Boron Neutron Capture Therapy: Clinical Application and Research Progress
Abstract
:1. Introduction
2. Boron Neutron Capture Therapy
3. Neutron Beams
4. Boron Delivery Agents
4.1. First-Generation Boron Delivery Agents
4.2. Second-Generation Boron Delivery Agents
4.3. Third-Generation Boron Delivery Agents
5. Application of Second-Generation Boron Delivery Agents
5.1. Cell Uptake
5.2. 18F-BPA Simplifies Concentration Monitoring
5.3. Clinical Application of BNCT in Intracranial Tumors
5.4. Extracranial Tumor
6. Additional Considerations When Utilizing BNCT
7. Conclusions
- Lack of more effective boron delivery agents. Although the preliminary clinical results of BNCT based on second-generation delivery agents are promising, there are still many problems, such as the uneven distribution of intratumoral boron, insufficient T/N and T/B ratios and difficulty in obtaining some boron delivery agents. Further research is needed to develop more selective boron compounds to improve therapeutic efficacy and reduce potential drug toxicity;
- High construction and maintenance costs of neutron facilities. Based on the current boron delivery agents and strict patient screening, BNCT is difficult to be used as a first- or second-line treatment for tumors and can only be used as an alternative when other methods cannot be implemented, which greatly reduces the number of patients. In the face of sparse cases, the comparative construction cost and maintenance cost of BNCT hinder its entry into clinical practice. The development of new boron delivery agents to broaden the application range of BNCT may be a big boost to advance its development. In addition, there are only a handful of BNCT devices in the world, and some countries do not have equipment to carry out neutron-based research. Based on the requirements of BNCT technology for neutron devices, the difficulty in connecting and collaborating between drug researchers and neutron institutions is also an obstacle to the translation from preclinical to clinical;
- Heterogeneity of research factors. The comparative study of BNCT becomes difficult due to the large differences in many factors among the studies in different countries in the world. More well-designed clinical studies are needed in the future to determine the role of novel boron delivery agents in BNCT clinical practice. Randomized controlled animal trails should be presented to prove effectiveness of new boron drugs or new treatment modes, giving guidance to randomized clinical trials;
- In addition, a large number of third-generation boron delivery agents have been tested and studied at the cellular and animal levels, but no further clinical trial has been conducted. One of the reasons is the lack of convincing animal experimental data. Although some studies have achieved excellent T/N and/or T/B ratios, the tumor boron concentration does not meet the minimum standard at the cellular level or in animal models (20 μg/g). Some studies obtained sufficient enrichment concentrations but with low T/N ratios. Another problem with translation from preclinical to clinical research is that not all third-generation drugs under investigation have developed PET-adapted labeled versions. This means that clinical trials may require tissue samples to verify intratumoral concentrations and T/N ratios, and such biodistribution studies with no direct benefit to patients are difficult to conduct.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, J.; Wang, J.; Wei, Q. Boron neutron capture therapy in clinical application:Progress and prospect. Chin. Sci. Bull. 2021, 67, 1479–1489. [Google Scholar] [CrossRef]
- Soloway, A.H.; Tjarks, W.; Barnum, B.A.; Rong, F.G.; Barth, R.F.; Codogni, I.M.; Wilson, J.G. The Chemistry of Neutron Capture Therapy. Chem. Rev. 1998, 98, 1515–1562. [Google Scholar] [CrossRef] [PubMed]
- Barth, R.F.; Vicente, M.G.; Harling, O.K.; Kiger, W.S.; Riley, K.J.; Binns, P.J.; Wagner, F.M.; Suzuki, M.; Aihara, T.; Kato, I.; et al. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat. Oncol. 2012, 7, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, M. Boron neutron capture therapy (BNCT): A unique role in radiotherapy with a view to entering the accelerator-based BNCT era. Int. J. Clin. Oncol. 2020, 25, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Brechbiel, M.W. Targeted alpha-therapy: Past, present, future? Dalton Trans. 2007, 4918–4928. [Google Scholar] [CrossRef] [Green Version]
- Dekempeneer, Y.; Keyaerts, M.; Krasniqi, A.; Puttemans, J.; Muyldermans, S.; Lahoutte, T.; D’Huyvetter, M.; Devoogdt, N. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle. Expert Opin. Biol. Ther. 2016, 16, 1035–1047. [Google Scholar] [CrossRef] [Green Version]
- Parker, C.; Lewington, V.; Shore, N.; Kratochwil, C.; Levy, M.; Lindén, O.; Noordzij, W.; Park, J.; Saad, F.; Targeted Alpha Therapy Working Group. Targeted Alpha Therapy, an Emerging Class of Cancer Agents: A Review. JAMA Oncol. 2018, 4, 1765–1772. [Google Scholar]
- Nedunchezhian, K.; Aswath, N.; Thiruppathy, M.; Thirugnanamurthy, S. Boron Neutron Capture Therapy—A Literature Review. J. Clin. Diagn. Res. 2016, 10, ZE01–ZE04. [Google Scholar] [CrossRef]
- Malouff, T.D.; Seneviratne, D.S.; Ebner, D.K.; Stross, W.C.; Waddle, M.R.; Trifiletti, D.M.; Krishnan, S. Boron Neutron Capture Therapy: A Review of Clinical Applications. Front. Oncol. 2021, 11, 601820. [Google Scholar] [CrossRef]
- Sauerwein, W.; Wittig, A.; Moss, R.; Nakagawa, Y. Neutron Capture Therapy: Principles and Applications; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Lamba, M.; Goswami, A.; Bandyopadhyay, A. A periodic development of BPA and BSH based derivatives in boron neutron capture therapy (BNCT). Chem. Commun. 2021, 57, 827–839. [Google Scholar] [CrossRef]
