Association of Melanoma-Risk Variants with Primary Melanoma Tumor Prognostic Characteristics and Melanoma-Specific Survival in the GEM Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Pathology Review
2.3. Genotyping
2.4. Survival
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Law, M.H.; Macgregor, S.; Hayward, N.K. Melanoma genetics: Recent findings take us beyond well-traveled pathways. J. Investig. Dermatol. 2012, 132, 1763–1774. [Google Scholar] [CrossRef] [Green Version]
- Gerstenblith, M.R.; Shi, J.; Landi, M.T. Genome-wide association studies of pigmentation and skin cancer: A review and meta-analysis. Pigment Cell Melanoma Res. 2010, 23, 587–606. [Google Scholar] [CrossRef]
- Gibbs, D.C.; Orlow, I.; Kanetsky, P.A.; Luo, L.; Kricker, A.; Armstrong, B.K.; Anton-Culver, H.; Gruber, S.B.; Marrett, L.D.; Gallagher, R.P.; et al. Inherited genetic variants associated with occurrence of multiple primary melanoma. Cancer Epidemiol. Biomark. Prev. 2015, 24, 992–997. [Google Scholar] [CrossRef] [Green Version]
- Amos, C.I.; Wang, L.E.; Lee, J.E.; Gershenwald, J.E.; Chen, W.V.; Fang, S.; Kosoy, R.; Zhang, M.; Qureshi, A.A.; Vattathil, S.; et al. Genome-wide association study identifies novel loci predisposing to cutaneous melanoma. Hum. Mol. Genet. 2011, 20, 5012–5023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, J.H.; Iles, M.M.; Harland, M.; Taylor, J.C.; Aitken, J.F.; Andresen, P.A.; Akslen, L.A.; Armstrong, B.K.; Avril, M.F.; Azizi, E.; et al. Genome-wide association study identifies three new melanoma susceptibility loci. Nat. Genet. 2011, 43, 1108–1113. [Google Scholar] [CrossRef]
- Chatzinasiou, F.; Lill, C.M.; Kypreou, K.; Stefanaki, I.; Nicolaou, V.; Spyrou, G.; Evangelou, E.; Roehr, J.T.; Kodela, E.; Katsambas, A.; et al. Comprehensive field synopsis and systematic meta-analyses of genetic association studies in cutaneous melanoma. J. Natl. Cancer Inst. 2011, 103, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
- Duffy, D.L.; Zhao, Z.Z.; Sturm, R.A.; Hayward, N.K.; Martin, N.G.; Montgomery, G.W. Multiple pigmentation gene polymorphisms account for a substantial proportion of risk of cutaneous malignant melanoma. J. Investig. Dermatol. 2010, 130, 520–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guedj, M.; Bourillon, A.; Combadières, C.; Rodero, M.; Dieudé, P.; Descamps, V.; Dupin, N.; Wolkenstein, P.; Aegerter, P.; Lebbe, C.; et al. Variants of the MATP/SLC45A2 gene are protective for melanoma in the French population. Hum. Mutat. 2008, 29, 1154–1160. [Google Scholar] [CrossRef] [PubMed]
- Nan, H.; Kraft, P.; Hunter, D.J.; Han, J. Genetic variants in pigmentation genes, pigmentary phenotypes, and risk of skin cancer in Caucasians. Int. J. Cancer 2009, 125, 909–917. [Google Scholar] [CrossRef] [Green Version]
- Sulem, P.; Gudbjartsson, D.F.; Stacey, S.N.; Helgason, A.; Rafnar, T.; Jakobsdottir, M.; Steinberg, S.; Gudjonsson, S.A.; Palsson, A.; Thorleifsson, G.; et al. Two newly identified genetic determinants of pigmentation in Europeans. Nat. Genet. 2008, 40, 835–837. [Google Scholar] [CrossRef]
- Brown, K.M.; Macgregor, S.; Montgomery, G.W.; Craig, D.W.; Zhao, Z.Z.; Iyadurai, K.; Henders, A.K.; Homer, N.; Campbell, M.J.; Stark, M.; et al. Common sequence variants on 20q11.22 confer melanoma susceptibility. Nat. Genet. 2008, 40, 838–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, D.T.; Demenais, F.; Iles, M.M.; Harland, M.; Taylor, J.C.; Corda, E.; Randerson-Moor, J.; Aitken, J.F.; Avril, M.F.; Azizi, E.; et al. Genome-wide association study identifies three loci associated with melanoma risk. Nat. Genet. 2009, 41, 920–925. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Han, J.; Zhang, M.; Wang, L.E.; Wei, Q.; Amos, C.I.; Lee, J.E. Joint effect of multiple common SNPs predicts melanoma susceptibility. PLoS ONE 2013, 8, e85642. [Google Scholar] [CrossRef] [PubMed]
- Orlow, I.; Satagopan, J.M.; Berwick, M.; Enriquez, H.L.; White, K.A.; Cheung, K.; Dusza, S.W.; Oliveria, S.A.; Marchetti, M.A.; Scope, A.; et al. Genetic factors associated with naevus count and dermoscopic patterns: Preliminary results from the Study of Nevi in Children (SONIC). Br. J. Dermatol. 2015, 172, 1081–1089. [Google Scholar] [CrossRef]
- Nan, H.; Xu, M.; Zhang, J.; Zhang, M.; Kraft, P.; Qureshi, A.A.; Chen, C.; Guo, Q.; Hu, F.B.; Rimm, E.B.; et al. Genome-wide association study identifies nidogen 1 (NID1) as a susceptibility locus to cutaneous nevi and melanoma risk. Hum. Mol. Genet. 2011, 20, 2673–2679. [Google Scholar] [CrossRef]
- Falchi, M.; Bataille, V.; Hayward, N.K.; Duffy, D.L.; Bishop, J.A.; Pastinen, T.; Cervino, A.; Zhao, Z.Z.; Deloukas, P.; Soranzo, N.; et al. Genome-wide association study identifies variants at 9p21 and 22q13 associated with development of cutaneous nevi. Nat. Genet. 2009, 41, 915–919. [Google Scholar] [CrossRef] [PubMed]
