossRef]
- Wu, F.; Rotimi, O.; Laza-Cagigas, R.; Rampal, T. The Feasibility and Effects of a Telehealth-Delivered Home-Based Prehabilitation Program for Cancer Patients during the Pandemic. Curr. Oncol. 2021, 28, 2248–2259. [Google Scholar] [CrossRef] [PubMed]
- EQ-5D Instruments. How Can EQ-5D Be Used. Where Is EQ-5D Used? Euroqol.Org. 2022. Available online: https://euroqol.org/eq-5d-instruments/how-can-eq-5d-be-used/where-is-eq-5d-used/ (accessed on 12 August 2022).
- Loveman, E.; Cooper, K.; Bryant, J.; Colquitt, J.L.; Frampton, G.K.; Clegg, A. Dasatinib, high-dose imatinib and nilotinib for the treatment of imatinib-resistant chronic myeloid leukaemia: A systematic review and economic evaluation. In NIHR Health Technology Assessment programme: Executive Summaries; NIHR Journals Library: Southampton, UK, 2012. [Google Scholar]
- Molenaar, C.J.; van Rooijen, S.J.; Fokkenrood, H.J.; Roumen, R.M.; Janssen, L.; Slooter, G.D. Prehabilitation versus no prehabilitation to improve functional capacity, reduce postoperative complications and improve quality of life in colorectal cancer surgery. Cochrane Database Syst. Rev. 2022. [Google Scholar] [CrossRef]
- Singh, F.; Newton, R.U.; Galvão, D.A.; Spry, N.; Baker, M.K. A systematic review of pre-surgical exercise intervention studies with cancer patients. Surg. Oncol. 2013, 22, 92–104. [Google Scholar] [CrossRef]
- Liu, Z.; Qiu, T.; Pei, L.; Zhang, Y.; Xu, L.; Cui, Y.; Liang, N.; Li, S.; Chen, W.; Huang, Y. Two-week multimodal prehabilitation program improves perioperative functional capability in patients undergoing thoracoscopic lobectomy for lung cancer: A randomized controlled trial. Anesth. Analg. 2020, 131, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Dholakia, J.; Cohn, D.E.; Straughn, J.M., Jr.; Dilley, S.E. Prehabilitation for medically frail patients undergoing surgery for epithelial ovarian cancer: A cost-effectiveness analysis. J. Gynecol. Oncol. 2021, 32, e92. [Google Scholar] [CrossRef] [PubMed]
- Plan, N. Overview and Summary. NHS Long Term Plan. 2022. Available online: https://www.longtermplan.nhs.uk/online-version/overview-and-summary/ (accessed on 12 August 2022).
Treatment | T1 | T2 | T3 | T4 | T5 |
---|---|---|---|---|---|
Surgery | Baseline | 1–3 days before surgery | 6 weeks post-surgery | 3 months post-surgery | 6 months post-surgery |
Radio-/Chemotherapy | Baseline | 7–10 days after the last treatment session | 6 weeks after T2 | 3 months after T2 | 6 months after T2 |
Value (%) | Sample Size | |
---|---|---|
Specialty of diagnosed cancer | 192 | |
Colorectal | 108 (56.3) | |
Urologic | 50 (26.0) | |
Breast | 15 (7.8) | |
Lung | 3.6 (2) | |
Brain | 4 (2.1) | |
Head & Neck | 5 (2.6) | |
Pancreatic | 1 (0.5) | |
Prostate | 2 (1) | |
Gender | 192 | |
Female | 74 (38.5) | |
Male | 118 (61.5) | |
Mean Age (Years) | ||
Female | 61.77 | 74 |
Male | 66.92 | 118 |
Treatment received | 192 | |
Surgery | 134 (69.8) | |
Hormone therapy + Radiotherapy | 1 (0.5) | |
Palliative care | 1 (0.5) | |
Surgery + Radiotherapy | 2 (1) | |
Chemotherapy | 10 (5.2) | |
Chemotherapy + Surgery | 7 (3.6) | |
Hormone therapy | 4 (2.1) | |
Active monitoring | 1 (0.5) | |