- Sauerwein, W.A.G.; Bet, P.M.; Wittig, A. Drugs for BNCT: BSH and BPA. In Neutron Capture Therapy; Springer: Berlin/Heidelberg, Germany, 2012; pp. 117–160. [Google Scholar]
- Zharkov, D.O.; Yudkina, A.V.; Riesebeck, T.; Loshchenova, P.S.; Mostovich, E.A.; Dianov, G.L. Boron-containing nucleosides as tools for boron-neutron capture therapy. Am. J. Cancer Res. 2021, 11, 4668–4682. [Google Scholar] [PubMed]
- Barth, R.F.; Zhang, Z.; Liu, T. A realistic appraisal of boron neutron capture therapy as a cancer treatment modality. Cancer Commun. 2018, 38, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barth, R.F.; Mi, P.; Yang, W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun. 2018, 38, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawabata, S.; Miyatake, S.-I.; Kajimoto, Y.; Kuroda, Y.; Kuroiwa, T.; Imahori, Y.; Kirihata, M.; Sakurai, Y.; Kobayashi, T.; Ono, K. The early successful treatment of glioblastoma patients with modified boron neutron capture therapy. Report of two cases. J. Neurooncol. 2003, 65, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Diaz, A.Z.; Coderre, J.A.; Chanana, A.D.; Ma, R. Boron neutron capture therapy for malignant gliomas. Ann. Med. 2000, 32, 81–85. [Google Scholar] [CrossRef]
- Ommaya, A.K. Implantable devices for chronic access and drug delivery to the central nervous system. Cancer Drug Deliv. 1984, 1, 169–179. [Google Scholar] [CrossRef]
- Sakurai, Y.; Ono, K.; Miyatake, S.; Maruhashi, A. Improvement effect on the depth-dose distribution by CSF drainage and air infusion of a tumour-removed cavity in boron neutron capture therapy for malignant brain tumours. Phys. Med. Biol. 2006, 51, 1173–1183. [Google Scholar] [CrossRef]
- Kawabata, S.; Miyatake, S.-I.; Nonoguchi, N.; Hiramatsu, R.; Iida, K.; Miyata, S.; Yokoyama, K.; Doi, A.; Kuroda, Y.; Kuroiwa, T.; et al. Survival benefit from boron neutron capture therapy for the newly diagnosed glioblastoma patients. Appl. Radiat. Isot. 2009, 67 (Suppl. S7–S8), S15–S18. [Google Scholar] [CrossRef]
- Chadwick, J. The existence of a neutron. Proc. R. Soc. A 1932, 136, 692–708. [Google Scholar]
- Locher, G.L. Biological effects and therapeutic possibilities of neutrons. Am. J. Roentgenol. Radium Ther. 1936, 36, 1–13. [Google Scholar]
- Kruger, P.G. Some Biological Effects of Nuclear Disintegration Products on Neoplastic Tissue. Proc. Natl. Acad. Sci. USA 1940, 26, 181–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahl, P.A.; Cooper, F.S.; Dunning, J.R. Dunning, Some in vivo Effects of Localized Nuclear Disintegration Products on a Transplantable Mouse Sarcoma. Proc. Natl. Acad. Sci. USA 1940, 26, 589–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farr, L.E.; Sweet, W.H.; Robertson, J.S.; Foster, C.G.; Locksley, H.B.; Sutherland, D.L.; Mendelsohn, M.L.; Stickley, E.E. Neutron capture therapy with boron in the treatment of glioblastoma multiforme. Am. J. Roentgenol. Radium Ther. Nucl. Med. 1954, 71, 279–293. [Google Scholar] [PubMed]
- Sweet, W.H. Early history of development of boron neutron capture therapy of tumors. J. Neurooncol. 1997, 33, 19–26. [Google Scholar] [CrossRef]
- Slatkin, D.N.; Stoner, R.D.; Rosander, K.M.; Kalef-Ezra, J.A.; Laissue, J.A. Central nervous system radiation syndrome in mice from preferential 10B(n, alpha)7Li irradiation of brain vasculature. Proc. Natl. Acad. Sci. USA 1988, 85, 4020–4024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatanaka, H. Clinical results of boron neutron capture therapy. Basic Life Sci. 1990, 54, 15–21. [Google Scholar]
- Soloway, A.H.; Hatanaka, H.; Davis, M.A. Penetration of brain and brain tumor. VII. Tumor-binding sulfhydryl boron compounds. J. Med. Chem. 1967, 10, 714–717. [Google Scholar] [CrossRef]
- Hatanaka, H. A revised boron-neutron capture therapy for malignant brain tumors. II. Interim clinical result with the patients excluding previous treatments. J. Neurol. 1975, 209, 81–94. [Google Scholar] [CrossRef]
- Roberts, D.C.; Suda, K.; Samanen, J.; Kemp, D.S. Pluripotential amino acids I. (L)-p-dihydroxyborylphenylalanine (L-Bph) as a precursor of L-Phe and L-Tyr containing peptides; specific tritiation of L-Phe-containing peptides at a final step in synthesis. Tetrahedron Lett. 1980, 21, 3435–3438. [Google Scholar] [CrossRef]
- Cumberlin, R.L.; National Cancer Institute Radiation Research. Clinical research in neutron capture therapy. Int. J. Radiat. Oncol. Biol. Phys. 2002, 54, 992–998. [Google Scholar] [CrossRef]
- Coderre, J.A.; Button, T.M.; Micca, P.L.; Fisher, C.D.; Nawrocky, M.M.; Liu, H.B. Neutron capture therapy of the 9l rat gliosarcoma using the P-boronophenylalanine-fructose complex. Int. J. Radiat. Oncol. Biol. Phys. 1994, 30, 643–652. [Google Scholar] [CrossRef]
- He, T.; Chittur, S.V.; Musah, R.A. Impact on Glioblastoma U87 Cell Gene Expression of a Carborane Cluster-Bearing Amino Acid: Implications for Carborane Toxicity in Mammalian Cells. ACS Chem. Neurosci. 2019, 10, 1524–1534. [Google Scholar] [CrossRef] [PubMed]