- Newton-Bishop, J.A.; Chang, Y.M.; Iles, M.M.; Taylor, J.C.; Bakker, B.; Chan, M.; Leake, S.; Karpavicius, B.; Haynes, S.; Fitzgibbon, E.; et al. Melanocytic nevi, nevus genes, and melanoma risk in a large case-control study in the United Kingdom. Cancer Epidemiol. Biomark. Prev. 2010, 19, 2043–2054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maccioni, L.; Rachakonda, P.S.; Bermejo, J.L.; Planelles, D.; Requena, C.; Hemminki, K.; Nagore, E.; Kumar, R. Variants at the 9p21 locus and melanoma risk. BMC Cancer 2013, 13, 325. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Visser, M.; Duffy, D.L.; Hysi, P.G.; Jacobs, L.C.; Lao, O.; Zhong, K.; Walsh, S.; Chaitanya, L.; Wollstein, A.; et al. Genetics of skin color variation in Europeans: Genome-wide association studies with functional follow-up. Hum. Genet. 2015, 134, 823–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peña-Chilet, M.; Blanquer-Maceiras, M.; Ibarrola-Villava, M.; Martinez-Cadenas, C.; Martin-Gonzalez, M.; Gomez-Fernandez, C.; Mayor, M.; Aviles, J.A.; Lluch, A.; Ribas, G. Genetic variants in PARP1 (rs3219090) and IRF4 (rs12203592) genes associated with melanoma susceptibility in a Spanish population. BMC Cancer 2013, 13, 160. [Google Scholar] [CrossRef] [Green Version]
- Duffy, D.L.; Iles, M.M.; Glass, D.; Zhu, G.; Barrett, J.H.; Höiom, V.; Zhao, Z.Z.; Sturm, R.A.; Soranzo, N.; Hammond, C.; et al. IRF4 variants have age-specific effects on nevus count and predispose to melanoma. Am. J. Hum. Genet. 2010, 87, 6–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.; Qureshi, A.A.; Nan, H.; Zhang, J.; Song, Y.; Guo, Q.; Hunter, D.J. A germline variant in the interferon regulatory factor 4 gene as a novel skin cancer risk locus. Cancer Res. 2011, 71, 1533–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Song, F.; Liang, L.; Nan, H.; Zhang, J.; Liu, H.; Wang, L.E.; Wei, Q.; Lee, J.E.; Amos, C.I.; et al. Genome-wide association studies identify several new loci associated with pigmentation traits and skin cancer risk in European Americans. Hum. Mol. Genet. 2013, 22, 2948–2959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nan, H.; Qureshi, A.A.; Prescott, J.; De Vivo, I.; Han, J. Genetic variants in telomere-maintaining genes and skin cancer risk. Hum. Genet. 2011, 129, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Gershenwald, J.E.; Scolyer, R.A.; Hess, K.R.; Thompson, J.F.; Long, G.V.; Ross, M.I.; Lazar, A.J.; Atkins, M.B.; Balch, C.M.; Barnhill, R.L.; et al. Melanoma of the skin. In AJCC Cancer Staging Manual, 8th ed.; Amin, M.B., Edge, S.B., Greene, F.L., Byrd, D.R., Brookland, R.K., Washington, M.K., Gershenwald, J.E., Compton, C.C., Hess, K.R., Sullivan, D.C., et al., Eds.; Springer International Publishing: New York, NY, USA, 2017; pp. 563–585. [Google Scholar]
- Kashani-Sabet, M.; Miller, J.R., 3rd; Lo, S.; Nosrati, M.; Stretch, J.R.; Shannon, K.F.; Spillane, A.J.; Saw, R.P.M.; Cleaver, J.E.; Kim, K.B.; et al. Reappraisal of the prognostic significance of mitotic rate supports its reincorporation into the melanoma staging system. Cancer 2020, 126, 4717–4725. [Google Scholar] [CrossRef]
- Namikawa, K.; Aung, P.P.; Gershenwald, J.E.; Milton, D.R.; Prieto, V.G. Clinical impact of ulceration width, lymphovascular invasion, microscopic satellitosis, perineural invasion, and mitotic rate in patients undergoing sentinel lymph node biopsy for cutaneous melanoma: A retrospective observational study at a comprehensive cancer center. Cancer Med. 2018, 7, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Clemente, C.G.; Mihm, M.C., Jr.; Bufalino, R.; Zurrida, S.; Collini, P.; Cascinelli, N. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 1996, 77, 1303–1310. [Google Scholar] [CrossRef]
- Azimi, F.; Scolyer, R.A.; Rumcheva, P.; Moncrieff, M.; Murali, R.; McCarthy, S.W.; Saw, R.P.; Thompson, J.F. Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J. Clin. Oncol. 2012, 30, 2678–2683. [Google Scholar] [CrossRef] [PubMed]
- Thomas, N.E.; Busam, K.J.; From, L.; Kricker, A.; Armstrong, B.K.; Anton-Culver, H.; Gruber, S.B.; Gallagher, R.P.; Zanetti, R.; Rosso, S.; et al. Tumor-infiltrating lymphocyte grade in primary melanomas is independently associated with melanoma-specific survival in the population-based genes, environment and melanoma study. J. Clin. Oncol. 2013, 31, 4252–4259. [Google Scholar] [CrossRef] [Green Version]
- Begg, C.B.; Hummer, A.J.; Mujumdar, U.; Armstrong, B.K.; Kricker, A.; Marrett, L.D.; Millikan, R.C.; Gruber, S.B.; Culver, H.A.; Zanetti, R.; et al. A design for cancer case-control studies using only incident cases: Experience with the GEM study of melanoma. Int. J. Epidemiol. 2006, 35, 756–764. [Google Scholar] [CrossRef] [Green Version]
- Thomas, N.E.; Kricker, A.; From, L.; Busam, K.; Millikan, R.C.; Ritchey, M.E.; Armstrong, B.K.; Lee-Taylor, J.; Marrett, L.D.; Anton-Culver, H.; et al. Associations of cumulative sun exposure and phenotypic characteristics with histologic solar elastosis. Cancer Epidemiol. Biomark. Prev. 2010, 19, 2932–2941. [Google Scholar] [CrossRef] [Green Version]
- Thomas, N.E.; Kricker, A.; Waxweiler, W.T.; Dillon, P.M.; Busman, K.J.; From, L.; Groben, P.A.; Armstrong, B.K.; Anton-Culver, H.; Gruber, S.B.; et al. Comparison of clinicopathologic features and survival of histopathologically amelanotic and pigmented melanomas: A population-based study. JAMA Dermatol. 2014, 150, 1306–1314. [Google Scholar] [CrossRef]