Chemoradiotherapy + 2 surgeries | 1 (0.5) | |
Radiotherapy | 8 (4.2) | |
Chemoradiotherapy | 10 (5.2) | |
Chemoradiotherapy + surgery | 3 (1.6) | |
Radiotherapy + immunotherapy | 1 (0.5) | |
Treatment received (%) | ||
Surgery | 69.8 | |
Single therapy | 11.5 | |
Combination therapy | 12.9 | |
Palliative care | 0.5 | |
Active Monitoring | 0.5 | |
Mean Prehabilitation duration (weeks) | 8.47 | 177 |
Mean Length of hospital stay (days) | 8.14 | 97 |
Referred by a HC professional | 168 | 192 |
Self-referred | 24 | |
Adherence rate | 85% | 192 |
Acceptance rate | 76 % | 192 |
Types of cancer | Average QALYs |
---|---|
Colorectal | 0.537 |
Urologic | 0.666 |
Breast | 0.492 |
Lung | 0.446 |
Brain | - * |
Head & Neck | 0.273 |
Pancreatic | - * |
Prostate | - * |
Prehab Duration Band | |
0–2.99 weeks of prehabilitation use (N = 11) | 0.48 |
3–4.99 weeks of prehabilitation use (N = 11) | 0.5 |
5–10.5 weeks of prehabilitation use (N = 9) | 0.57 |
Over 10.5 weeks of prehabilitation use (N = 13) | 0.73 |
0–2.99 Weeks of Prehabilitation Use | 3–4.99 Weeks of Prehabilitation Use | 5–10.5 Weeks of Prehabilitation Use | Over 10.5 Weeks of Prehabilitation Use | |
---|---|---|---|---|
Average Utility Score: Post rehab | 0.83 | 0.78 | 0.76 | 0.79 |
Average Utility Score: 6 weeks post rehab | 0.83 | 0.82 | 0.85 | 0.78 |
Average Utility Score: 3 months post rehab | 0.88 | 0.9 | 0.86 | 0.88 |
Average Utility Score: 6 months post rehab | 0.89 | 0.86 | 0.99 | 0.99 |
Regression Weights | Unstandardized β-Coefficient | R2 | F | p-Value |
---|---|---|---|---|
Utility score-baseline * | 0.26 | 0.8 | 97.6 | <0.001 |
Prehab duration (in weeks) * | 0.02 | <0.001 |
Prehabilitation Costs (GBP) | Inpatient Costs (GBP) | Total Costs (GBP) | |
---|---|---|---|
Mean costs (GBP) | 460 | 4520 | 4856 |
Colorectal Cancer patients | 314 | 5249 | 5563 |
Urological Cancer Patients | 750 | 2337 | 3087 |
Other type of cancers patients | 471 | 3330 | 3801 |
0–2.99 weeks of prehabilitation | 103 | 4500 | 4603 |
3–4.99 of prehabilitation use | 212 | 4440 | 4652 |
5–10.5 weeks of prehabilitation use | 397 | 5170 | 5567 |
Over 10.5 weeks of prehabilitation use | 1153 | 3950 | 5103 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkaintatzi, E.; Nikolaou, C.K.; Rampal, T.; Laza-Cagigas, R.; Zand, N.; McCrone, P. Cost Analysis of a Digital Multimodal Cancer Prehabilitation. Curr. Oncol. 2022, 29, 9305-9313. https://doi.org/10.3390/curroncol29120729
Gkaintatzi E, Nikolaou CK, Rampal T, Laza-Cagigas R, Zand N, McCrone P. Cost Analysis of a Digital Multimodal Cancer Prehabilitation. Current Oncology. 2022; 29(12):9305-9313. https://doi.org/10.3390/curroncol29120729
Chicago/Turabian StyleGkaintatzi, Evdoxia, Charoula Konstantia Nikolaou, Tarannum Rampal, Roberto Laza-Cagigas, Nazanin Zand, and Paul McCrone. 2022. "Cost Analysis of a Digital Multimodal Cancer Prehabilitation" Current Oncology 29, no. 12: 9305-9313. https://doi.org/10.3390/curroncol29120729
APA StyleGkaintatzi, E., Nikolaou, C. K., Rampal, T., Laza-Cagigas, R., Zand, N., & McCrone, P. (2022). Cost Analysis of a Digital Multimodal Cancer Prehabilitation. Current Oncology, 29(12), 9305-9313. https://doi.org/10.3390/curroncol29120729