- Isono, A.; Tsuji, M.; Sanada, Y.; Matsushita, A.; Masunaga, S.; Hirayama, T.; Nagasawa, H. Design, Synthesis, and Evaluation of Lipopeptide Conjugates of Mercaptoundecahydrododecaborate for Boron Neutron Capture Therapy. ChemMedChem 2019, 14, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Miyabe, J.; Ohgaki, R.; Saito, K.; Wei, L.; Quan, L.; Jin, C.; Liu, X.; Okuda, S.; Nagamori, S.; Ohki, H.; et al. Boron delivery for boron neutron capture therapy targeting a cancer-upregulated oligopeptide transporter. J. Pharmacol. Sci. 2019, 139, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Svirskis, D.; Sarojini, V.; McGregor, A.L.; Bevitt, J.; Wu, Z. Cyclic-RGDyC functionalized liposomes for dual-targeting of tumor vasculature and cancer cells in glioblastoma: An in vitro boron neutron capture therapy study. Oncotarget 2017, 8, 36614–36627. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, I.; Garcia-Mendiola, T.; Sato, S.; Pita, M.; Nakamura, H.; Lorenzo, E.; Teixidor, F.; Marques, F.; Vinas, C. Metallacarboranes on the Road to Anticancer Therapies: Cellular Uptake, DNA Interaction, and Biological Evaluation of Cobaltabisdicarbollide [COSAN]. Chemistry 2018, 24, 17239–17254. [Google Scholar] [CrossRef]
- Barth, R.F.; Yang, W.; Nakkula, R.J.; Byun, Y.; Tjarks, W.; Wu, L.C.; Binns, P.J.; Riley, K.J. Evaluation of TK1 targeting carboranyl thymidine analogs as potential delivery agents for neutron capture therapy of brain tumors. Appl. Radiat. Isot. 2015, 106, 251–255. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Li, J.; Zhang, Z.; Duan, D.; Zhang, Z.; Liu, H.; Liu, T.; Liu, Z. Tracing Boron with Fluorescence and Positron Emission Tomography Imaging of Boronated Porphyrin Nanocomplex for Imaging-Guided Boron Neutron Capture Therapy. ACS Appl. Mater. Interfaces 2018, 10, 43387–43395. [Google Scholar] [CrossRef]
- Kanemitsu, T.; Kawabata, S.; Fukumura, M.; Futamura, G.; Hiramatsu, R.; Nonoguchi, N.; Nakagawa, F.; Takata, T.; Tanaka, H.; Suzuki, M.; et al. Folate receptor-targeted novel boron compound for boron neutron capture therapy on F98 glioma-bearing rats. Radiat. Environ. Biophys. 2019, 58, 59–67. [Google Scholar] [CrossRef]
- Detta, A.; Cruickshank, G.S. L-amino acid transporter-1 and boronophenylalanine-based boron neutron capture therapy of human brain tumors. Cancer Res. 2009, 69, 2126–2132. [Google Scholar] [CrossRef] [Green Version]
- Duncan, R.; Vicent, M.J. Polymer therapeutics-prospects for 21st century: The end of the beginning. Adv. Drug Deliv. Rev. 2013, 65, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Barth, R.F.; Wu, G.; Huo, T.; Tjarks, W.; Ciesielski, M.; Fenstermaker, R.A.; Ross, B.D.; Wikstrand, C.J.; Riley, K.J.; et al. Convection enhanced delivery of boronated EGF as a molecular targeting agent for neutron capture therapy of brain tumors. J. Neurooncol. 2009, 95, 355–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olusanya, T.O.; Calabrese, G.; Fatouros, D.G.; Tsibouklis, J.; Smith, J.R. Liposome formulations of o-carborane for the boron neutron capture therapy of cancer. Biophys. Chem. 2019, 247, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Luderer, M.J.; Muz, B.; Alhallak, K.; Sun, J.; Wasden, K.; Guenthner, N.; de la Puente, P.; Federico, C.; Azab, A.K. Thermal Sensitive Liposomes Improve Delivery of Boronated Agents for Boron Neutron Capture Therapy. Pharm. Res. 2019, 36, 144. [Google Scholar] [CrossRef] [PubMed]
- Maitz, C.A.; Khan, A.A.; Kueffer, P.J.; Brockman, J.D.; Dixson, J.; Jalisatgi, S.S.; Nigg, D.W.; Everett, T.A.; Hawthorne, M.F. Validation and Comparison of the Therapeutic Efficacy of Boron Neutron Capture Therapy Mediated By Boron-Rich Liposomes in Multiple Murine Tumor Models. Transl. Oncol. 2017, 10, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Sonali Singh, R.P.; Singh, N.; Sharma, G.; Vijayakumar, M.R.; Koch, B.; Singh, S.; Singh, U.; Dash, D.; Pandey, B.L.; Muthu, M.S. Transferrin liposomes of docetaxel for brain-targeted cancer applications: Formulation and brain theranostics. Drug Deliv. 2016, 23, 1261–1271. [Google Scholar] [CrossRef] [Green Version]
- Dukenbayev, K.; Korolkov, I.V.; Tishkevich, D.I.; Kozlovskiy, A.L.; Trukhanov, S.V.; Gorin, Y.G.; Shumskaya, E.E.; Kaniukov, E.Y.; Vinnik, D.A.; Zdorovets, M.V.; et al. Fe3O4 Nanoparticles for Complex Targeted Delivery and Boron Neutron Capture Therapy. Nanomaterials 2019, 9, 494. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, T.H.; Miranda, M.C.; Rocha, Z.; Leal, A.S.; Gomes, D.A.; Sousa, E.M.B. An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy. Nanomaterials 2017, 7, 82. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Ai, X.; Zhang, H.; Zhuo, W.; Mi, P. Polymeric Micelles with Endosome Escape and Redox-Responsive Functions for Enhanced Intracellular Drug Delivery. J. Biomed. Nanotechnol. 2019, 15, 373–381. [Google Scholar] [CrossRef]
- Ishiwata, K. 4-Borono-2-18F-fluoro-L-phenylalanine PET for boron neutron capture therapy-oriented diagnosis: Overview of a quarter century of research. Ann. Nucl. Med. 2019, 33, 223–236. [Google Scholar] [CrossRef]
- Luderer, M.J.; Muz, B.; De La Puente, P.; Chavalmane, S.; Kapoor, V.; Marcelo, R.; Biswas, P.; Thotala, D.; Rogers, B.; Azab, A.K. A Hypoxia-Targeted Boron Neutron Capture Therapy Agent for the Treatment of Glioma. Pharm. Res. 2016, 33, 2530–2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeuchi, K.; Hattori, Y.; Kawabata, S.; Futamura, G.; Hiramatsu, R.; Wanibuchi, M.; Tanaka, H.; Masunaga, S.-I.; Ono, K.; Miyatake, S.-I.; et al. Synthesis and Evaluation of Dodecaboranethiol Containing Kojic Acid (KA-BSH) as a Novel Agent for Boron Neutron Capture Therapy. Cells 2020, 9, 1551. [Google Scholar] [CrossRef] [PubMed]
- Dymova, M.A.; Taskaev, S.Y.; Richter, V.A.; Kuligina, E.V. Boron neutron capture therapy: Current status and future perspectives. Cancer Commun. 2020, 40, 406–421. [Google Scholar] [CrossRef] [PubMed]
- Kato, I.; Fujita, Y.; Maruhashi, A.; Kumada, H.; Ohmae, M.; Kirihata, M.; Imahori, Y.; Suzuki, M.; Sakrai, Y.; Sumi, T.; et al. Effectiveness of boron neutron capture therapy for recurrent head and neck malignancies. Appl. Radiat. Isot. 2009, 67 (Suppl. S7–S8), S37–S42. [Google Scholar] [CrossRef]