- Thomas, N.E.; Edmiston, S.N.; Alexander, A.; Groben, P.A.; Parrish, E.; Kricker, A.; Armstrong, B.K.; Anton-Culver, H.; Gruber, S.B.; From, L.; et al. Association Between NRAS and BRAF Mutational Status and Melanoma-Specific Survival Among Patients With Higher-Risk Primary Melanoma. JAMA Oncol. 2015, 1, 359–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, W.H., Jr.; From, L.; Bernardino, E.A.; Mihm, M.C. The histogenesis and biologic behavior of primary human malignant melanomas of the skin. Cancer Res. 1969, 29, 705–727. [Google Scholar] [PubMed]
- McGovern, V.J.; Mihm, M.C., Jr.; Bailly, C.; Booth, J.C.; Clark, W.H., Jr.; Cochran, A.J.; Hardy, E.G.; Hicks, J.D.; Levene, A.; Lewis, M.G.; et al. The classification of malignant melanoma and its histologic reporting. Cancer 1973, 32, 1446–1457. [Google Scholar] [CrossRef] [Green Version]
- Piris, A.; Mihm, M.C., Jr.; Duncan, L.M. AJCC melanoma staging update: Impact on dermatopathology practice and patient management. J. Cutan. Pathol. 2011, 38, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Clark, W.H., Jr.; Elder, D.E.; Guerry, D.T.; Braitman, L.E.; Trock, B.J.; Schultz, D.; Synnestvedt, M.; Halpern, A.C. Model predicting survival in stage I melanoma based on tumor progression. J. Natl. Cancer Inst. 1989, 81, 1893–1904. [Google Scholar] [CrossRef]
- Elder, D.E.; Guerry, D.t.; VanHorn, M.; Hurwitz, S.; Zehngebot, L.; Goldman, L.I.; LaRossa, D.; Hamilton, R.; Bondi, E.E.; Clark, W.H., Jr. The role of lymph node dissection for clinical stage I malignant melanoma of intermediate thickness (1.51–3.99 mm). Cancer 1985, 56, 413–418. [Google Scholar] [CrossRef]
- Elder, D.E.; Gimotty, P.A.; Guerry, D. Cutaneous melanoma: Estimating survival and recurrence risk based on histopathologic features. Dermatol. Ther. 2005, 18, 369–385. [Google Scholar] [CrossRef]
- Orlow, I.; Roy, P.; Reiner, A.S.; Yoo, S.; Patel, H.; Paine, S.; Armstrong, B.K.; Kricker, A.; Marrett, L.D.; Millikan, R.C.; et al. Vitamin D receptor polymorphisms in patients with cutaneous melanoma. Int. J. Cancer 2012, 130, 405–418. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, D.C.; Orlow, I.; Bramson, J.I.; Kanetsky, P.A.; Luo, L.; Kricker, A.; Armstrong, B.K.; Anton-Culver, H.; Gruber, S.B.; Marrett, L.D.; et al. Association of Interferon Regulatory Factor-4 Polymorphism rs12203592 With Divergent Melanoma Pathways. J. Natl. Cancer Inst. 2016, 108, djw004. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Avery, C.L.; Lin, D.Y. A general framework for association tests with multivariate traits in large-scale genomics studies. Genet. Epidemiol. 2013, 37, 759–767. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.Y. An efficient Monte Carlo approach to assessing statistical significance in genomic studies. Bioinformatics 2005, 21, 781–787. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, D.C.; Ward, S.V.; Orlow, I.; Cadby, G.; Kanetsky, P.A.; Luo, L.; Busam, K.J.; Kricker, A.; Armstrong, B.K.; Cust, A.E.; et al. Functional melanoma-risk variant IRF4 rs12203592 associated with Breslow thickness: A pooled international study of primary melanomas. Br. J. Dermatol. 2017, 177, e180–e182. [Google Scholar] [CrossRef]
- Ward, S.V.; Gibbs, D.C.; Orlow, I.; Thomas, N.E.; Kanetsky, P.A.; Luo, L.; Cust, A.E.; Anton-Culver, H.; Gruber, S.B.; Gallagher, R.P.; et al. Association of IRF4 single-nucleotide polymorphism rs12203592 with melanoma-specific survival. Br. J. Dermatol. 2020, 183, 163–165. [Google Scholar] [CrossRef]
- Mangantig, E.; MacGregor, S.; Iles, M.M.; Scolyer, R.A.; Cust, A.E.; Hayward, N.K.; Montgomery, G.W.; Duffy, D.L.; Thompson, J.F.; Henders, A.; et al. Germline variants are associated with increased primary melanoma tumor thickness at diagnosis. Hum. Mol. Genet. 2021, 29, 3578–3587. [Google Scholar] [CrossRef]
- Potrony, M.; Rebollo-Morell, A.; Giménez-Xavier, P.; Zimmer, L.; Puig-Butille, J.A.; Tell-Marti, G.; Sucker, A.; Badenas, C.; Carrera, C.; Malvehy, J.; et al. IRF4 rs12203592 functional variant and melanoma survival. Int. J. Cancer 2017, 140, 1845–1849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paun, A.; Pitha, P.M. The IRF family, revisited. Biochimie 2007, 89, 744–753. [Google Scholar] [CrossRef] [PubMed]
- Do, T.N.; Ucisik-Akkaya, E.; Davis, C.F.; Morrison, B.A.; Dorak, M.T. An intronic polymorphism of IRF4 gene influences gene transcription in vitro and shows a risk association with childhood acute lymphoblastic leukemia in males. Biochim. Biophys. Acta 2010, 1802, 292–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hrdlicková, R.; Nehyba, J.; Bose, H.R., Jr. Regulation of telomerase activity by interferon regulatory factors 4 and 8 in immune cells. Mol. Cell Biol. 2009, 29, 929–941. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.L.; Coller, H.A.; Roberts, J.M. Telomerase modulates expression of growth-controlling genes and enhances cell proliferation. Nat. Cell Biol. 2003, 5, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Chaudhry, A.; Kas, A.; deRoos, P.; Kim, J.M.; Chu, T.T.; Corcoran, L.; Treuting, P.; Klein, U.; Rudensky, A.Y. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 2009, 458, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.; Kang, K.; Cha, J.S.; Kim, J.W.; Lee, H.G.; Kim, Y.; Yang, Y.; Lee, M.S.; Lim, J.S. Interferon regulatory factor 4 (IRF4) controls myeloid-derived suppressor cell (MDSC) differentiation and function. J. Leukoc. Biol. 2016, 100, 1273–1284. [Google Scholar] [CrossRef]
- Metzger, P.; Kirchleitner, S.V.; Boehmer, D.F.R.; Hörth, C.; Eisele, A.; Ormanns, S.; Gunzer, M.; Lech, M.; Lauber, K.; Endres, S.; et al. Systemic but not MDSC-specific IRF4 deficiency promotes an immunosuppressed tumor microenvironment in a murine pancreatic cancer model. Cancer Immunol. Immunother. 2020, 69, 2101–2112. [Google Scholar] [CrossRef]
- Kim, J.K.; Diehl, J.A. Nuclear cyclin D1: An oncogenic driver in human cancer. J. Cell. Physiol. 2009, 220, 292–296. [Google Scholar] [CrossRef] [Green Version]
- Fu, M.; Wang, C.; Li, Z.; Sakamaki, T.; Pestell, R.G. Minireview: Cyclin D1: Normal and abnormal functions. Endocrinology 2004, 145, 5439–5447. [Google Scholar] [CrossRef]
- González-Ruiz, L.; González-Moles, M.; González-Ruiz, I.; Ruiz-Ávila, I.; Ayén, Á.; Ramos-García, P. An update on the implications of cyclin D1 in melanomas. Pigment Cell Melanoma Res. 2020, 33, 788–805. [Google Scholar] [CrossRef] [Green Version]
- Law, M.H.; Montgomery, G.W.; Brown, K.M.; Martin, N.G.; Mann, G.J.; Hayward, N.K.; MacGregor, S. Meta-analysis combining new and existing data sets confirms that the TERT-CLPTM1L locus influences melanoma risk. J. Investig. Dermatol. 2012, 132, 485–487. [Google Scholar] [CrossRef] [Green Version]
- Rafnar, T.; Sulem, P.; Stacey, S.N.; Geller, F.; Gudmundsson, J.; Sigurdsson, A.; Jakobsdottir, M.; Helgadottir, H.; Thorlacius, S.; Aben, K.K.; et al. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat. Genet. 2009, 41, 221–227. [Google Scholar] [CrossRef]
- Chiba, K.; Lorbeer, F.K.; Shain, A.H.; McSwiggen, D.T.; Schruf, E.; Oh, A.; Ryu, J.; Darzacq, X.; Bastian, B.C.; Hockemeyer, D. Mutations in the promoter of the telomerase gene TERT contribute to tumorigenesis by a two-step mechanism. Science 2017, 357, 1416–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidenreich, B.; Nagore, E.; Rachakonda, P.S.; Garcia-Casado, Z.; Requena, C.; Traves, V.; Becker, J.; Soufir, N.; Hemminki, K.; Kumar, R. Telomerase reverse transcriptase promoter mutations in primary cutaneous melanoma. Nat. Commun. 2014, 5, 3401. [Google Scholar] [CrossRef]
- Griewank, K.G.; Murali, R.; Puig-Butille, J.A.; Schilling, B.; Livingstone, E.; Potrony, M.; Carrera, C.; Schimming, T.; Möller, I.; Schwamborn, M.; et al. TERT promoter mutation status as an independent prognostic factor in cutaneous melanoma. J. Natl. Cancer Inst. 2014, 106, dju246. [Google Scholar] [CrossRef] [PubMed]
- Pópulo, H.; Boaventura, P.; Vinagre, J.; Batista, R.; Mendes, A.; Caldas, R.; Pardal, J.; Azevedo, F.; Honavar, M.; Guimarães, I.; et al. TERT promoter mutations in skin cancer: The effects of sun exposure and X-irradiation. J. Investig. Dermatol. 2014, 134, 2251–2257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egberts, F.; Bohne, A.S.; Krüger, S.; Hedderich, J.; Rompel, R.; Haag, J.; Röcken, C.; Hauschild, A. Varying Mutational Alterations in Multiple Primary Melanomas. J. Mol. Diagn. 2016, 18, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Nagore, E.; Heidenreich, B.; Rachakonda, S.; Garcia-Casado, Z.; Requena, C.; Soriano, V.; Frank, C.; Traves, V.; Quecedo, E.; Sanjuan-Gimenez, J.; et al. TERT promoter mutations in melanoma survival. Int. J. Cancer 2016, 139, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Ekedahl, H.; Lauss, M.; Olsson, H.; Griewank, K.G.; Schadendorf, D.; Ingvar, C.; Jönsson, G. High TERT promoter mutation frequency in non-acral cutaneous metastatic melanoma. Pigment Cell Melanoma Res. 2016, 29, 598–600. [Google Scholar] [CrossRef] [PubMed]
- Lade-Keller, J.; Yuusufi, S.; Riber-Hansen, R.; Steiniche, T.; Stougaard, M. Telomerase reverse transcriptase promoter mutations and solar elastosis in cutaneous melanoma. Melanoma Res. 2018, 28, 398–409. [Google Scholar] [CrossRef]
- Thomas, N.E.; Edmiston, S.N.; Tsai, Y.S.; Parker, J.S.; Googe, P.B.; Busam, K.J.; Scott, G.A.; Zedek, D.C.; Parrish, E.A.; Hao, H.; et al. Utility of TERT Promoter Mutations for Cutaneous Primary Melanoma Diagnosis. Am. J. Dermatopathol. 2019, 41, 264–272. [Google Scholar] [CrossRef]
- Haller, O.; Staeheli, P.; Schwemmle, M.; Kochs, G. Mx GTPases: Dynamin-like antiviral machines of innate immunity. Trends Microbiol. 2015, 23, 154–163. [Google Scholar] [CrossRef]
- King, M.C.; Raposo, G.; Lemmon, M.A. Inhibition of nuclear import and cell-cycle progression by mutated forms of the dynamin-like GTPase MxB. Proc. Natl. Acad. Sci. USA 2004, 101, 8957–8962. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Zhang, T.; Vu, A.; Ablain, J.; Makowski, M.M.; Colli, L.M.; Xu, M.; Hennessey, R.C.; Yin, J.; Rothschild, H.; et al. Massively parallel reporter assays of melanoma risk variants identify MX2 as a gene promoting melanoma. Nat. Commun. 2020, 11, 2718. [Google Scholar] [CrossRef]
- Juraleviciute, M.; Pozniak, J.; Nsengimana, J.; Harland, M.; Randerson-Moor, J.; Wernhoff, P.; Bassarova, A.; Øy, G.F.; Trøen, G.; Flørenes, V.A.; et al. MX 2 is a novel regulator of cell cycle in melanoma cells. Pigment Cell Melanoma Res. 2020, 33, 446–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Institutes of Health; National Cancer Institute. Division of Cancer Epidemiology & Genetics. LDpair Tool. 2021. Available online: https://ldlink.nci.nih.gov/?tab=ldpair (accessed on 4 June 2021).