- Suzuki, M.; Kato, I.; Aihara, T.; Hiratsuka, J.; Yoshimura, K.; Niimi, M.; Kimura, Y.; Ariyoshi, Y.; Haginomori, S.-I.; Sakurai, Y.; et al. Boron neutron capture therapy outcomes for advanced or recurrent head and neck cancer. J. Radiat. Res. 2014, 55, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Suzuki, O.; Sakurai, Y.; Tanaka, H.; Kondo, N.; Kinashi, Y.; Masunaga, S.-I.; Maruhashi, A.; Ono, K. Reirradiation for locally recurrent lung cancer in the chest wall with boron neutron capture therapy (BNCT). Int. Cancer Conf. J. 2012, 1, 235–238. [Google Scholar]
- Yamamoto, T.; Matsumura, A.; Nakai, K.; Shibata, Y.; Endo, K.; Sakurai, F.; Kishi, T.; Kumada, H.; Torii, Y. Current clinical results of the Tsukuba BNCT trial. Appl. Radiat. Isot. 2004, 61, 1089–1093. [Google Scholar]
- Yamamoto, T.; Nakai, K.; Kageji, T.; Kumada, H.; Endo, K.; Matsuda, M.; Shibata, Y.; Matsumura, A. Boron neutron capture therapy for newly diagnosed glioblastoma. Radiother. Oncol. 2009, 91, 80–84. [Google Scholar]
- Haginomori, S.-I.; Miyatake, S.-I.; Inui, T.; Araki, M.; Kawabata, S.; Takamaki, A.; Lee, K.; Takenaka, H.; Kuroiwa, T.; Uesugi, Y.; et al. Planned fractionated boron neutron capture therapy using epithermal neutrons for a patient with recurrent squamous cell carcinoma in the temporal bone: A case report. Head Neck 2009, 31, 412–418. [Google Scholar]
- Kageji, T.; Nagahiro, S.; Matsuzaki, K.; Mizobuchi, Y.; Toi, H.; Nakagawa, Y.; Kumada, H. Boron neutron capture therapy using mixed epithermal and thermal neutron beams in patients with malignant glioma-correlation between radiation dose and radiation injury and clinical outcome. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 1446–1455. [Google Scholar] [CrossRef]
- Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, H. Long-survivors of glioblatoma treated with boron neutron capture therapy (BNCT). Appl. Radiat. Isot. 2011, 69, 1800–1802. [Google Scholar] [CrossRef] [PubMed]
- Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, H. Clinical results of boron neutron capture therapy (BNCT) for glioblastoma. Appl. Radiat. Isot. 2011, 69, 1823–1825. [Google Scholar] [CrossRef] [PubMed]
- Miyatake, S.-I.; Kawabata, S.; Kajimoto, Y.; Aoki, A.; Yokoyama, K.; Yamada, M.; Kuroiwa, T.; Tsuji, M.; Imahori, Y.; Kirihata, M.; et al. Modified boron neutron capture therapy for malignant gliomas performed using epithermal neutron and two boron compounds with different accumulation mechanisms: An efficacy study based on findings on neuroimages. J. Neurosurg. 2005, 103, 1000–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyatake, S.-I.; Kawabata, S.; Yokoyama, K.; Kuroiwa, T.; Michiue, H.; Sakurai, Y.; Kumada, H.; Suzuki, M.; Maruhashi, A.; Kirihata, M.; et al. Survival benefit of Boron neutron capture therapy for recurrent malignant gliomas. J. Neurooncol. 2009, 91, 199–206. [Google Scholar] [CrossRef]
- Kawabata, S.; Miyatake, S.-I.; Kuroiwa, T.; Yokoyama, K.; Doi, A.; Iida, K.; Miyata, S.; Nonoguchi, N.; Michiue, H.; Takahashi, M.; et al. Boron neutron capture therapy for newly diagnosed glioblastoma. J. Radiat. Res. 2009, 50, 51–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyatake, S.-I.; Wanibuchi, M.; Hu, N.; Ono, K. Boron neutron capture therapy for malignant brain tumors. J. Neurooncol. 2020, 149, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, S.; Hiramatsu, R.; Kuroiwa, T.; Ono, K.; Miyatake, S.-I. Boron neutron capture therapy for recurrent high-grade meningiomas. J. Neurosurg. 2013, 119, 837–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiba, H.; Takeuchi, K.; Hiramatsu, R.; Furuse, M.; Nonoguchi, N.; Kawabata, S.; Kuroiwa, T.; Kondo, N.; Sakurai, Y.; Suzuki, M.; et al. Boron Neutron Capture Therapy Combined with Early Successive Bevacizumab Treatments for Recurrent Malignant Gliomas—A Pilot Study. Neurol. Med. Chir. 2018, 58, 487–494. [Google Scholar] [CrossRef]
- Kawabata, S.; Suzuki, M.; Hirose, K.; Tanaka, H.; Kato, T.; Goto, H.; Narita, Y.; Miyatake, S.-I. Miyatake, Accelerator-based BNCT for patients with recurrent glioblastoma: A multicenter phase II study. Neurooncol. Adv. 2021, 3, vdab067. [Google Scholar]
- Vos, M.J.; Turowski, B.; Zanella, F.E.; Paquis, P.; Siefert, A.; Hideghéty, K.; Haselsberger, K.; Grochulla, F.; Postma, T.J.; Wittig, A.; et al. Radiologic findings in patients treated with boron neutron capture therapy for glioblastoma multiforme within EORTC trial 11961. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 392–399. [Google Scholar] [CrossRef]
- Joensuu, H.; Kankaanranta, L.; Seppala, T.; Auterinen, I.; Kallio, M.; Kulvik, M.; Laakso, J.; Vahatalo, J.; Kortesniemi, M.; Kotiluoto, P.; et al. Boron neutron capture therapy of brain tumors: Clinical trials at the finnish facility using boronophenylalanine. J. Neurooncol. 2003, 62, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Kankaanranta, L.; Seppala, T.; Koivunoro, H.; Valimaki, P.; Beule, A.; Collan, J.; Kortesniemi, M.; Uusi-Simola, J.; Kotiluoto, P.; Auterinen, I.; et al. L-boronophenylalanine-mediated boron neutron capture therapy for malignant glioma progressing after external beam radiation therapy: A Phase I study. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Wang, X.; Gong, F.; Liu, T.; Liu, Z. 2D Nanomaterials for Cancer Theranostic Applications. Adv. Mater. 2020, 32, e1902333. [Google Scholar] [CrossRef]
- Koivunoro, H.; Kankaanranta, L.; Seppala, T.; Haapaniemi, A.; Makitie, A.; Joensuu, H. Boron neutron capture therapy for locally recurrent head and neck squamous cell carcinoma: An analysis of dose response and survival. Radiother. Oncol. 2019, 137, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Haapaniemi, A.; Kankaanranta, L.; Saat, R.; Koivunoro, H.; Saarilahti, K.; Makitie, A.; Atula, T.; Joensuu, H. Boron Neutron Capture Therapy in the Treatment of Recurrent Laryngeal Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Capala, J.; Stenstam, B.H.; Skold, K.; Rosenschold, P.M.a.; Giusti, V.; Persson, C.; Wallin, E.; Brun, A.; Franzen, L.; Carlsson, J.; et al. Boron neutron capture therapy for glioblastoma multiforme: Clinical studies in Sweden. J. Neurooncol. 2003, 62, 135–144. [Google Scholar] [CrossRef]
- Henriksson, R.; Capala, J.; Michanek, A.; Lindahl, S.-Å.; Salford, L.G.; Franzén, L.; Blomquist, E.; Westlin, J.-E.; Bergenheim, A.T. Boron neutron capture therapy (BNCT) for glioblastoma multiforme: A phase II study evaluating a prolonged high-dose of boronophenylalanine (BPA). Radiother. Oncol. 2008, 88, 183–191. [Google Scholar] [CrossRef]
- Skold, K.; Gorlia, T.; Pellettieri, L.; Giusti, V.; H-Stenstam, B.; Hopewell, J.W. Boron neutron capture therapy for newly diagnosed glioblastoma multiforme: An assessment of clinical potential. Br. J. Radiol. 2010, 83, 596–603. [Google Scholar] [CrossRef] [Green Version]
- Pellettieri, L.; H-Stenstam, B.; Rezaei, A.; Giusti, V.; Sköld, K. An investigation of boron neutron capture therapy for recurrent glioblastoma multiforme. Acta Neurol. Scand. 2008, 117, 191–197. [Google Scholar] [CrossRef]
- Stenstam, B.H.; Pellettieri, L.; Sorteberg, W.; Rezaei, A.; Skold, K. BNCT for recurrent intracranial meningeal tumours—Case reports. Acta Neurol. Scand. 2007, 115, 243–247. [Google Scholar] [CrossRef]
- Burian, J.; Marek, M.; Rataj, J.; Flibor, S.; Rejchrt, J.; Viererbl, L.; Sus, F.; Honova, H.; Petruzelka, L.; Prokes, K.; et al. Report on the first patient group of the phase I BNCT trial at the LVR-15 reactor. Int. Congr. Ser. 2004, 1259, 27–32. [Google Scholar] [CrossRef]
- Diaz, A.Z. Assessment of the results from the phase I/II boron neutron capture therapy trials at the Brookhaven National Laboratory from a clinician’s point of view. J. Neurooncol. 2003, 62, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.R.; Goorley, J.T.; Kiger, W.S.; Busse, P.M.; Riley, K.J.; Harling, O.K.; Zamenhof, R.G. Treatment planning and dosimetry for the Harvard-MIT Phase I clinical trial of cranial neutron capture therapy. Int. J. Radiat. Oncol. Biol. Phys. 2002, 53, 1361–1379. [Google Scholar] [CrossRef]
- Busse, P.M.; Harling, O.K.; Palmer, M.R.; Kiger, W.S.; Kaplan, J.; Kaplan, I.; Chuang, C.F.; Goorley, J.T.; Riley, K.J.; Newton, T.H.; et al. A critical examination of the results from the Harvard-MIT NCT program phase I clinical trial of neutron capture therapy for intracranial disease. J. Neurooncol. 2003, 62, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Kiger, W.S.; Lu, X.Q.; Harling, O.K.; Riley, K.J.; Binns, P.J.; Kaplan, J.; Patel, H.; Zamenhof, R.G.; Shibata, Y.; Kaplan, I.D.; et al. Preliminary treatment planning and dosimetry for a clinical trial of neutron capture therapy using a fission converter epithermal neutron beam. Appl. Radiat. Isot. 2004, 61, 1075–1081. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.W.; Liu, Y.H.; Chou, F.I.; Jiang, S.H. Clinical trials for treating recurrent head and neck cancer with boron neutron capture therapy using the Tsing-Hua Open Pool Reactor. Cancer Commun. 2018, 38, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuda, H.; Hiratsuka, J.; Kobayashi, T.; Sakurai, Y.; Yoshino, K.; Karashima, H.; Turu, K.; Araki, K.; Mishima, Y.; Ichihashi, M. Boron neutron capture therapy (BNCT) for malignant melanoma with special reference to absorbed doses to the normal skin and tumor. Australas. Phys. Eng. Sci. Med. 2003, 26, 97–103. [Google Scholar] [CrossRef]
- Makino, E.; Sasaoka, S.; Aihara, T.; Sakurai, Y.; Maruhashi, A.; Ono, K.; Fujimoto, W.; Hiratsuka, J. 1013 The First Clinical Trial of Boron Neutron Capture Therapy Using 10B-para-boronophenylalanine for Treating Extramammary Paget’s Disease. Eur. J. Cancer 2012, 48, S244–S245. [Google Scholar] [CrossRef]
- Hiratsuka, J.; Kamitani, N.; Tanaka, R.; Yoden, E.; Tokiya, R.; Suzuki, M.; Barth, R.F.; Ono, K. Boron neutron capture therapy for vulvar melanoma and genital extramammary Paget’s disease with curative responses. Cancer Commun. 2018, 38, 38. [Google Scholar] [CrossRef]
- Menendez, P.R.; Roth, B.M.; Pereira, M.D.; Casal, M.R.; Gonzalez, S.J.; Feld, D.B.; Cruz, G.A.S.; Kessler, J.; Longhino, J.; Blaumann, H.; et al. BNCT for skin melanoma in extremities: Updated Argentine clinical results. Appl. Radiat. Isot. 2009, 67 (Suppl. S7–S8), S50–S53. [Google Scholar] [CrossRef]
- Wittig, A.; Sauerwein, W.A.; Coderre, J.A.; Coderre, J.A. Mechanisms of Transport ofp-Borono-Phenylalanine through the Cell MembraneIn Vitro. Radiat. Res. 2000, 153, 173–180. [Google Scholar] [CrossRef]
- Chandra, S.; Ahmad, T.; Barth, R.F.; Kabalka, G.W. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular-scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS). J. Microsc. 2014, 254, 146–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papaspyrou, M.; Feinendegen, L.E.; Muller-Gartner, H.W. Preloading with L-tyrosine increases the uptake of boronophenylalanine in mouse melanoma cells. Cancer Res. 1994, 54, 6311–6314. [Google Scholar] [PubMed]
- Wittig, A.; Huiskamp, R.; Moss, R.L.; Bet, P.; Kriegeskotte, C.; Scherag, A.; Hilken, G.; Sauerwein, W.A. Biodistribution of (10)B for Boron Neutron Capture Therapy (BNCT) in a mouse model after injection of sodium mercaptoundecahydro-closo-dodecaborate and l-para-boronophenylalanine. Radiat. Res. 2009, 172, 493–499. [Google Scholar] [CrossRef]