- Franklin, C.; Livingstone, E.; Roesch, A.; Schilling, B.; Schadendorf, D. Immunotherapy in melanoma: Recent advances and future directions. Eur. J. Surg. Oncol. 2017, 43, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Newell, F.; Kong, Y.; Wilmott, J.S.; Johansson, P.A.; Ferguson, P.M.; Cui, C.; Li, Z.; Kazakoff, S.H.; Burke, H.; Dodds, T.J.; et al. Whole-genome landscape of mucosal melanoma reveals diverse drivers and therapeutic targets. Nat. Commun. 2019, 10, 3163. [Google Scholar] [CrossRef]
- Broit, N.; Johansson, P.A.; Rodgers, C.B.; Walpole, S.T.; Newell, F.; Hayward, N.K.; Pritchard, A.L. Meta-Analysis and Systematic Review of the Genomics of Mucosal Melanoma. Mol. Cancer Res. 2021, 19, 991–1004. [Google Scholar] [CrossRef] [PubMed]
- Basile, M.S.; Mazzon, E.; Russo, A.; Mammana, S.; Longo, A.; Bonfiglio, V.; Fallico, M.; Caltabiano, R.; Fagone, P.; Nicoletti, F.; et al. Differential modulation and prognostic values of immune-escape genes in uveal melanoma. PLoS ONE 2019, 14, e0210276. [Google Scholar] [CrossRef]
- Barbagallo, C.; Caltabiano, R.; Broggi, G.; Russo, A.; Puzzo, L.; Avitabile, T.; Longo, A.; Reibaldi, M.; Barbagallo, D.; Di Pietro, C.; et al. LncRNA LINC00518 Acts as an Oncogene in Uveal Melanoma by Regulating an RNA-Based Network. Cancers 2020, 12, 3867. [Google Scholar] [CrossRef]
- Mastronikolis, S.; Adamopoulou, M.; Papouliakos, S.; Manoli, A.; Katsinis, S.; Makri, O.; Monastirioti, A.E.; Tsiambas, E.; Georgakopoulos, C. Mutational landscape in Uveal Melanoma. J. BU ON 2021, 26, 1194–1197. [Google Scholar]
Characteristic | No. (%) |
---|---|
Median age at most recent diagnosis (IQR), years | 58 (46–70) |
Sex | |
Male | 1827 (55.6) |
Female | 1458 (44.4) |
Lesion status | |
First-order primary melanoma | 2458 (74.8) |
Higher-order primary melanoma | 827 (25.2) |
Anatomic site | |
Head/neck | 565 (17.2) |
Trunk | 1437 (43.7) |
Upper extremities | 595 (18.1) |
Lower extremities | 688 (20.9) |
Histologic subtype | |
Superficial spreading | 2144 (65.3) |
Nodular | 275 (8.4) |
Lentigo maligna | 377 (11.5) |
Unclassified/other 2 | 489 (14.9) |
Breslow thickness, mm | |
Median (IQR) | 0.70 (0.44–1.26) |
0.01–1.00 | 2195 (66.8) |
1.01–2.00 | 592 (18.0) |
2.01–4.00 | 276 (8.4) |
>4.00 | 144 (4.4) |
Missing | 78 (2.4) |
Ulceration | |
Absent | 2392 (72.8) |
Present | 225 (6.8) |
Missing | 668 (20.3) |
Mitoses | |
Absent | 1544 (47.0) |
Present | 1081 (32.9) |
Missing | 660 (20.1) |
Tumor-infiltrating lymphocyte (TIL) grade | |
Absent | 567 (17.3) |
Nonbrisk | 1658 (50.5) |
Brisk | 385 (11.7) |
Missing | 675 (20.5) |
Tumor Prognostic Characteristics | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Breslow Thickness (n = 3207) | Present vs. Absent Ulceration (n = 2617) | Present vs. Absent Mitoses (n = 2625) | Nonbrisk/Brisk vs. Absent TIL grade (n = 2610) | ||||||||
Gene Neighborhood | SNP | a/A | Per allele mean change in log of Breslow thickness (95% CI) 2 | Per allele change in Breslow thickness, % 3 | p | Per allele OR (95% CI) 4 | p | Per allele OR (95% CI) 4 | p | Per allele OR (95% CI) 4 | p |
ARNT | rs7412746 | C/T | 0.02 (−0.02–0.06) | 2.15 | 0.30 | 1.11 (0.91–1.35) | 0.32 | 1.12 (1.00–1.25) | 0.04 | 0.90 (0.79–1.03) | 0.12 |
PARP1 | rs3219090 | A/G | 0.004 (−0.04–0.05) | 0.44 | 0.85 | 0.96 (0.77–1.19) | 0.70 | 0.96 (0.85–1.08) | 0.48 | 1.07 (0.93–1.25) | 0.34 |
PARP1 | rs2695238 | C/G | 0.01 (−0.03–0.06) | 1.11 | 0.62 | 0.96 (0.78–1.19) | 0.73 | 0.97 (0.86–1.09) | 0.60 | 1.03 (0.89–1.19) | 0.69 |
NID1 | rs3768080 | G/A | −0.03 (−0.07–0.006) | −3.35 | 0.10 | 0.83 (0.68–1.01) | 0.06 | 0.91 (0.81–1.02) | 0.10 | 0.95 (0.83–1.08) | 0.42 |
NID1 | rs10754833 | C/T | −0.03 (−0.07–0.006) | −3.33 | 0.10 | 0.83 (0.68–1.01) | 0.06 | 0.90 (0.81–1.01) | 0.08 | 0.94 (0.83–1.08) | 0.40 |