- Carpano, M.; Perona, M.; Rodriguez, C.; Nievas, S.; Olivera, M.; Cruz, G.A.S.; Brandizzi, D.; Cabrini, R.; Pisarev, M.; Juvenal, G.J.; et al. Experimental Studies of Boronophenylalanine ((10)BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for Malignant Melanoma Treatment. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 344–352. [Google Scholar] [CrossRef]
- Hideghety, K.; Sauerwein, W.; Wittig, A.; Gotz, C.; Paquis, P.; Grochulla, F.; Haselsberger, K.; Wolbers, J.; Moss, R.; Huiskamp, R.; et al. Tissue uptake of BSH in patients with glioblastoma in the EORTC 11961 phase I BNCT trial. J. Neurooncol. 2003, 62, 145–156. [Google Scholar] [CrossRef]
- Goodman, J.H.; Yang, W.; Barth, R.F.; Gao, Z.; Boesel, C.P.; Staubus, A.E.; Gupta, N.; Gahbauer, R.A.; Adams, D.M.; Gibson, C.R.; et al. Boron neutron capture therapy of brain tumors: Biodistribution, pharmacokinetics, and radiation dosimetry sodium borocaptate in patients with gliomas. Neurosurgery 2000, 47, 608–621; discussion 621-2. [Google Scholar]
- Koivunoro, H.; Hippelainen, E.; Auterinen, I.; Kankaanranta, L.; Kulvik, M.; Laakso, J.; Seppala, T.; Savolainen, S.; Joensuu, H. Biokinetic analysis of tissue boron ((1)(0)B) concentrations of glioma patients treated with BNCT in Finland. Appl. Radiat. Isot. 2015, 106, 189–194. [Google Scholar] [CrossRef]
- Takagaki, M.; Oda, Y.; Miyatake, S.; Kikuchi, H.; Kobayashi, T.; Sakurai, Y.; Osawa, M.; Mori, K.; Ono, K. Boron neutron capture therapy: Preliminary study of BNCT with sodium borocaptate (Na2B1 2H1 1SH) on glioblastoma. J. Neurooncol. 1997, 35, 177–185. [Google Scholar] [CrossRef]
- Chadha, M.; Capala, J.; Coderre, J.A.; Elowitz, E.H.; Iwai, J.; Joel, D.D.; Liu, H.B.; Wielopolski, L.; Chanana, A.D. Boron neutron-capture therapy (BNCT) for glioblastoma multiforme (GBM) using the epithermal neutron beam at the Brookhaven National Laboratory. Int. J. Radiat. Oncol. Biol. Phys. 1998, 40, 829–834. [Google Scholar] [CrossRef]
- Mishima, Y.; Imahori, Y.; Honda, C.; Hiratsuka, J.; Ueda, S.; Ido, T. In vivo diagnosis of human malignant melanoma with positron emission tomography using specific melanoma-seeking 18F-DOPA analogue. J. Neurooncol. 1997, 33, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Hanaoka, K.; Watabe, T.; Naka, S.; Kanai, Y.; Ikeda, H.; Horitsugi, G.; Kato, H.; Isohashi, K.; Shimosegawa, E.; Hatazawa, J. FBPA PET in boron neutron capture therapy for cancer: Prediction of (10)B concentration in the tumor and normal tissue in a rat xenograft model. EJNMMI Res. 2014, 4, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watabe, T.; Hanaoka, K.; Naka, S.; Kanai, Y.; Ikeda, H.; Aoki, M.; Shimosegawa, E.; Kirihata, M.; Hatazawa, J. Practical calculation method to estimate the absolute boron concentration in tissues using 18F-FBPA PET. Ann. Nucl. Med. 2017, 31, 481–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimoto, M.; Honda, N.; Kurihara, H.; Hiroi, K.; Nakamura, S.; Ito, M.; Shikano, N.; Itami, J.; Fujii, H. Non-invasive estimation of (10) B-4-borono-L-phenylalanine-derived boron concentration in tumors by PET using 4-borono-2-18 F-fluoro-phenylalanine. Cancer Sci. 2018, 109, 1617–1626. [Google Scholar] [CrossRef] [Green Version]
- Yoshimoto, M.; Kurihara, H.; Honda, N.; Kawai, K.; Ohe, K.; Fujii, H.; Itami, J.; Arai, Y. Predominant contribution of L-type amino acid transporter to 4-borono-2-18F-fluoro-phenylalanine uptake in human glioblastoma cells. Nucl. Med. Biol. 2013, 40, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Imahori, Y.; Ueda, S.; Ohmori, Y.; Sakae, K.; Kusuki, T.; Kobayashi, T.; Takagaki, M.; Ono, K.; Ido, T.; Fujii, R. Positron emission tomography-based boron neutron capture therapy using boronophenylalanine for high-grade gliomas: Part I. Clin. Cancer Res. 1998, 4, 1825–1832. [Google Scholar] [PubMed]
- Skold, K.; H-Stenstam, B.; Diaz, A.Z.; Giusti, V.; Pellettieri, L.; Hopewell, J.W. Boron Neutron Capture Therapy for glioblastoma multiforme: Advantage of prolonged infusion of BPA-f. Acta Neurol. Scand. 2010, 122, 58–62. [Google Scholar] [CrossRef]
- Ono, K.; Masunaga, S.I.; Kinashi, Y.; Takagaki, M.; Akaboshi, M.; Kobayashi, T.; Akuta, K. Radiobiological evidence suggesting heterogeneous microdistribution of boron compounds in tumors: Its relation to quiescent cell population and tumor cure in neutron capture therapy. Int. J. Radiat. Oncol. Biol. Phys. 1996, 34, 1081–1086. [Google Scholar] [CrossRef]
- Sorace, A.G.; Korb, M.; Warram, J.M.; Umphrey, H.; Zinn, K.R.; Rosenthal, E.; Hoyt, K. Ultrasound-stimulated drug delivery for treatment of residual disease after incomplete resection of head and neck cancer. Ultrasound Med. Biol. 2014, 40, 755–764. [Google Scholar] [CrossRef] [Green Version]
- Burgess, A.; Hynynen, K. Microbubble-Assisted Ultrasound for Drug Delivery in the Brain and Central Nervous System. Adv. Exp. Med. Biol. 2016, 880, 293–308. [Google Scholar]
- Miyatake, S.; Kuwabara, H.; Kajimoto, Y.; Kawabata, S.; Yokoyama, K.; Doi, A.; Tsuji, M.; Mori, H.; Ono, K.; Kuroiwa, T. Preferential recurrence of a sarcomatous component of a gliosarcoma after boron neutron capture therapy: Case report. J. Neurooncol. 2006, 76, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Tamura, Y.; Miyatake, S.; Nonoguchi, N.; Miyata, S.; Yokoyama, K.; Doi, A.; Kuroiwa, T.; Asada, M.; Tanabe, H.; Ono, K. Boron neutron capture therapy for recurrent malignant meningioma. Case report. J. Neurosurg. 2006, 105, 898–903. [Google Scholar] [CrossRef] [PubMed]