CASP8 | rs6735656 a | G/T | −0.02 (−0.06–0.03) | −1.69 | 0.47 | 0.95 (0.76–1.19) | 0.65 | 0.96 (0.85–1.09) | 0.53 | 0.97 (0.83–1.13) | 0.67 |
CASP8 | rs13016963 | A/G | −0.01 (−0.05–0.03) | −1.03 | 0.62 | 1.02 (0.84–1.25) | 0.81 | 0.91 (0.81–1.02) | 0.10 | 1.01 (0.88–1.16) | 0.90 |
TERT | rs2242652 | T/C | −0.04 (−0.09–0.02) | −3.56 | 0.17 | 0.99 (0.77–1.27) | 0.92 | 0.80 (0.69–0.92) | 0.002 | 1.05 (0.89–1.25) | 0.55 |
TERT | rs2853676 | A/G | −0.02 (−0.06–0.03) | −1.69 | 0.45 | 0.96 (0.77–1.19) | 0.69 | 0.87 (0.77–0.98) | 0.02 | 0.95 (0.82–1.10) | 0.48 |
TERT | rs13356727 | G/A | −0.03 (−0.07–0.007) | −3.29 | 0.11 | 0.92 (0.76–1.12) | 0.41 | 0.91 (0.82–1.02) | 0.10 | 0.92 (0.81–1.06) | 0.24 |
TERT; CLPTM1L | rs4975616 | G/A | −0.03 (−0.07–0.01) | −2.96 | 0.16 | 1.03 (0.84–1.27) | 0.79 | 0.93 (0.83–1.04) | 0.22 | 0.93 (0.81–1.07) | 0.33 |
TERT; CLPTM1L | rs401681 | T/C | −0.05 (−0.09 to −0.007) | −4.64 | 0.02 | 0.94 (0.77–1.14) | 0.51 | 0.88 (0.79–0.99) | 0.03 | 0.98 (0.86–1.12) | 0.80 |
SLC45A2 | rs16891982 | C/G | 0.03 (−0.13–0.19) | 2.93 | 0.72 | 1.12 (0.55–2.30) | 0.76 | 0.73 (0.47–1.14) | 0.16 | 0.63 (0.40–0.99) | 0.05 |
SLC45A2 | rs35391 | T/C | 0.08 (−0.12–0.28) | 8.57 | 0.41 | 1.52 (0.66–3.52) | 0.33 | 0.91 (0.53–1.57) | 0.73 | 0.71 (0.39–1.29) | 0.26 |
SLC45A2 | rs26722 | T/C | 0.04 (−0.17–0.25) | 3.76 | 0.73 | 1.28 (0.49–3.32) | 0.61 | 0.86 (0.48-–1.52) | 0.60 | 0.84 (0.44–1.62) | 0.61 |
SLC45A2 | rs13289 | G/C | 0.03 (−0.01–0.07) | 2.87 | 0.19 | 1.11 (0.90–1.35) | 0.33 | 1.09 (0.97–1.22) | 0.14 | 0.82 (0.72–0.94) | 0.005 |
IRF4 | rs12203592 | T/C | 0.08 (0.03–0.13) | 8.14 | 0.002 | 1.23 (0.99–1.54) | 0.07 | 1.17 (1.02–1.33) | 0.02 | 0.92 (0.79–1.08) | 0.31 |
IRF4 | rs872071 | A/G | 0.008 (−0.03–0.05) | 0.76 | 0.71 | 0.94 (0.77–1.14) | 0.54 | 1.05 (0.94–1.17) | 0.42 | 1.00 (0.87–1.14) | 0.97 |
TYRP1 | rs1408799 | T/C | 0.008 (−0.04–0.05) | 0.85 | 0.71 | 1.19 (0.97–1.47) | 0.09 | 1.09 (0.97–1.23) | 0.15 | 1.05 (0.90–1.21) | 0.54 |
TYRP1 | rs2733832 | C/T | 0.02 (−0.02–0.06) | 1.77 | 0.41 | 1.05 (0.86–1.28) | 0.65 | 1.08 (0.97–1.22) | 0.17 | 1.05 (0.91–1.20) | 0.53 |
MTAP | rs2218220 | T/C | 0.005 (−0.04–0.04) | 0.48 | 0.82 | 0.97 (0.80–1.18) | 0.79 | 1.01 (0.90–1.12) | 0.92 | 1.15 (1.00–1.31) | 0.04 |
MTAP | rs1335510 | G/T | 0.003 (−0.04–0.04) | 0.26 | 0.90 | 0.89 (0.73–1.09) | 0.28 | 1.00 (0.89–1.12) | 0.95 | 1.18 (1.03–1.35) | 0.02 |
MTAP | rs7023329 | G/A | 0.01 (−0.03–0.05) | 1.22 | 0.55 | 0.98 (0.80–1.19) | 0.82 | 0.98 (0.88–1.10) | 0.74 | 1.10 (0.96–1.26) | 0.16 |
MTAP | rs10811629 | G/A | 0.006 (−0.03–0.05) | 0.61 | 0.77 | 0.97 (0.80–1.19) | 0.79 | 1.03 (0.92–1.15) | 0.60 | 1.12 (0.98–1.28) | 0.10 |
CCND1 | rs11604821 | G/A | −0.06 (−0.11 to −0.02) | −6.06 | 0.004 | 0.98 (0.79–1.21) | 0.84 | 0.88 (0.78–0.99) | 0.03 | 0.98 (0.85–1.12) | 0.73 |
CCND1 | rs1485993 | T/C | −0.07 (−0.11 to −0.03) | −6.77 | 0.001 | 1.01 (0.83–1.24) | 0.89 | 0.89 (0.79–1.00) | 0.06 | 1.03 (0.89–1.18) | 0.70 |
CCND1 | rs11263498 | T/C | −0.06 (−0.10 to −0.02) | −5.78 | 0.006 | 0.96 (0.78–1.19) | 0.73 | 0.89 (0.79–1.00) | 0.04 | 1.01 (0.88–1.16) | 0.89 |
TYR | rs1042602 | A/C | 0.008 (−0.03–0.05) | 0.75 | 0.73 | 1.07 (0.87–1.32) | 0.50 | 0.94 (0.84–1.06) | 0.31 | 1.08 (0.94–1.25) | 0.27 |
TYR | rs10765198 | C/T | 0.01 (−0.03–0.06) | 1.40 | 0.52 | 0.95 (0.77–1.17) | 0.62 | 1.12 (1.00–1.26) | 0.05 | 0.98 (0.85–1.12) | 0.72 |
TYR | rs1847142 | A/G | 0.01 (−0.03–0.05) | 1.30 | 0.54 | 1.02 (0.84–1.25) | 0.82 | 1.08 (0.97–1.21) | 0.17 | 0.94 (0.82–1.08) | 0.41 |
TYR | rs10830253 | G/T | 0.01 (−0.03–0.05) | 0.98 | 0.65 | 1.01 (0.82–1.24) | 0.92 | 1.08 (0.96–1.21) | 0.19 | 0.93 (0.81–1.07) | 0.29 |