- Barth, R.F.; Grecula, J.C.; Yang, W.; Rotaru, J.H.; Nawrocky, M.; Gupta, N.; Albertson, B.J.; Ferketich, A.K.; Moeschberger, M.L.; Coderre, J.A.; et al. Combination of boron neutron capture therapy and external beam radiotherapy for brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 267–277. [Google Scholar] [CrossRef]
- Yamamoto, T.; Nakai, K.; Nariai, T.; Kumada, H.; Okumura, T.; Mizumoto, M.; Tsuboi, K.; Zaboronok, A.; Ishikawa, E.; Aiyama, H.; et al. The status of Tsukuba BNCT trial: BPA-based boron neutron capture therapy combined with X-ray irradiation. Appl. Radiat. Isot. 2011, 69, 1817–1818. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, S.; Miyatake, S.; Hiramatsu, R.; Hirota, Y.; Miyata, S.; Takekita, Y.; Kuroiwa, T.; Kirihata, M.; Sakurai, Y.; Maruhashi, A.; et al. Phase II clinical study of boron neutron capture therapy combined with X-ray radiotherapy/temozolomide in patients with newly diagnosed glioblastoma multiforme--study design and current status report. Appl. Radiat. Isot. 2011, 69, 1796–1799. [Google Scholar] [CrossRef]
- Miyatake, S.I.; Kawabata, S.; Hiramatsu, R.; Kuroiwa, T.; Suzuki, M.; Ono, K. Boron Neutron Capture Therapy of Malignant Gliomas. Intracranial Gliomas Part III-Innov. Treat. Modalities 2018, 32, 48–56. [Google Scholar]
- Miyatake, S.; Kawabata, S.; Nonoguchi, N.; Yokoyama, K.; Kuroiwa, T.; Matsui, H.; Ono, K. Pseudoprogression in boron neutron capture therapy for malignant gliomas and meningiomas. Neuro Oncol. 2009, 11, 430–436. [Google Scholar] [CrossRef] [Green Version]
- Miyatake, S.; Furuse, M.; Kawabata, S.; Maruyama, T.; Kumabe, T.; Kuroiwa, T.; Ono, K. Bevacizumab treatment of symptomatic pseudoprogression after boron neutron capture therapy for recurrent malignant gliomas. Report of 2 cases. Neuro Oncol. 2013, 15, 650–655. [Google Scholar] [CrossRef] [Green Version]
- Miyatake, S.; Kawabata, S.; Hiramatsu, R.; Furuse, M.; Kuroiwa, T.; Suzuki, M. Boron neutron capture therapy with bevacizumab may prolong the survival of recurrent malignant glioma patients: Four cases. Radiat. Oncol. 2014, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Pavanetto, F.; Perugini, P.; Genta, I.; Minoia, C.; Ronchi, A.; Prati, U.; Roveda, L.; Nano, R. Boron-loaded liposomes in the treatment of hepatic metastases: Preliminary investigation by autoradiography analysis. Drug Deliv. 2000, 7, 97–103. [Google Scholar]
- Yanagie, H.; Higashi, S.; Seguchi, K.; Ikushima, I.; Fujihara, M.; Nonaka, Y.; Oyama, K.; Maruyama, S.; Hatae, R.; Suzuki, M.; et al. Pilot clinical study of boron neutron capture therapy for recurrent hepatic cancer involving the intra-arterial injection of a (10)BSH-containing WOW emulsion. Appl. Radiat. Isot. 2014, 88, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Mishima, Y.; Honda, C.; Ichihashi, M.; Obara, H.; Hiratsuka, J.; Fukuda, H.; Karashima, H.; Kobayashi, T.; Kanda, K.; Yoshino, K. Treatment of malignant melanoma by single thermal neutron capture therapy with melanoma-seeking 10B-compound. Lancet 1989, 2, 388–389. [Google Scholar] [CrossRef]
- Hiratsuka, J.; Kamitani, N.; Tanaka, R.; Tokiya, R.; Yoden, E.; Sakurai, Y.; Suzuki, M. Long-term outcome of cutaneous melanoma patients treated with boron neutron capture therapy (BNCT). J. Radiat. Res. 2020, 61, 945–951. [Google Scholar] [CrossRef]
- Kankaanranta, L.; Seppala, T.; Koivunoro, H.; Saarilahti, K.; Atula, T.; Collan, J.; Salli, E.; Kortesniemi, M.; Uusi-Simola, J.; Valimaki, P.; et al. Boron neutron capture therapy in the treatment of locally recurred head-and-neck cancer: Final analysis of a phase I/II trial. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, e67–e75. [Google Scholar] [CrossRef] [PubMed]
- Chanana, A.D.; Capala, J.; Chadha, M.; Coderre, J.A.; Diaz, A.Z.; Elowitz, E.H.; Iwai, J.; Joel, D.D.; Liu, H.B.; Ma, R.; et al. Boron neutron capture therapy for glioblastoma multiforme: Interim results from the phase I/II dose-escalation studies. Neurosurgery 1999, 44, 1182–1192; discussion 1192-3. [Google Scholar]
Institution | Year | Tumor Type | Medicine and Administration | Clinical Outcome | Ref. |
---|---|---|---|---|---|
Osaka University, Japan | 2001–2009 | HNC 26 | BSH, 0 or 5 g/body in 1 h (12 h before BNCT) BPA, 250 or 500 mg/kg in 1 h (1 h before BNCT) (Some patients received 2–3 BNCT sessions) | MST: 13.6 M (post-BNCT) 6-year OS: 24% | [56] |
Kyoto University, Japan | 2001–2007 | HNC 62 | BSH, 0 or 5 g/body in 1 h (12 h before BNCT) BPA, 250 or 500 mg/kg in 2–3 h (2 h before BNCT) | MST: 10.1 M (post-BNCT) 1-year OS: 42% 2-year OS: 24% | [57] |
2012 | r Lung Cancer 01 | BPA, 400 mg/kg in 2 h (2 h before BNCT) BPA, 100 mg/kg in 1 h (during BNCT) (After one month, they received the second BNCT session) | PFS: 7 M | [58] | |
JRR-4, University of Tsukuba, Japan | 1999–2002 | nGBM 05 | BSH, 100 mg/kg in 1~1.5 h (IO-BNCT) | MST: 23.2 M (post-BNCT) | [59] |
1999–2002 | AA 04 | BSH, 100 mg/kg in 1~1.5 h (IO-BNCT) | MST: 25.9 M (post-BNCT) | [59] | |
1998–2007 | nGBM 07 | BSH, 5 g/body in 1 h (IO-BNCT) | MST: 23.3 M (post-BNCT) TTP: 12.0 M (post-BNCT) 2-year OS: 43% | [59] | |
1998–2007 | nGBM 08 | BSH, 5 g/body in 1 h BPA, 250 mg/kg in 1 h (BNCT and XRT) | MST: 27.1 M (post-BNCT) TTP: 11.9 M (post-BNCT) 2-year OS: 63% | [60] | |
2007 | HNC 01 | BPA, 400 mg/kg in 2 h (2 h before BNCT) BPA, 100 mg/kg in 1 h (during BNCT) (After one month, they received the second BNCT session) | 6 M after first BNCT, the tumor shrank significantly OS: NA | [61] | |
Tokushima University, Japan | 1998–2000 | nGBM 06 | BSH, 100 mg/kg (12–15 h before BNCT) (IO-BNCT) | MST: 15.3 M (post-diagnosis) 2-year OS: 0% | [62,63,64] |
2001–2004 | nGBM 11 | BSH, 100 mg/kg (12–15 h before BNCT) (IO-BNCT) | MST: 19.5 M (post-diagnosis) 2-year OS: 27.3% 3-year OS: 27.3% | [62,63,64] | |