ATM | rs12278954 b | A/C | 0.02 (−0.04–0.07) | 1.59 | 0.59 | 1.04 (0.79–1.37) | 0.76 | 0.92 (0.79–1.08) | 0.31 | 0.99 (0.82–1.20) | 0.94 |
OCA2 | rs1800407 | A/G | 0.004 (−0.07–0.07) | 0.41 | 0.91 | 0.99 (0.71–1.40) | 0.97 | 0.92 (0.76–1.12) | 0.42 | 0.88 (0.71–1.11) | 0.28 |
OCA2 | rs1800401 | T/C | −0.02 (−0.12–0.07) | −2.37 | 0.61 | 1.06 (0.68–1.67) | 0.80 | 1.08 (0.83–1.40) | 0.56 | 1.23 (0.89–1.70) | 0.22 |
HERC2 | rs1129038 | G/A | 0.02 (−0.03–0.07) | 2.29 | 0.37 | 1.15 (0.91–1.45) | 0.26 | 0.97 (0.85–1.12) | 0.72 | 0.93 (0.79–1.10) | 0.39 |
HERC2 | rs12913832 | A/G | 0.02 (−0.03–0.07) | 2.03 | 0.42 | 1.12 (0.89–1.42) | 0.34 | 0.96 (0.84–1.10) | 0.60 | 0.95 (0.80–1.11) | 0.51 |
ASIP | rs17305657 | C/T | −0.03 (−0.10–0.03) | −3.36 | 0.31 | 0.77 (0.54–1.10) | 0.15 | 0.87 (0.72–1.05) | 0.14 | 1.11 (0.89–1.39) | 0.35 |
ASIP | rs4911414 | T/G | −0.02 (−0.06–0.02) | −2.07 | 0.33 | 1.02 (0.83–1.25) | 0.88 | 0.89 (0.80–1.01) | 0.06 | 1.05 (0.92–1.21) | 0.47 |
PIGU | rs910873 | A/G | −0.02 (−0.09–0.04) | −2.42 | 0.44 | 0.77 (0.56–1.07) | 0.12 | 0.86 (0.72–1.03) | 0.09 | 1.10 (0.89–1.36) | 0.37 |
PIGU | rs17305573 | C/T | −0.01 (−0.08–0.05) | −1.26 | 0.71 | 0.74 (0.51–1.06) | 0.10 | 0.86 (0.71–1.04) | 0.11 | 1.05 (0.84–1.32) | 0.65 |
NCOA6 | rs4911442 | G/A | −0.01 (−0.07–0.04) | −1.28 | 0.65 | 0.83 (0.62–1.11) | 0.22 | 0.88 (0.75–1.03) | 0.10 | 1.11 (0.92–1.35) | 0.27 |
MYH7B | rs1885120 | C/G | −0.04 (−0.11–0.02) | −4.31 | 0.18 | 0.64 (0.44–0.92) | 0.02 | 0.85 (0.71–1.02) | 0.08 | 1.12 (0.90–1.4) | 0.30 |
LOC647979 | rs1204552 | A/T | −0.02 (−0.09–0.05) | −1.77 | 0.63 | 0.93 (0.66–1.33) | 0.71 | 0.91 (0.75–1.11) | 0.35 | 1.05 (0.83–1.33) | 0.68 |
MX2 | rs45430 | G/A | −0.06 (−0.11 to −0.02) | −6.14 | 0.004 | 0.90 (0.73–1.11) | 0.34 | 0.87 (0.77–0.97) | 0.02 | 1.12 (0.97–1.29) | 0.13 |
PLA2G6 | rs6001027 | G/A | 0.01 (−0.03–0.06) | 1.35 | 0.54 | 0.87 (0.70–1.09) | 0.23 | 0.93 (0.83–1.05) | 0.25 | 0.94 (0.81–1.08) | 0.39 |
PLA2G6 | rs132985 | T/C | 0.01 (−0.03–0.05) | 1.21 | 0.56 | 0.90 (0.74–1.10) | 0.30 | 0.99 (0.89–1.11) | 0.87 | 0.93 (0.82–1.07) | 0.32 |
PLA2G6 | rs738322 | G/A | 0.007 (−0.03–0.05) | 0.75 | 0.72 | 0.94 (0.77–1.14) | 0.51 | 1.00 (0.89–1.12) | 1.00 | 0.93 (0.82–1.07) | 0.31 |
Total | Censored | Death as a Result of Melanoma | Melanoma-Specific Survival | ||||
---|---|---|---|---|---|---|---|
Gene Neighborhood | SNP | a/A | No. | No. | No. | Per allele HR (95% CI) 2 | p |
ARNT | rs7412746 | C/T | 2420 | 2262 | 158 | 1.02 (0.82–1.28) | 0.84 |
PARP1 | rs3219090 | A/G | 2387 | 2232 | 155 | 1.18 (0.94–1.50) | 0.16 |
PARP1 | rs2695238 | C/G | 2428 | 2267 | 161 | 1.07 (0.85–1.35) | 0.58 |
NID1 | rs3768080 | G/A | 2409 | 2251 | 158 | 0.82 (0.66–1.02) | 0.08 |
NID1 | rs10754833 | C/T | 2419 | 2260 | 159 | 0.83 (0.66–1.03) | 0.09 |
CASP8 | rs6735656 a | G/T | 2400 | 2244 | 156 | 0.94 (0.73–1.21) | 0.64 |
CASP8 | rs13016963 | A/G | 2423 | 2264 | 159 | 0.93 (0.75–1.17) | 0.55 |
TERT | rs2242652 | T/C | 2305 | 2153 | 152 | 0.96 (0.73–1.28) | 0.80 |
TERT | rs2853676 | A/G | 2420 | 2259 | 161 | 0.96 (0.76–1.22) | 0.73 |
TERT | rs13356727 | G/A | 2439 | 2279 | 160 | 0.94 (0.75–1.17) | 0.59 |
TERT; CLPTM1L | rs4975616 | G/A | 2343 | 2193 | 150 | 0.94 (0.75–1.19) | 0.61 |
TERT; CLPTM1L | rs401681 | T/C | 2408 | 2249 | 159 | 0.97 (0.77–1.21) | 0.76 |
SLC45A2 | rs16891982 | C/G | 2425 | 2265 | 160 | 1.29 (0.65–2.57) | 0.46 |
SLC45A2 | rs35391 | T/C | 2411 | 2254 | 157 | 0.75 (0.25–2.31) | 0.62 |
SLC45A2 | rs26722 | T/C | 2397 | 2239 | 158 | 1.36 (0.56–3.30) | 0.49 |
SLC45A2 | rs13289 | G/C | 2413 | 2252 | 161 | 0.82 (0.65–1.04) | 0.10 |
IRF4 | rs12203592 | T/C | 2425 | 2265 | 160 | 1.28 (1.00–1.65) | 0.05 |
IRF4 | rs872071 | A/G | 2406 | 2247 | 159 | 0.95 (0.76–1.18) | 0.63 |
TYRP1 | rs1408799 | T/C | 2401 | 2242 | 159 | 1.17 (0.93–1.46) | 0.18 |
TYRP1 | rs2733832 | C/T | 2405 | 2248 | 157 | 1.23 (0.98–1.53) | 0.07 |
MTAP | rs2218220 | T/C | 2419 | 2258 | 161 | 1.05 (0.84–1.30) | 0.68 |
MTAP | rs1335510 | G/T | 2404 | 2249 | 155 | 0.98 (0.78–1.23) | 0.87 |
MTAP | rs7023329 | G/A | 2401 | 2244 | 157 | 1.05 (0.84–1.30) | 0.69 |
MTAP | rs10811629 | G/A | 2414 | 2255 | 159 | 1.00 (0.80–1.25) | 1.00 |
CCND1 | rs11604821 | G/A | 2427 | 2269 | 158 | 1.02 (0.81–1.29) | 0.86 |
CCND1 | rs1485993 | T/C | 2410 | 2250 | 160 | 1.13 (0.90–1.42) | 0.28 |
CCND1 | rs11263498 | T/C | 2421 | 2263 | 158 | 1.12 (0.89–1.40) | 0.35 |
TYR | rs1042602 | A/C | 2429 | 2270 | 159 | 0.90 (0.71–1.14) | 0.38 |
TYR | rs10765198 | C/T | 2428 | 2270 | 158 | 0.90 (0.71–1.14) | 0.37 |
TYR | rs1847142 | A/G | 2424 | 2264 | 160 | 0.91 (0.73–1.15) | 0.45 |
TYR | rs10830253 | G/T | 2403 | 2247 | 156 | 0.92 (0.73–1.16) | 0.48 |
ATM | rs12278954 b | A/C | 2429 | 2268 | 161 | 1.37 (1.04–1.80) | 0.03 |
OCA2 | rs1800407 | A/G | 2429 | 2270 | 159 | 1.45 (1.02–2.04) | 0.04 |
OCA2 | rs1800401 | T/C | 2434 | 2273 | 161 | 0.65 (0.34–1.21) | 0.17 |
HERC2 | rs1129038 | G/A | 2409 | 2252 | 157 | 1.38 (1.07–1.77) | 0.01 |
HERC2 | rs12913832 | A/G | 2429 | 2268 | 161 | 1.38 (1.08–1.76) | 0.01 |
ASIP | rs17305657 | C/T | 2417 | 2257 | 160 | 0.98 (0.67–1.43) | 0.92 |
ASIP | rs4911414 | T/G | 2426 | 2265 | 161 | 0.83 (0.66–1.05) | 0.12 |
PIGU | rs910873 | A/G | 2431 | 2271 | 160 | 0.99 (0.70–1.41) | 0.96 |
PIGU | rs17305573 | C/T | 2143 | 2003 | 140 | 1.00 (0.68–1.47) | 0.99 |
NCOA6 | rs4911442 | G/A | 2399 | 2241 | 158 | 1.00 (0.73–1.38) | 0.98 |
MYH7B | rs1885120 | C/G | 2417 | 2259 | 158 | 0.95 (0.65–1.38) | 0.79 |
LOC647979 | rs1204552 | A/T | 2356 | 2202 | 154 | 1.09 (0.74–1.62) | 0.67 |
MX2 | rs45430 | G/A | 2421 | 2259 | 162 | 0.79 (0.62–0.99) | 0.05 |
PLA2G6 | rs6001027 | G/A | 2281 | 2133 | 148 | 1.17 (0.92–1.48) | 0.20 |
PLA2G6 | rs132985 | T/C | 2422 | 2263 | 159 | 1.07 (0.85–1.33) | 0.57 |
PLA2G6 | rs738322 | G/A | 2412 | 2254 | 158 | 1.14 (0.91–1.42) | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davari, D.R.; Orlow, I.; Kanetsky, P.A.; Luo, L.; Busam, K.J.; Sharma, A.; Kricker, A.; Cust, A.E.; Anton-Culver, H.; Gruber, S.B.; et al. Association of Melanoma-Risk Variants with Primary Melanoma Tumor Prognostic Characteristics and Melanoma-Specific Survival in the GEM Study. Curr. Oncol. 2021, 28, 4756-4771. https://doi.org/10.3390/curroncol28060401
Davari DR, Orlow I, Kanetsky PA, Luo L, Busam KJ, Sharma A, Kricker A, Cust AE, Anton-Culver H, Gruber SB, et al. Association of Melanoma-Risk Variants with Primary Melanoma Tumor Prognostic Characteristics and Melanoma-Specific Survival in the GEM Study. Current Oncology. 2021; 28(6):4756-4771. https://doi.org/10.3390/curroncol28060401
Chicago/Turabian StyleDavari, Danielle R., Irene Orlow, Peter A. Kanetsky, Li Luo, Klaus J. Busam, Ajay Sharma, Anne Kricker, Anne E. Cust, Hoda Anton-Culver, Stephen B. Gruber, and et al. 2021. "Association of Melanoma-Risk Variants with Primary Melanoma Tumor Prognostic Characteristics and Melanoma-Specific Survival in the GEM Study" Current Oncology 28, no. 6: 4756-4771. https://doi.org/10.3390/curroncol28060401
APA StyleDavari, D. R., Orlow, I., Kanetsky, P. A., Luo, L., Busam, K. J., Sharma, A., Kricker, A., Cust, A. E., Anton-Culver, H., Gruber, S. B., Gallagher, R. P., Zanetti, R., Rosso, S., Sacchetto, L., Dwyer, T., Gibbs, D. C., Ollila, D. W., Begg, C. B., Berwick, M., & Thomas, N. E., on behalf of the GEM Study Group. (2021). Association of Melanoma-Risk Variants with Primary Melanoma Tumor Prognostic Characteristics and Melanoma-Specific Survival in the GEM Study. Current Oncology, 28(6), 4756-4771. https://doi.org/10.3390/curroncol28060401