2001–2004 | nGBM 06 | BSH, 100 mg/kg (12 h before BNCT) BPA, 250 mg/kg (1 h before BNCT) | MST: 26.2 M (post-diagnosis) 2-year OS: 50.0% 3-year OS: 16.7% | [62,63,64] | |
2002–2003 | nGBM 03 rGBM 07 | BSH, 5 g/body in 1 h (12 h before BNCT) BPA, 250 mg/kg in 1 h (1 h before BNCT) | MST: 14.5 M (post-BNCT) | [65] | |
KURR, Osaka Medical College, Japan | 2002–2007 | rGBM 19 | BSH, 100 mg/kg in 1 h (12 h before BNCT) BPA, 250 mg/kg in 1 h or 700 mg/kg in 6 h (6 h before BNCT) | MST: 10.8 M (post-BNCT) | [66] |
2002–2004 | nGBM 10 | BSH, 100 mg/kg in 1 h (12 h before BNCT) BPA, 250 mg/kg in 1 h (6 h before BNCT) | MST: 14.1 M (post-BNCT) | [20,67] | |
2003–2006 | nGBM 11 | BSH, 100 mg/kg in 1 h (12 h before BNCT) BPA, 250 mg/kg in 1 h (6 h before BNCT) (BNCT and XRT) | MST: 23.5 M (post-BNCT) | [20,67] | |
2010–2013 | nGBM 32 | BSH, 5 g/body in 1 h (12 h before BNCT) BPA, 500 mg/kg in 3 h (2 h before BNCT) (BNCT, XRT and TMZ) | MST: 21.1 M (post-BNCT) (2-year OS: 45.5%) | [68] | |
2005–2011 | rMM19 | BSH, 0 or 2.5 or 5.0 g/body in 1 h (12 h before BNCT) BPA, 400 mg/kg in 2 h (2 h before BNCT) BPA, 100 mg/kg in 1 h (during BNCT) | MST: 14.1 M (post-BNCT) MST: 45.7 M (post-diagnosis) | [69] | |
2013–2018 | rGBM 10 | BPA, 400 mg/kg in 2 h (2 h before BNCT) BPA, 100 mg/kg in 1 h (during BNCT) (BNCT and Bevacizumab) | MST: 12 M (post-BNCT) TTP: 5.4 M (post-BNCT) | [68,70] | |
2016–2018 | rGBM 24 | SPM-011, 400 mg/kg in 2 h (2 h before BNCT) SPM-011, 100 mg/kg in 1 h (during BNCT) | MST: 18.9 M (post-BNCT) 1-year OS: 79.2% | [71] | |
High Flux Reactor, Netherlands | 1997–2002 | nGBM 26 | BSA, 100 mg/kg in 1.7 h | MST: 10.4–13.2 M | [68,72] |
FiR-1 or Triga Mark II Reactor, Finland | 1999–2001 | nGBM 18 | BPA, 290~400 mg/kg in 2 h (irradiation started 45 min after injection) | 6 MOS: 100% (post-BNCT) 1-year OS: 61% (post-BNCT) | [73] |
1999–2001 | rGBM 03 | BPA, 290 mg/kg in 2 h (irradiation started 45 min after injection) | OS: 5 M, 7 M, >12 M (post-BNCT) | [73] | |
2001–2008 | rGBM 20 AA 02 | BPA, 290~450 mg/kg in 2 h (2 h before BNCT) | MST: 7 M (post-BNCT) TTP: 3 M (post-BNCT) 1-year OS: 36% | [74] | |
2003–2012 | rHNC 79 | BPA, 350~400 mg/kg in 2 h (2 h before BNCT) (39 patients received a second BNCT session) | MST: 10 M (post-BNCT) 2-year OS: 21% | [75,76,77] | |
Nyköping hospital, Sweden, R2-0 reactor | 2001–2002 | nGBM 17 | BPA, 900 mg/kg in 6 h (8–9 h before BNCT) | MST: 12.4 M (post-BNCT) | [78] |
2001–2003 | nGBM 29 | BPA, 900 mg/kg in 6 h (8 h before BNCT) (13 patients received BNCT and TMZ) | TTP (total): 5.8 M (post-BNCT) MST (total): 14.2 M (post-BNCT) MST (B): 11.6 M (post-BNCT) MST (B + T): 17.7 M (post-BNCT) | [79,80] | |
2001–2005 | rGBM 12 | BPA, 900 mg/kg in 6 h (8 h before BNCT) | MST: 8.7 M (post-BNCT) MST: 22.2 M (post-diagnosis) TTP: 6 M (post-BNCT, 11 cases) | [81] | |
2003–2004 | Case1: rMM Case2: rSC | BPA, 900 mg/kg in 6 h (8 h before BNCT) | Case 1, PFS: 22 M (post-BNCT) OS: 32 M (post-BNCT) Case 2, PFS: 6 M (post-BNCT) OS: >26 M (post-BNCT) | [82] | |
LVR-15 Reactor, Czech Republic | 2000–2002 | nGBM 05 | BSH, 100 mg/kg in 1 h | TTP: 2.5–6 M (4 cases) (One patient died of pulmonary embolism in the first week after irradiation) | [83] |
BMRR, U.S. | 1994–1999 | nGBM 53 | BPA, 250~330 mg/kg in 2 h (irradiation started 45 min after injection) | TTP: 18–34.5 W (post-diagnosis) MST: 12.8 M (post-diagnosis) 2-year OS: 9.4% | [84] |
Harvard and MIT, U.S. | 1996–1999 | nGBM 20 | BPA, 250–350 mg/kg in 1~1.5 h (irradiation started 45 min after injection) | MST: 11.1 M | [3,85,86] |
2002–2003 | nGBM 06 | BPA, 14 g/m2 in 1.5 h (irradiation started 45 min after injection) | NA | [87] | |
THOR, National Tsing Hua University, Taiwan, China | 2010–2013 | rHNC 17 | BPA, 360 mg/kg in 2 h (2 h before BNCT) BPA, 45 mg/kg in 30 min (during BNCT) (15 patients received a second BNCT session) | 2-year local area control rate: 28% 2-year OS: 47% | [88] |
2014–2018 | rHNC 07 | BPA, 360 mg/kg in 2 h (2 h before BNCT) BPA, 45 mg/kg in 30 min (during BNCT) (BNCT and IG-IMRT) | 1-year OS: 56% | [88] | |
KURR, Japan | 1987–2001 | MM 22 | BPA, 170–200 mg/kg in 3~5 h | CR: 73% (16/22) PR: 23% (5/22) | [89] |
2012 | EMPD 02 | NA | PFS: >12 M | [90] | |
2005–2014 | MM 01 EMPD 03 | BPA, 160 mg/kg in 2 h (2 h before BNCT) BPA, 40 mg/kg in 1 h (during BNCT) | OS (Melanoma): 1.1 years OS (EMPD, 2 cases): >6 years (One EMPD patient died of heart disease after 3.2 years) | [91] | |
RA-6, Argentina | 2003–2007 | MM 07 | BPA, 14 g/m2 in 1.5 h (1 patient received a second BNCT session) | ORR: 69.3% CR: 9–100% | [92] |
Element | Neutron Cross Sections (Barns) |
---|---|
16O | 0.0002 |
12C | 0.0037 |
1H | 0.332 |
40Ca | 0.44 |
22Na | 0.536 |
14N | 1.75 |
40K | 2.07 |
... | ... |
10B | 3836 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Li, F.; Liang, L. Boron Neutron Capture Therapy: Clinical Application and Research Progress. Curr. Oncol. 2022, 29, 7868-7886. https://doi.org/10.3390/curroncol29100622
Cheng X, Li F, Liang L. Boron Neutron Capture Therapy: Clinical Application and Research Progress. Current Oncology. 2022; 29(10):7868-7886. https://doi.org/10.3390/curroncol29100622
Chicago/Turabian StyleCheng, Xiang, Fanfan Li, and Lizhen Liang. 2022. "Boron Neutron Capture Therapy: Clinical Application and Research Progress" Current Oncology 29, no. 10: 7868-7886. https://doi.org/10.3390/curroncol29100622
APA StyleCheng, X., Li, F., & Liang, L. (2022). Boron Neutron Capture Therapy: Clinical Application and Research Progress. Current Oncology, 29(10), 7868-7886. https://doi.org/10.3390/curroncol29100622